Abstract
The standard ΛCDM cosmological model predicts the presence of cold dark matter, with the current accelerated expansion of the Universe driven by dark energy. This model has recently come under scrutiny because of tensions in measurements of the expansion and growth histories of the Universe, parameterized using H0 and S8. The three-dimensional clustering of galaxies encodes key cosmological information that addresses these tensions. Here we present a set of cosmological constraints using simulation-based inference that exploits additional non-Gaussian information on nonlinear scales from galaxy clustering, inaccessible with current analyses. We analyse a subset of the Baryon Oscillation Spectroscopic Survey (BOSS) galaxy survey using SimBIG, a new framework for cosmological inference that leverages high-fidelity simulations and deep generative models. We use two clustering statistics beyond the standard power spectrum: the bispectrum and a summary of the galaxy field based on a convolutional neural network. We constrain H0 and S8 1.5 and 1.9 times more tightly than power spectrum analyses. With this increased precision, our constraints are competitive with those of other cosmological probes, even with only 10% of the full BOSS volume. Future work extending SimBIG to upcoming spectroscopic galaxy surveys (DESI, PFS, Euclid) will produce improved cosmological constraints that will develop understanding of cosmic tensions.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The observational data from SDSS-III BOSS used in this work are publicly available at https://data.sdss.org/sas/. The Quijote N-simulations in this work are also publicly available at https://quijote-simulations.readthedocs.io/.
Code availability
All of the code used in this paper is publicly available at https://changhoonhahn.github.io/simbig/ and https://doi.org/10.5281/zenodo.11640606.
References
Page, L. et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: beam profiles and window functions. Astrophys. J. Suppl. Ser. 148, 39 (2003).
Bennett, C. L. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20 (2013).
Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Aiola, S. et al. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. J. Cosmol. Astropart. Phys. 2020, 047 (2020).
Bernardeau, F., Colombi, S., Gaztanaga, E. & Scoccimarro, R. Large-scale structure of the Universe and cosmological perturbation theory. Phys. Rep. 367, 1–248 (2002).
Alam, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017).
Perlmutter, S. et al. Measurements of ω and λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).
Riess, A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).
Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).
Brout, D. et al. The Pantheon+ analysis: cosmological constraints. Astrophys. J. 938, 110 (2022).
Schramm, D. N. & Turner, M. S. Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303 (1998).
Steigman, G. Primordial nucleosynthesis in the precision cosmology era. Annu. Rev. Nucl. Part. Sci. 57, 463–491 (2007).
Iocco, F., Mangano, G., Miele, G., Pisanti, O. & Serpico, P. D. Primordial nucleosynthesis: from precision cosmology to fundamental physics. Phys. Rep. 472, 1–76 (2009).
Cyburt, R. H., Fields, B. D., Olive, K. A. & Yeh, T.-H. Big bang nucleosynthesis: present status. Rev. Mod. Phys. 88, 015004 (2016).
Abdalla, E. et al. Cosmology intertwined: a review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 34, 49–211 (2022).
Freedman, W. L. Measurements of the Hubble constant: tensions in perspective. Astrophys. J. 919, 16 (2021).
Kamionkowski, M. & Riess, A. G. The Hubble tension and early dark energy. Annu. Rev. Nucl. Part. Sci. 73, 153–180 (2023).
Riess, A. G. et al. A comprehensive measurement of the local value of the Hubble constant with 1 km s−1 Mpc−1 uncertainty from the Hubble Space Telescope and the SH0ES Team. Astrophys. J. Lett. 934, L7 (2022).
Troxel, M. A. et al. Dark Energy Survey Year 1 results: cosmological constraints from cosmic shear. Phys. Rev. D 98, 043528 (2018).
Asgari, M. et al. KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 645, A104 (2021).
Amon, A. et al. Dark Energy Survey Year 3 results: cosmology from cosmic shear and robustness to data calibration. Phys. Rev. D 105, 023514 (2022).
Dalal, R. et al. Hyper Suprime-Cam Year 3 Results: cosmology from cosmic shear power spectra. Phys. Rev. D 108, 123519 (2023).
Madhavacheril, M. S. et al. The Atacama Cosmology Telescope: DR6 gravitational lensing map and cosmological parameters. Astrophys. J. 962, 113 (2024).
