Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Impacts of climate change-related human migration on infectious diseases

Abstract

Health consequences arising from climate change are threatening to offset advances made to reduce the damage of infectious diseases, which vary by region and the resilience of the local health system. Here we discuss how climate change-related migrations and infectious disease burden are linked through various processes, such as the expansion of pathogens into non-endemic areas, overcrowding in new informal settlements, and the increased proximity of disease vectors and susceptible human populations. Countries that are predicted to have the highest burden are those that have made the least contribution to climate change. Further studies are needed to generate robust evidence on the potential consequences of climate change-related human movements and migration, as well as identify effective and bespoke short- and long-term interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Share of global cumulative CO2 emissions and vulnerability index per country.
Fig. 2: Trend per continent of the proportion of disease burden and the GDP per capita of countries.
Fig. 3: The different types of climate-driven human migration and their associated factors and confounders.
Fig. 4: Distribution of IDPs by country and hazard, comparison with outward migrations and country-wise net migration against its vulnerability.

Similar content being viewed by others

Data availability

All the data used to produce figures in this paper are available at https://github.com/kraemer-lab/Climate-Migration-Infectious-Diseases-Perspective.

Code availability

All the codes used to produce figures in this paper are available at https://github.com/kraemer-lab/Climate-Migration-Infectious-Diseases-Perspective.

References

  1. Shuman, E. K. Global climate change and infectious diseases. N. Engl. J. Med. 362, 1061–1063 (2010).

    Article  CAS  Google Scholar 

  2. Thomson, M. C. & Stanberry, L. R. Climate change and vectorborne diseases. N. Engl. J. Med. 387, 1969–1978 (2022).

    Article  CAS  Google Scholar 

  3. Shope, R. Global climate change and infectious diseases. Environ. Health Perspect. https://doi.org/10.1289/ehp.9196171 (1991).

    Article  Google Scholar 

  4. Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).

    Article  CAS  Google Scholar 

  5. Lenton, T. M. et al. Quantifying the human cost of global warming. Nat. Sustain. 6, 1237–1247 (2023).

  6. COP28 Health Day World Health Organization https://www.who.int/news-room/events/detail/2023/12/03/default-calendar/cop28-health-day (2023).

  7. 2023 Global Report on Internal Displacement (IDMC, 2023); https://www.internal-displacement.org/global-report/grid2023/

  8. Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).

    Article  Google Scholar 

  9. Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article  CAS  Google Scholar 

  10. Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol 4, 1508–1515 (2019).

    Article  CAS  Google Scholar 

  11. Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol 4, 854–863 (2019).

    Article  CAS  Google Scholar 

  12. Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article  Google Scholar 

  13. Climate-sensitive disease outbreaks in the aftermath of extreme climatic events: a scoping review. One Earth 5, 336–350 (2022).

  14. McMichael, C. Climate change-related migration and infectious disease. Virulence 6, 548–553 (2015).

    Article  Google Scholar 

  15. Salje, H. et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc. Natl Acad. Sci. USA 113, 13420–13425 (2016).

    Article  CAS  Google Scholar 

  16. Kraemer, M. U. G. et al. Big city, small world: density, contact rates, and transmission of dengue across Pakistan. J. R. Soc. Interface 12, 20150468 (2015).

    Article  CAS  Google Scholar 

  17. Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. USA 112, 11887–11892 (2015).

    Article  CAS  Google Scholar 

  18. Addaney, M., Boshoff, E. & Olutola, B. The climate change and human rights nexus in Africa. Amst. Law Forum 9, 5 (2017).

    Article  Google Scholar 

  19. Weaver, S. C. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol. 21, 360–363 (2013).

    Article  CAS  Google Scholar 

  20. Rader, B. et al. Crowding and the shape of COVID-19 epidemics. Nat. Med. 26, 1829–1834 (2020).

  21. Hickel, J. Quantifying national responsibility for climate breakdown: an equality-based attribution approach for carbon dioxide emissions in excess of the planetary boundary. Lancet Planet. Health 4, e399–e404 (2020).

    Article  Google Scholar 

  22. Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article  Google Scholar 

  23. IPCC Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) (WMO, 2018); https://www.ipcc.ch/sr15

  24. State of the Climate in Africa 2021 (WMO, 2022); https://library.wmo.int/doc_num.php?explnum_id=11512

  25. Li, X. et al. Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Commun. Earth Environ. 2, 201 (2021).

  26. Issa, R. et al. Human migration on a heating planet: a scoping review. PLoS Clim. 2, e0000214 (2023).

    Article  Google Scholar 

  27. Cattaneo, C. et al. Human migration in the era of climate change. Rev. Environ. Econ. Policy https://doi.org/10.1093/reep/rez008 (2019).

