Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid

Abstract

The detection and quantification of protein biomarkers in interstitial fluid is hampered by challenges in its sampling and analysis. Here we report the use of a microneedle patch for fast in vivo sampling and on-needle quantification of target protein biomarkers in interstitial fluid. We used plasmonic fluor—an ultrabright fluorescent label—to improve the limit of detection of various interstitial fluid protein biomarkers by nearly 800-fold compared with conventional fluorophores, and a magnetic backing layer to implement conventional immunoassay procedures on the patch and thus improve measurement consistency. We used the microneedle patch in mice for minimally invasive evaluation of the efficiency of a cocaine vaccine, for longitudinal monitoring of the levels of inflammatory biomarkers, and for efficient sampling of the calvarial periosteum—a challenging site for biomarker detection—and the quantification of its levels of the matricellular protein periostin, which cannot be accurately inferred from blood or other systemic biofluids. Microneedle patches for the minimally invasive collection and analysis of biomarkers in interstitial fluid might facilitate point-of-care diagnostics and longitudinal monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bilayered microneedle fabrication.
Fig. 2: p-FLISA on microneedle for ultrasensitive detection.
Fig. 3: Biophysicochemical properties of microneedle patches.
Fig. 4: Minimally invasive detection of cocaine-specific antibodies in an immunized mouse model.
Fig. 5: Longitudinal monitoring and quantification of cytokines in a mouse model of endotoxin shock.
Fig. 6: Detection of periostin in periosteum by microneedle patch.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and its Supplementary Information. The raw data are available from figshare at https://doi.org/10.6084/m9.figshare.13331366.

References

  1. Kool, J. et al. Suction blister fluid as potential body fluid for biomarker proteins. Proteomics 7, 3638–3650 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Müller, A. C. et al. A comparative proteomic study of human skin suction blister fluid from healthy individuals using immunodepletion and iTRAQ labeling. J. Proteome Res. 11, 3715–3727 (2012).

    Article  PubMed  Google Scholar 

  3. Tran, B. Q. et al. Proteomic characterization of dermal interstitial fluid extracted using a novel microneedle-assisted technique. J. Proteome Res. 17, 479–485 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. He, R. et al. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9, 1901201 (2020).

    Article  CAS  Google Scholar 

  6. Wang, Z. et al. Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials 237, 119782 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Gromov, P. et al. Tumor interstitial fluid—a treasure trove of cancer biomarkers. Biochim. Biophys. Acta 1834, 2259–2270 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, B., Fang, X. & Kong, J. In situ sampling and monitoring cell-free DNA of the Epstein–Barr virus from dermal interstitial fluid using wearable microneedle patches. ACS Appl. Mater. Interfaces 11, 38448–38458 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Al Sulaiman, D. et al. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano 13, 9620–9628 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. McHugh, K. J. et al. Biocompatible near-infrared quantum dots delivered to the skin by microneedle patches record vaccination. Sci. Transl. Med. 11, eaay7162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, H. et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv. Mater. 29, 1702243 (2017).

    Article  Google Scholar 

  12. Kiistala, U. Suction blister device for separation of viable epidermis from dermis. J. Invest Dermatol. 50, 129–137 (1968).