Meerburg, P. D. Alleviating the tension at low ℓ through axion monodromy. Phys. Rev. D 90, 063529 (2014).
Chudaykin, A., Gorbunov, D. & Tkachev, I. Dark matter component decaying after recombination: sensitivity to baryon acoustic oscillation and redshift space distortion probes. Phys. Rev. D 97, 083508 (2018).
Di Valentino, E., Melchiorri, A., Mena, O. & Vagnozzi, S. Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D 101, 063502 (2020).
Abellán, G. F., Murgia, R., Poulin, V. & Lavalle, J. Implications of the S8 tension for decaying dark matter with warm decay products. Phys. Rev. D 105, 063525 (2022).
Eisenstein, D. J., Hu, W. & Tegmark, M. Cosmic complementarity: H0 and Ωm from combining cosmic microwave background experiments and redshift surveys. Astrophys. J. Lett. 504, L57 (1998).
Eisenstein, D. J. et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005).
Cole, S. et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications. Mon. Not. R. Astron. Soc. 362, 505 (2005).
Ivanov, M. M. and Philcox, O. H. E. Measuring H0 with spectroscopic surveys. Preprint at https://doi.org/10.48550/arXiv.2305.07977 (2023).
DESI Collaboration et al. The DESI experiment part I: science, targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).
DESI Collaboration et al. The DESI experiment part II: instrument design. Preprint at https://arxiv.org/abs/1611.00037 (2016).
Abareshi, B. et al. Overview of the instrumentation for the Dark Energy Spectroscopic Instrument. Astron. J. 164, 207 (2022).
Takada, M. et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. Publ. Astron. Soc. Jpn 66, R1 (2014).
Laureijs, R. et al. Euclid Definition Study Report. Preprint at https://arxiv.org/abs/1110.3193 (2011).
Spergel, D. et al. Wide-Field InfrarRed Survey Telescope–Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. Preprint at https://arxiv.org/abs/1503.03757 (2015).
Beutler, F. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: anisotropic galaxy clustering in Fourier space. Mon. Not. R. Astron. Soc. 466, 2242 (2017).
d’Amico, G. et al. The cosmological analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure. J. Cosmol. Astropart. Phys. 2020, 005 (2020).
Ivanov, M. M., Simonović, M. & Zaldarriaga, M. Cosmological parameters from the BOSS galaxy power spectrum. J. Cosmol. Astropart. Phys. 2020, 042 (2020).
Chen, S.-F., Vlah, Z. & White, M. A new analysis of galaxy 2-point functions in the BOSS survey, including full-shape information and post-reconstruction BAO. J. Cosmol. Astropart. Phys. 2022, 008 (2022).
Kobayashi, Y., Nishimichi, T., Takada, M. & Miyatake, H. Full-shape cosmology analysis of the SDSS-III BOSS galaxy power spectrum using an emulator-based halo model: a 5% determination of σ8. Phys. Rev. D 105, 083517 (2022).
Scoccimarro, R., Feldman, H. A., Fry, J. N. & Frieman, J. A. The bispectrum of IRAS redshift catalogs. Astrophys. J. 546, 652 (2001).
Verde, L. et al. The 2dF Galaxy Redshift Survey: the bias of galaxies and the density of the Universe. Mon. Not. R. Astron. Soc. 335, 432 (2002).
Gil-Marín, H. et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies. Mon. Not. R. Astron. Soc. 465, 1757 (2017).
D’Amico, G., Donath, Y., Lewandowski, M., Senatore, L. & Zhang, P. The BOSS bispectrum analysis at one loop from the Effective Field Theory of Large-Scale Structure. J. Cosmol. Astropart. Phys. 2024, 40 (2024).
Philcox, O. H. E. & Ivanov, M. M. BOSS DR12 full-shape cosmology: Λ CDM constraints from the large-scale galaxy power spectrum and bispectrum monopole. Phys. Rev. D 105, 043517 (2022).
Ivanov, M. M. et al. Cosmology with the galaxy bispectrum multipoles: optimal estimation and application to BOSS data. Phys. Rev. D 107, 083515 (2023).