    Article  Google Scholar 

  28. Schwerdtle, P. N. et al. Health and migration in the context of a changing climate: a systematic literature assessment. Environ. Res. Lett. 15, 103006 (2020).

    Article  Google Scholar 

  29. Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    Article  CAS  Google Scholar 

  30. Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).

    Article  Google Scholar 

  31. Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2019).

    Article  Google Scholar 

  32. Gray, C. & Wise, E. Country-specific effects of climate variability on human migration. Climatic Change 135, 555–568 (2016).

    Article  Google Scholar 

  33. Elsner, J. B. Continued increases in the intensity of strong tropical cyclones. Bull. Am. Meteorol. Soc. 101, E1301–E1303 (2020).

    Article  Google Scholar 

  34. Guzman, O. & Jiang, H. Global increase in tropical cyclone rain rate. Nat. Commun. 12, 5344 (2021).

    Article  CAS  Google Scholar 

  35. Cissé, G. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) Ch. 7 (Cambridge Univ. Press, 2022); https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-7/

  36. Cattaneo, C. & Peri, G. The migration response to increasing temperatures. J. Dev. Econ. 122, 127–146 (2016).

    Article  Google Scholar 

  37. Rigaud, K. K. Groundswell: Preparing for Internal Climate Migration (International Bank for Reconstruction and Development/The World Bank 2018).

  38. Baronchelli, A. & Riciutti, R. Temperature shocks, rice production, and migration in Vietnamese households. Ecol. Econ. 193, 107301 (2022).

  39. Mueller, V., Gray, C. & Kosec, K. Heat stress increases long-term human migration in rural Pakistan. Nat. Clim. Change 4, 182 (2014).

    Article  CAS  Google Scholar 

  40. Global Report on Internal Displacement 2019 (IDMC, 2019); https://www.internal-displacement.org/global-report/grid2019/

  41. Acosta, R. J., Kishore, N., Irizarry, R. A. & Buckee, C. O. Quantifying the dynamics of migration after Hurricane Maria in Puerto Rico. Proc. Natl Acad. Sci. USA 117, 32772–32778 (2020).

    Article  CAS  Google Scholar 

  42. Hammer, C. C., Brainard, J. & Hunter, P. R. Risk factors and risk factor cascades for communicable disease outbreaks in complex humanitarian emergencies: a qualitative systematic review. BMJ Glob. Health 3, e000647 (2018).

    Article  Google Scholar 

  43. Braam, D. H., Chandio, R., Jephcott, F. L., Tasker, A. & Wood, J. L. N. Disaster displacement and zoonotic disease dynamics: the impact of structural and chronic drivers in Sindh, Pakistan. PLoS Glob. Public Health 1, e0000068 (2021).

    Article  Google Scholar 

  44. Bayoh, M. N. et al. Malaria in Kakuma refugee camp, Turkana, Kenya: facilitation of Anopheles arabiensis vector populations by installed water distribution and catchment systems. Malar. J. 10, 149 (2011).

    Article  Google Scholar 

  45. Akhter, S. et al. Detection of Salmonella genes in stool samples of children aged 5 years and younger in urban and rural areas of Bangladesh. J. Infect. Dev. Ctries. 15, 506–515 (2021).

    Article  CAS  Google Scholar 

  46. Burrows, K. et al. Health disparities among older adults following tropical cyclone exposure in Florida. Nat. Commun. 14, 2221 (2023).

    Article  CAS  Google Scholar 

  47. Michalopoulos, L. M., Aifah, A. & El-Bassel, N. A systematic review of HIV risk behaviors and trauma among forced and unforced migrant populations from low and middle-income countries: state of the literature and future directions. AIDS Behav. 20, 243–261 (2016).

    Article  Google Scholar 

  48. Willett, J. & Sears, J. Complicating our understanding of environmental migration and displacement: the case of drought-related human movement in Kenya. Int. Soc. Work 63, 364–370 (2020).

    Article  Google Scholar 

  49. Ahmed, J. A. et al. Hepatitis E outbreak, Dadaab refugee camp, Kenya, 2012. Emerg. Infect. Dis. 19, 1010–1012 (2013).