    Article  CAS  PubMed  Google Scholar 

  13. Krogstad, A., Jansson, P. A., Gisslen, P. & Lönnroth, P. Microdialysis methodology for the measurement of dermal interstitial fluid in humans. Br. J. Dermatol. 134, 1005–1012 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Bodenlenz, M. et al. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin. Pharmacokinet. 56, 91–98 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Samant, P. P. & Prausnitz, M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl Acad. Sci. USA 115, 4583–4588 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor, R. M., Miller, P. R., Ebrahimi, P., Polsky, R. & Baca, J. T. Minimally-invasive, microneedle-array extraction of interstitial fluid for comprehensive biomedical applications: transcriptomics, proteomics, metabolomics, exosome research, and biomarker identification. Lab. Anim. 52, 526–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Muller, D. A., Corrie, S. R., Coffey, J., Young, P. R. & Kendall, M. A. Surface modified microprojection arrays for the selective extraction of the dengue virus NS1 protein as a marker for disease. Anal. Chem. 84, 3262–3268 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Coffey, J. W., Meliga, S. C., Corrie, S. R. & Kendall, M. A. Dynamic application of microprojection arrays to skin induces circulating protein extravasation for enhanced biomarker capture and detection. Biomaterials 84, 130–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Nedrebø, T., Reed, R. K., Jonsson, R., Berg, A. & Wiig, H. Differential cytokine response in interstitial fluid in skin and serum during experimental inflammation in rats. J. Physiol. 556, 193–202 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang, X., Chen, G., Bian, F., Cai, L. & Zhao, Y. Encoded microneedle arrays for detection of skin interstitial fluid biomarkers. Adv. Mater. 31, 1902825 (2019).

    Article  Google Scholar 

  21. Coffey, J. W., Corrie, S. R. & Kendall, M. A. Rapid and selective sampling of IgG from skin in less than 1 min using a high surface area wearable immunoassay patch. Biomaterials 170, 49–57 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Luan, J. et al. Ultrabright fluorescent nanoscale labels for the femtomolar detection of analytes with standard bioassays. Nat. Biomed. Eng. 4, 518–530 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dulkeith, E. et al. Gold nanoparticles quench fluorescence by phase induced radiative rate suppression. Nano Lett. 5, 585–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G. & Prausnitz, M. R. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004).

    Article  PubMed  Google Scholar 

  25. Kampman, K. M. The treatment of cocaine use disorder. Sci. Adv. 5, eaax1532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shorter, D. & Kosten, T. R. Novel pharmacotherapeutic treatments for cocaine addiction. BMC Med. 9, 119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinsey, B. M., Kosten, T. R. & Orson, F. M. Anti-cocaine vaccine development. Expert Rev. Vaccines 9, 1109–1114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martell, B. et al. Cocaine vaccine for the treatment of cocaine dependence: a randomized double-blind placebo-controlled efficacy trial. Arch. Gen. Psych. 66, 1116–1123 (2009).

    Article  CAS  Google Scholar 

  29. Scott, E. A., Karabin, N. B. & Augsornworawat, P. Overcoming immune dysregulation with immunoengineered nanobiomaterials. Annu. Rev. Biomed. Eng. 19, 57–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, J., Laudenbach, M., Tucker, A., Jenkins, M. & Pravetoni, M. Hapten-specific naive B cells are biomarkers of vaccine efficacy against drugs of abuse. J. Immunol. Methods 405, 74–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Monteiro-Riviere, N. A., Bristol, D. G., Manning, T. O., Rogers, R. A. & Riviere, J. E. Interspecies and interregional analysis of the comparative histologic thickness and laser Doppler blood flow measurements at five cutaneous sites in nine species. J. Invest. Dermatol. 95, 582-6 (1990).

    Article  PubMed  Google Scholar 

  32. Davidson, A., Al-Qallaf, B. & Das, D. B. Transdermal drug delivery by coated microneedles: geometry effects on effective skin thickness and drug permeability. Chem. Eng. Res. Des. 86, 1196–1206 (2008).

    Article  CAS  Google Scholar 

  33. Copeland, S., Warren, H. S., Lowry, S. F., Calvano, S. E. & Remick, D. Acute inflammatory response to endotoxin in mice and humans. Clin. Diagn. Lab. Immunol. 12, 60–67 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong, Y.-H., Chao, W.-W., Chen, M.-L. & Lin, B.-F. Ethyl acetate extracts of alfalfa (Medicago sativa L.) sprouts inhibit lipopolysaccharide-induced inflammation in vitro and in vivo. J. Biomed. Sci. 16, 64 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24, 274–282 (2009).

    Article  PubMed  Google Scholar 

  36. Dwek, J. R. The periosteum: what is it, where is it, and what mimics it in its absence? Skelet. Radiol. 39, 319–323 (2010).