Hahn, C., Villaescusa-Navarro, F., Castorina, E. & Scoccimarro, R. Constraining Mν with the bispectrum. Part I. Breaking parameter degeneracies. J. Cosmol. Astropart. Phys. 2020, 040 (2020).
Hahn, C. & Villaescusa-Navarro, F. Constraining Mν with the bispectrum. Part II. The information content of the galaxy bispectrum monopole. J. Cosmol. Astropart. Phys. 2021, 029 (2021).
Massara, E., Villaescusa-Navarro, F., Ho, S., Dalal, N. & Spergel, D. N. Using the marked power spectrum to detect the signature of neutrinos in large-scale structure. Phys. Rev. Lett. 126, 011301 (2021).
Wang, Y. et al. Extracting high-order cosmological information in galaxy surveys with power spectra. Nat. Commun. 7, 130 (2024).
Hou, J., Moradinezhad Dizgah, A., Hahn, C. & Massara, E. Cosmological information in skew spectra of biased tracers in redshift space. J. Cosmol. Astropart. Phys. 2023, 045 (2023).
Eickenberg, M. et al. Wavelet moments for cosmological parameter estimation. Preprint at https://arxiv.org/abs/2204.07646 (2022).
Zhai, Z. et al. The Aemulus Project. III. Emulation of the galaxy correlation function. Astrophys. J. 874, 95 (2019).
Storey-Fisher, K. et al. The Aemulus Project VI: emulation of beyond-standard galaxy clustering statistics to improve cosmological constraints. Astrophys. J. 961, 208 (2024).
Yuan, S., Garrison, L. H., Eisenstein, D. J. & Wechsler, R. H. Stringent σ8 constraints from small-scale galaxy clustering using a hybrid MCMC + emulator framework. Mon. Not. R. Astron. Soc. 515, 871 (2022).
Zhai, Z. The Aemulus Project V: cosmological constraint from small-scale clustering of BOSS galaxies. Astrophys. J. 948, 99 (2023).
Paillas, E. et al. Cosmological constraints from density-split clustering in the BOSS CMASS galaxy sample. Mon. Not. R. Astron. Soc. 531, 898 (2024).
Valogiannis, G., Yuan, S. & Dvorkin, C. Precise cosmological constraints from BOSS galaxy clustering with a simulation-based emulator of the wavelet scattering transform. Phys. Rev. D 109, 10 (2024).
Allen, S. W., Evrard, A. E. & Mantz, A. B. Cosmological parameters from observations of galaxy clusters. Annu. Rev. Astron. Astrophys. 49, 409 (2011).
Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353 (2012).
Dutcher, D. et al. Measurements of the E-mode polarization and temperature–E-mode correlation of the CMB from SPT-3G 2018 data. Phys. Rev. D 104, 022003 (2021).
Lesci, G. F. et al. AMICO galaxy clusters in KiDS-DR3: constraints on cosmological parameters and on the normalisation of the mass–richness relation from clustering. Astron. Astrophys. 665, A100 (2022).
Banerjee, A. & Abel, T. Nearest neighbour distributions: new statistical measures for cosmological clustering. Mon. Not. R. Astron. Soc. 500, 5479 (2021).
Valogiannis, G. & Dvorkin, C. Towards an optimal estimation of cosmological parameters with the wavelet scattering transform. Phys. Rev. D 105, 103534 (2022).
Ross, A. J. et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics. Mon. Not. R. Astron. Soc. 424, 564 (2012).
Ross, A. J. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: observational systematics and baryon acoustic oscillations in the correlation function. Mon. Not. R. Astron. Soc. 464, 1168 (2017).
Guo, H., Zehavi, I. & Zheng, Z. A new method to correct for fiber collisions in galaxy two-point statistics. Astrophys. J. 756, 127 (2012).
Hahn, C., Scoccimarro, R., Blanton, M. R., Tinker, J. L. & Rodríguez-Torres, S. A. The effect of fiber collisions on the galaxy power spectrum multipoles. Mon. Not. R. Astron. Soc. 467, 1940 (2017).
Smith, A. et al. Correcting for fibre assignment incompleteness in the DESI Bright Galaxy Survey. Mon. Not. R. Astron. Soc. 484, 1285 (2019).