    Article  Google Scholar 

  50. Golicha, Q. et al. Cholera outbreak in Dadaab Refugee Camp, Kenya—November 2015–June 2016. MMWR Morb. Mortal. Wkly. Rep. 67, 958–961 (2018).

    Article  Google Scholar 

  51. Abbas, M. A. S. et al. Independent circulation of Leishmania major and Leishmania tropica in their respective sandfly vectors for transmission of zoonotic and chronic cutaneous leishmaniasis co-existing in a mixed focus of central Tunisia. Pathogens 11, 855 (2022).

    Article  CAS  Google Scholar 

  52. Thompson, R. A., Wellington de Oliveira Lima, J., Maguire, J. H., Braud, D. H. & Scholl, D. T. Climatic and demographic determinants of American visceral leishmaniasis in northeastern Brazil using remote sensing technology for environmental categorization of rain and region influences on leishmaniasis. Am. J. Trop. Med. Hyg. 67, 648–655 (2002).

    Article  Google Scholar 

  53. Afolayan, A. A. & Adelekan, I. O. The role of climatic variations on migration and human health in Africa. Environmentalist 18, 213–218 (1999).

    Article  Google Scholar 

  54. Schmunis, G. A. & Yadon, Z. E. Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop. 115, 14–21 (2010).

    Article  Google Scholar 

  55. Eroglu, F. & Ozgoztasi, O. The increase in neglected cutaneous leishmaniasis in Gaziantep province of Turkey after mass human migration. Acta Trop. 192, 138–143 (2019).

    Article  Google Scholar 

  56. De Leo, G. A. et al. Schistosomiasis and climate change. BMJ 371, m4324 (2020).

  57. Walsh, M. G., Wiethoelter, A. & Haseeb, M. A. The impact of human population pressure on flying fox niches and the potential consequences for Hendra virus spillover. Sci. Rep. 7, 8226 (2017).

    Article  Google Scholar 

  58. Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).

    Article  CAS  Google Scholar 

  59. Kurpiers, L. A., Schulte-Herbrüggen, B., Ejotre, I. & Reeder, D. M. in Problematic Wildlife: A Cross-Disciplinary Approach (ed. Angelici, F. M.) 507–551 (Springer, 2016).

  60. Azman, A. S. et al. Population-level effect of cholera vaccine on displaced populations, South Sudan, 2014. Emerg. Infect. Dis. 22, 1067–1070 (2016).

    Article  CAS  Google Scholar 

  61. Scheffran, J., Link, P. M. & Schilling, J. in Oxford Research Encyclopedia of Climate Science (ed. Claussen, M.) https://doi.org/10.1093/acrefore/9780190228620.013.557 (Oxford Univ. Press, 2019).

  62. Jones, F. K. et al. Successive epidemic waves of cholera in South Sudan between 2014 and 2017: a descriptive epidemiological study. Lancet Planet. Health 4, e577–e587 (2020).

    Article  Google Scholar 

  63. Mustafa, M. I. & Makhawi, A. M. The reemergence of dengue virus in Sudan. J. Infect. Public Health 16, 1392–1395 (2023).

    Article  Google Scholar 

  64. Gurram, M. K., Wang, M. X., Wang, Y.-C. & Pang, J. Impact of urbanisation and environmental factors on spatial distribution of COVID-19 cases during the early phase of epidemic in Singapore. Sci. Rep. 12, 9758 (2022).

    Article  CAS  Google Scholar 

  65. Reyes, R., Ahn, R., Thurber, K. & Burke, T. F. in Challenges in Infectious Diseases (ed. Fong, I. W.) 123–146 (Springer, 2013).

  66. Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5, 27060 (2015).

    Google Scholar 

  67. Mahmud, A. S. et al. Megacities as drivers of national outbreaks: the 2017 chikungunya outbreak in Dhaka, Bangladesh. PLoS Negl. Trop. Dis. 15, e0009106 (2021).

    Article  Google Scholar 

  68. Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).

    Article  CAS  Google Scholar 

  69. Alimonti, G., Mariani, L., Prodi, F. & Ricci, R. A. A critical assessment of extreme events trends in times of global warming. Euro. Phys. J. Plus 137, 112 (2022); retraction 138, 743 (2023).

  70. Keim, M. E. Building human resilience: the role of public health preparedness and response as an adaptation to climate change. Am. J. Prev. Med. 35, 508–516 (2008).