    Article  Google Scholar 

  37. Sakai, D. et al. Remodeling of actin cytoskeleton in mouse periosteal cells under mechanical loading induces periosteal cell proliferation during bone formation. PLoS ONE 6, e24847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore, S. R., Milz, S. & Knothe Tate, M. L. Periosteal thickness and cellularity in mid-diaphyseal cross‐sections from human femora and tibiae of aged donors. J. Anat. 224, 142–149 (2014).

    Article  PubMed  Google Scholar 

  39. Merle, B. & Garnero, P. The multiple facets of periostin in bone metabolism. Osteoporos. Int. 23, 1199–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Kyutoku, M. et al. Role of periostin in cancer progression and metastasis: inhibition of breast cancer progression and metastasis by anti-periostin antibody in a murine model. Int. J. Mol. Med. 28, 181–186 (2011).

    CAS  PubMed  Google Scholar 

  41. Yan, J. et al. Circulating periostin levels increase in association with bone density loss and healing progression during the early phase of hip fracture in Chinese older women. Osteoporos. Int. 28, 2335–2341 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Bonnet, N., Garnero, P. & Ferrari, S. Special Issue on bone disease mechanisms: periostin action in bone. Mol. Cell. Endocrinol. 432, 75–82 (2015).

    Article  PubMed  Google Scholar 

  43. Cai, Y. et al. Magnet patterned superparamagnetic Fe3O4/Au core–shell nanoplasmonic sensing array for label-free high throughput cytokine immunoassay. Adv. Healthc. Mater. 8, 1801478 (2019).

    Article  Google Scholar 

  44. Hu, M. et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 35, 1084–1094 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, K.-S. & El-Sayed, M. A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 109, 20331–20338 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Gole, A. & Murphy, C. J. Azide-derivatized gold nanorods: functional materials for ‘click’ chemistry. Langmuir 24, 266–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Tebbe, M., Kuttner, C., Männel, M., Fery, A. & Chanana, M. Colloidally stable and surfactant-free protein-coated gold nanorods in biological media. ACS Appl. Mater. Interfaces 7, 5984–5991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Science Foundation (CBET-1900277) and the National Institutes of Health (R01DE027098, R56DE027924, R01CA141521, R21DA036663, R21CA236652). We thank the Nano Research Facility and Institute of Materials Science and Engineering at Washington University for providing access to electron microscopy facilities, N. Huebsch for providing access to the fluorescence microscope, K. Magee for the help with mouse experiments, Y. Diao for help with digital photographs and M. Shen for inspiring discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.S., Z.W. and J.L. conceived the project. S.S., J.S.R., E.L.S., Z.W. and J.L. designed the experiments. Z.W., J.L. and M.Y. fabricated the microneedle patches. Z.W., A.S., L.L., X.Z., J.S.R. and E.L.S. performed the animal experiments. Z.W., J.L., A.S., L.L., Q.Z. and J.J.M. performed the bioassays. J.L. and Q.J. synthesized the plasmonic fluors. P.G. synthesized the magnetic nanoparticles. R.G. performed TEM imaging. P.R. and Y.W. performed SEM imaging. S.C. collected fluorescence images of the microneedles. S.S., J.S.R., E.L.S., J.J.M., Z.W. and J.L. wrote the paper. All authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Erica L. Scheller, Jai S. Rudra or Srikanth Singamaneni.

Ethics declarations

Competing interests

The authors declare the following competing financial interests: J.L., J.J.M. and S.S. are inventors on a provisional patent related to plasmonic fluor technology and the technology has been licensed by the Office of Technology Management at Washington University in St Louis to Auragent Bioscience LLC, which is developing plasmonic fluor products. J.L., J.J.M. and S.S. are co-founders and shareholders of Auragent Bioscience LLC. These potential conflicts of interest have been disclosed and are being managed by Washington University in St Louis.

Additional information

Peer review information Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Luan, J., Seth, A. et al. Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat Biomed Eng 5, 64–76 (2021). https://doi.org/10.1038/s41551-020-00672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00672-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research