Hahn, C. et al. SimBIG: a forward modeling approach to analyzing galaxy clustering. Proc. Natl Acad. Sci. USA 120, 42 (2023).
Hahn, C. et al. SimBIG: mock challenge for a forward modeling approach to galaxy clustering. J. Cosmol. Astropart. Phys. 2023, 010 (2023).
Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. USA 117, 30055 (2020).
Eisenstein, D. J. et al. SDSS-III: massive spectroscopic surveys of the distant Universe, the Milky Way, and extra-solar planetary systems. Astron. J. 142, 72 (2011).
Dawson, K. S. et al. The Baryon Oscillation Spectroscopic Survey of SDSS-III. Astron. J. 145, 10 (2013).
Villaescusa-Navarro, F. et al. The Quijote simulations. Astrophys. J. Suppl. Ser. 250, 2 (2020).
Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The rockstar phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).
Berlind, A. A. & Weinberg, D. H. The halo occupation distribution: toward an empirical determination of the relation between galaxies and mass. Astrophys. J. 575, 587 (2002).
Zheng, Z., Coil, A. L. & Zehavi, I. Galaxy evolution from halo occupation distribution modeling of DEEP2 and SDSS galaxy clustering. Astrophys. J. 667, 760 (2007).
Zentner, A. R. et al. Constraints on assembly bias from galaxy clustering. Mon. Not. R. Astron. Soc. 485, 1196 (2019).
Hadzhiyska, B. et al. Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model. Mon. Not. R. Astron. Soc. 508, 698 (2021).
Tabak, E. G. & Vanden-Eijnden, E. Density estimation by dual ascent of the log-likelihood. Commun. Math. Sci. 8, 217 (2010).
Tabak, E. G. & Turner, C. V. A family of nonparametric density estimation algorithms. Commun. Pure Appl. Math. 66, 145 (2013).
Papamakarios, G., Pavlakou, T. & Murray, I. Masked autoregressive flow for density estimation. Preprint at https://arxiv.org/abs/1705.07057 (2017).
Durkan, C., Bekasov, A., Murray, I. & Papamakarios, G. Neural spline flows. Preprint at https://doi.org/10.48550/arXiv.1906.04032 (2019).
Greenberg, D. S., Nonnenmacher, M. & Macke, J. H. Automatic posterior transformation for likelihood-free inference. Preprint at https://arxiv.org/abs/1905.07488 (2019).
Tejero-Cantero, A. et al. sbi: a toolkit for simulation-based inference. J. Open Source Softw. 5, 2505 (2020).
Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: a next-generation hyperparameter optimization framework. Preprint at https://doi.org/10.48550/arXiv.1907.10902 (2019).
Modi, C. et al. Sensitivity analysis of simulation-based inference for galaxy clustering. Preprint at https://doi.org/10.48550/arXiv.2309.15071 (2023).
Fry, J. N. Gravity, bias, and the galaxy three-point correlation function. Phys. Rev. Lett. 73, 215 (1994).
Matarrese, S., Verde, L. & Heavens, A. F. Large-scale bias in the Universe: bispectrum method. Mon. Not. R. Astron. Soc. 290, 651 (1997).
Scoccimarro, R. The bispectrum: from theory to observations. Astrophys. J. 544, 597 (2000).
Talts, S., Betancourt, M., Simpson, D., Vehtari, A. & Gelman A. Validating Bayesian inference algorithms with simulation-based calibration. Preprint at https://arxiv.org/abs/1804.06788 (2020).
Lemos, P., Coogan, A., Hezaveh, Y. & Perreault-Levasseur, L. Sampling-based accuracy testing of posterior estimators for general inference. In Proc. Machine Learning Research Vol. 202 (eds Krause, A. et al.) 19256–19273 (PMLR, 2023).
Aver, E., Olive, K. A. & Skillman, E. D. The effects of He I λ10830 on helium abundance determinations. J. Cosmol. Astropart. Phys. 2015, 011 (2015).
Cooke, R. J., Pettini, M. & Steidel, C. C. One percent determination of the primordial deuterium abundance. Astrophys. J. 855, 102 (2018).
Schöneberg, N., Lesgourgues, J. & Hooper, D. C. The BAO+BBN take on the Hubble tension. J. Cosmol. Astropart. Phys. 2019, 029 (2019).
Aiola, S. et al. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. J. Cosmol. Astropart. Phys. 2020, 047 (2020).
Secco, L. F. et al. Dark Energy Survey Year 3 results: cosmology from cosmic shear and robustness to modeling uncertainty. Phys. Rev. D 105, 023515 (2022).
Sugiyama, S. et al. Hyper Suprime-Cam Year 3 Results: cosmology from galaxy clustering and weak lensing with HSC and SDSS using the minimal bias model. Phys. Rev. D 108, 123521 (2023).
Bocquet, S. et al. SPT clusters with DES and HST weak lensing. II. Cosmological constraints from the abundance of massive halos. Preprint at https://arxiv.org/abs/2401.02075 (2024).
Krolewski, A., Ferraro, S. & White, M. Cosmological constraints from unWISE and Planck CMB lensing tomography. J. Cosmol. Astropart. Phys. 2021, 028 (2021).
White, M. et al. Cosmological constraints from the tomographic cross-correlation of DESI luminous red galaxies and Planck CMB lensing. J. Cosmol. Astropart. Phys. 2022, 007 (2022).
Philcox, O. H. E. & Ivanov, M. M. The BOSS DR12 full-shape cosmology: Λ CDM constraints from the large-scale galaxy power spectrum and bispectrum monopole. Phys. Rev. D 104, 043517 (2022).
Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013).
Denzel, P., Coles, J. P., Saha, P. & Williams, L. L. R. The Hubble constant from eight time-delay galaxy lenses. Mon. Not. R. Astron. Soc. 501, 784 (2021).
Kourkchi, E. et al. Cosmicflows-4: the calibration of optical and infrared Tully–Fisher relations. Astrophys. J. 896, 3 (2020).
Palmese, A. et al. A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and Dark Energy Survey galaxies. Astrophys. J. Lett. 900, L33 (2020).
Regaldo-Saint Blancard, B. et al. Galaxy clustering analysis with SimBIG and the wavelet scattering transform. Phys. Rev. D 109, 083535 (2024).
Huang, D., Bharti, A., Souza, A., Acerbi, L. & Kaski, S. Learning robust statistics for simulation-based inference under model misspecification. Preprint at https://doi.org/10.48550/arXiv.2305.15871 (2023).
Chaussidon, E. et al. Target selection and validation of DESI quasars. Astrophys. J. 944, 107 (2023).
Hahn, C. et al. The DESI Bright Galaxy Survey: final target selection, design, and validation. Astron. J. 165, 253 (2023).
Raichoor, A. et al. Target selection and validation of DESI emission line galaxies. Astron. J. 165, 126 (2023).
Zhou, R. et al. Target selection and validation of DESI luminous red galaxies. Astron. J. 165, 58 (2023).
Euclid Collab. Euclid preparation. I. The Euclid Wide Survey. Astron. Astrophys. 662, A112 (2022).
Scoccimarro, R. Fast estimators for redshift-space clustering. Phys. Rev. D 92, 083532 (2015).
Feldman, H. A., Kaiser, N. & Peacock, J. A. Power spectrum analysis of three-dimensional redshift surveys. Astrophys. J. 426, 23 (1994).
Hahn, C., Eickenberg, M., Ho, S. & SimBIG. Cosmological constraints from the nonlinear galaxy bispectrum. Phys. Rev. D 109, 083534 (2024).
Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P. & Wilson, A. G. A simple baseline for bayesian uncertainty in deep learning. Adv. Neural Inf. Process. Syst. 32 (2019).
Wilson, A. G. & Izmailov, P. Bayesian deep learning and a probabilistic perspective of generalization. Adv. Neural Inf. Process. Syst. 33, 4697 (2020).
Lemos, P. et al. Robust simulation-based inference in cosmology with bayesian neural networks. Mach. Learning Sci. Technol. 4, 01LT01 (2023).
Lemos, P. et al. Field-level simulation-based inference of galaxy clustering with convolutional neural networks. Phys. Rev. D 109, 083536 (2024).
Alves de Oliveira, R., Li, Y., Villaescusa-Navarro, F., Ho, S. & Spergel, D. N. Fast and accurate non-linear predictions of universes with deep learning. Preprint at https://arxiv.org/abs/2012.00240 (2020).
Li, Y. et al. AI-assisted superresolution cosmological simulations. Proc. Natl Acad. Sci. USA 118, e2022038118 (2021).
Ni, Y. et al. AI-assisted superresolution cosmological simulations-II. Halo substructures, velocities, and higher order statistics. Mon. Not. R. Astron. Soc. 507, 1021 (2021).
Schaurecker, D., Li, Y., Tinker, J., Ho, S. & Refregier, A., Super-resolving dark matter halos using generative deep learning. Preprint at https://arxiv.org/abs/2111.06393 (2021).
Jamieson, D. et al. Field level neural network emulator for cosmological N-body simulations. Astrophys. J. 952, 145 (2023).
Zhang, X. et al. AI-assisted super-resolution cosmological simulations III: time evolution. Mon. Not. R. Astron. Soc. 528, 281–293 (2024).
Feng, Y., Chu, M.-Y., Seljak, U. & McDonald, P. FASTPM: a new scheme for fast simulations of dark matter and haloes. Mon. Not. R. Astron. Soc. 463, 2273 (2016).
Dai, B., Feng, Y., Seljak, U. & Singh, S. High mass and halo resolution from fast low resolution simulations. J. Cosmol. Astropart. Phys. 2020, 002 (2020).
Modi, C., Lanusse, F. & Seljak, U. FlowPM: distributed TensorFlow implementation of the FastPM cosmological N-body solver. Astron. Comput. 37, 100505 (2021).
Li, Y. et al. Differentiable cosmological simulation with the adjoint method. Astrophys. J. Suppl. Ser. 270, 36 (2024).
Modi, C., Chen, S.-F. & White, M. Simulations and symmetries. Mon. Not. R. Astron. Soc. 492, 5754 (2020).
Hadzhiyska, B., García-García, C., Alonso, D., Nicola, A. & Slosar, A. Hefty enhancement of cosmological constraints from the DES Y1 data using a hybrid effective field theory approach to galaxy bias. J. Cosmol. Astropart. Phys. 2021, 020 (2021).
Kokron, N., DeRose, J., Chen, S.-F., White, M. & Wechsler, R. H. The cosmology dependence of galaxy clustering and lensing from a hybrid N-body-perturbation theory model. Mon. Not. R. Astron. Soc. 505, 1422 (2021).
DeRose, J., Chen, S.-F., Kokron, N. & White, M. Precision redshift-space galaxy power spectra using Zel’dovich control variates. J. Cosmol. Astropart. Phys. 2023, 008 (2023).
Modi, C. & Philcox, O. H. E. Hybrid SBI or how I learned to stop worrying and learn the likelihood. Preprint at https://doi.org/10.48550/arXiv.2309.10270 (2023).
Acknowledgements
We thank P. Melchior, U. Seljak, B. D. Wandelt and the members of the Simons Collaboration on Learning the Universe (https://www.learning-the-universe.org/) for valuable discussions. We also thank M. M. Ivanov and Y. Kobayashi for providing us with the posteriors used for comparison. This work was supported by the AI Accelerator programme of the Schmidt Futures Foundation No 922 (C.H.), the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement No 101025187 (J.H.) and the Tomalla Foundation for Research in Gravity (A.M.D.). The work reported on in this paper was substantially performed using the Princeton Research Computing resources at Princeton University, which is a consortium of groups led by the Princeton Institute for Computational Science and Engineering (PICSciE) and Office of Information Technology’s Research Computing.
Author information
Authors and Affiliations
Contributions
C.H., P.L., L.P., B.R.-S.B., M.E., S.H., J.H., E.M., C.M., A.M.D. and D.S. designed the research. C.H., P.L., L.P. and B.R.-S.B. performed the data analysis. C.H. wrote the draft. All co-authors contributed to the improvement of the analysis and the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks Boryana Hadzhiyska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hahn, C., Lemos, P., Parker, L. et al. Cosmological constraints from non-Gaussian and nonlinear galaxy clustering using the SimBIG inference framework. Nat Astron 8, 1457–1467 (2024). https://doi.org/10.1038/s41550-024-02344-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-024-02344-2