    Article  Google Scholar 

  71. Haque, U. et al. Reduced death rates from cyclones in Bangladesh: what more needs to be done? Bull. World Health Org. 90, 150–156 (2012).

    Article  Google Scholar 

  72. Cosgrave, J. Responding to Flood Disasters: Learning from Previous Relief and Recovery Operations (ALNAP/ODI, 2014).

  73. Golnaraghi, M., Etienne, C., Guha-Sapir, D. & Below, R. Atlas of Mortality and Economic Losses from Weather, Climate, and Water Extremes (1970–2012) (World Meteorological Organization, 2021).

  74. Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 9, 1986 (2018).

  75. OCHA’s Strategic Plan 2023–2026: Transforming Humanitarian Coordination (OCHA, 2023); https://www.unocha.org/publications/report/world/ochas-strategic-plan-2023-2026-transforming-humanitarian-coordination

  76. Yoro, K. O. & Daramola, M. O. in Advances in Carbon Capture (eds Rahimpour, M. R. et al.) 3–28 (Elsevier, 2020).

  77. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  78. Semenza, J. C. & Paz, S. Climate change and infectious disease in Europe: impact, projection and adaptation. Lancet Reg. Health Eur. 9, 100230 (2021).

    Article  Google Scholar 

  79. Mabon, L., Kondo, K., Kanekiyo, H., Hayabuchi, Y. & Yamaguchi, A. Fukuoka: adapting to climate change through urban green space and the built environment? Cities 93, 273–285 (2019).

    Article  Google Scholar 

  80. Nguyen, T. T. et al. Implementation of a specific urban water management—Sponge City. Sci. Total Environ. 652, 147–162 (2019).

    Article  Google Scholar 

  81. Ramakrishnan, R. et al. Wave induced coastal flooding along the southwest coast of India during tropical cyclone Tauktae. Sci. Rep. 12, 19966 (2022).

    Article  Google Scholar 

  82. Hierink, F., Okiro, E. A., Flahault, A. & Ray, N. The winding road to health: a systematic scoping review on the effect of geographical accessibility to health care on infectious diseases in low- and middle-income countries. PLoS ONE 16, e0244921 (2021).

    Article  CAS  Google Scholar 

  83. Operational Framework for Building Climate Resilient Health Systems (WHO, 2015); https://www.who.int/publications/i/item/9789241565073

  84. Corvalan, C. et al. Towards climate resilient and environmentally sustainable health care facilities. Int. J. Environ. Res. Public Health 17, 8849 (2020).

    Article  Google Scholar 

  85. Singh, C. et al. Interrogating ‘effectiveness’ in climate change adaptation: 11 guiding principles for adaptation research and practice. Clim. Dev. 14, 650–664 (2022).

    Article  Google Scholar 

  86. Klepac, P. et al. Climate change, malaria and neglected tropical diseases: a scoping review. Trans. R. Soc. Trop. Med. Hyg. https://doi.org/10.1093/trstmh/trae026 (2024).

  87. Morgan, J., Strode, C. & Salcedo-Sora, J. E. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl. Trop. Dis. 15, e0009259 (2021).

    Article  Google Scholar 

  88. Alenou, L. D. & Etang, J. Airport malaria in non-endemic areas: new insights into mosquito vectors, case management and major challenges. Microorganisms 9, 2160 (2021).

    Article  CAS  Google Scholar 

  89. Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).

  90. Tian, H. et al. Urbanization prolongs hantavirus epidemics in cities. Proc. Natl Acad. Sci. USA 115, 4707–4712 (2018).

    Article  CAS  Google Scholar 

  91. Rose, N. H. et al. Climate and urbanization drive mosquito preference for humans. Curr. Biol. 30, 3570–3579 (2020).

    Article  CAS  Google Scholar 

  92. Sacks-Davis, R. et al. Phylogenetic clustering networks among heterosexual migrants with new HIV diagnoses post-migration in Australia. PLoS ONE 15, e0237469 (2020).

    Article  CAS  Google Scholar 

  93. Barrington, C. et al. Social networks, migration, and HIV testing among Latinos in a new immigrant destination: insights from a qualitative study. Glob. Public Health 13, 1507–1519 (2018).

    Article  Google Scholar 

  94. Tanser, F., Bärnighausen, T., Vandormael, A. & Dobra, A. HIV treatment cascade in migrants and mobile populations. Curr. Opin. HIV AIDS 10, 430–438 (2015).

    Article  Google Scholar 

  95. Rosado, P. CO2-data. GitHub https://github.com/owid/co2-data/blob/master/owid-co2-data.csv (2024).

  96. Country Index. University of Notre Dame https://gain.nd.edu/our-work/country-index (2023).

  97. Roser, M., Ritchie, H. & Spooner, F. Burden of disease. Our World in Data https://ourworldindata.org/burden-of-disease (2024).

  98. Total number of international migrants at mid-year 2020. Migration Data Portal https://www.migrationdataportal.org/international-data (2021).

  99. Helgesson, M., Johansson, B., Nordquist, T., Vingård, E. & Svartengren, M. Healthy migrant effect in the Swedish context: a register-based, longitudinal cohort study. BMJ Open 9, e026972 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

M.U.G.K. acknowledges funding from The Rockefeller Foundation, Google.org, the Oxford Martin School Pandemic Genomics programme (also B.G.), European Union’s Horizon Europe programme projects MOOD (874850) and E4Warning (101086640), the John Fell Fund, a Branco Weiss Fellowship and Wellcome Trust grants 225288/Z/22/Z, 226052/Z/22/Z and 228186/Z/23/Z (also B.G.), United Kingdom Research and Innovation (APP8583) and the Medical Research Foundation (MRF-RG-ICCH-2022-100069). The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views of the European Commission or the other funders. CERI acknowledges support from grants from the South African Medical Research Council (SAMRC), the National Department of Health, Rockefeller Foundation (HTH 017), the Abbott Pandemic Defense Coalition (APDC), the National Institute of Health USA (U01 AI151698) for the United World Antivirus Research Network (UWARN), the INFORM Africa project through IHVN (U54 TW012041) and the eLwazi Open Data Science Platform and Coordinating Center (U2CEB032224), the SAMRC South African mRNA Vaccine Consortium (SAMVAC), European Union supported by the Global Health EDCTP3 Joint Undertaking and its members, European Union’s Horizon Europe research and innovation programme (101046041), the Health Emergency Preparedness and Response Umbrella Program (HEPR Program), managed by the World Bank Group (TF0B8412), the GIZ commissioned by the Government of the Federal Republic of Germany, the UK’s Medical Research Foundation (MRF-RG-ICCH-2022-100069), and the Wellcome Trust for the global health project (228186/Z/23/Z). We gratefully acknowledge the CLIMADE Consortium (CLIMate Amplified Diseases and Epidemics, https://climade.health/), through which this work and collaboration is made possible. CLIMADE was set up to investigate and respond to the devastating intersection of climate change and infectious diseases globally. The views expressed are those of the authors and not necessarily those of the Department of Health and Social Care or European Commission or any other funder. J.L.-H.T. is supported by a Yeotown Scholarship from New College, University of Oxford. R.E.P. is supported by the EPSRC Centre for Doctoral Training in Health Data Science (EP/S02428X/1). S.B. is supported by the Clarendon Scholarship and 603 St Edmund Hall College, University of Oxford and NERC DTP (grant number NE/S007474/1). R.P.D.I. is supported by the Oxford-NaturalMotion Graduate Scholarship from the University of Oxford.

Author information

Authors and Affiliations

Authors

Contributions

M.U.G.K., H.T., P.S., J.L.-H.T., R.E.P., M.M., R.P.D.I., E.W., J.E.S., J.P., S.B., B.G., A.D. and T.d.O. conceptualized the study. J.L.-H.T., R.E.P., M.M. and P.S. analysed and investigated data and made visualizations. P.S., M.U.G.K., H.T., J.L.-H.T., R.E.P. and M.M. wrote the initial draft of the paper. P.S., M.U.G.K., H.T., J.L.-H.T., R.E.P., M.M., R.P.D.I., E.W., J.E.S., J.P., S.B., B.G., A.D. and T.d.O. contributed to editing and reviewing the text. M.U.G.K., H.T. and P.S. oversaw and supervised the project. M.U.G.K., H.T. and T.d.O. acquired funding for the study.

Corresponding authors

Correspondence to Moritz U. G. Kraemer, Houriiyah Tegally or Prathyush Sambaturu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Celia McMichael, Eric Nilles and Noah H. Rose for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsui, J.LH., Pena, R.E., Moir, M. et al. Impacts of climate change-related human migration on infectious diseases. Nat. Clim. Chang. 14, 793–802 (2024). https://doi.org/10.1038/s41558-024-02078-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-024-02078-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing