Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Open Science principles for accelerating trait-based science across the Tree of Life

A Publisher Correction to this article was published on 09 March 2020

This article has been updated

Abstract

Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles—open data, open source and open methods—is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mammal, bird and plant phylogenies coloured according to the number of traits for which we have data for each species and lineage.
Fig. 2: Architectures of three alternative networks in which research groups (nodes) interact in collecting and organizing trait data.

Similar content being viewed by others

Change history

References

  1. Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad. Sci. USA 111, 740–745 (2014).

    CAS  PubMed  Google Scholar 

  2. Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).

    Google Scholar 

  3. Chown, S. L. & Gaston, K. J. Macrophysiology–progress and prospects. Funct. Ecol. 30, 330–344 (2016).

    Google Scholar 

  4. Kooijman, S. A. L. M. Dynamic Energy and Mass Budgets in Biological Systems (Cambridge Univ. Press, 2000).

  5. Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).

    Google Scholar 

  6. Harmon, L. J. et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396 (2010).

    PubMed  Google Scholar 

  7. Sauquet, H. & Magallón, S. Key questions and challenges in angiosperm macroevolution. New Phytol. 219, 1170–1187 (2018).

    PubMed  Google Scholar 

  8. Sneath, P. H. & Sokal, R. R. Numerical Taxonomy: The Principles and Practice of Numerical Classification (W. H. Freeman & Co, 1973).

  9. Edmunds, R. C. et al. Phenoscape: identifying candidate genes for evolutionary phenotypes. Mol. Biol. Evol. 33, 13–24 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Mungall, C. J. et al. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45, D712–D722 (2016).

    PubMed  PubMed Central  Google Scholar 

  11. Gkoutos, G. V., Schofield, P. N. & Hoehndorf, R. The anatomy of phenotype ontologies: principles, properties and applications. Brief. Bioinform. 19, 1008–1021 (2017).

    PubMed Central  Google Scholar 

  12. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Google Scholar 

  13. Kiørboe, T., Visser, A. & Andersen, K. H. A trait-based approach to ocean ecology. ICES J. Mar. Sci. 75, 1849–1863 (2018).

    Google Scholar 

  14. Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    CAS  PubMed  Google Scholar 

  15. Laughlin, D. C. Nitrification is linked to dominant leaf traits rather than functional diversity. J. Ecol. 99, 1091–1099 (2011).

    Google Scholar 

  16. Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).

    Google Scholar 

  17. Laigle, I. et al. Species traits as drivers of food web structure. Oikos 127, 316–326 (2018).

    Google Scholar 

  18. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  19. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  PubMed  Google Scholar 

  20. Iversen, C. M. et al. A global Fine‐Root Ecology Database to address below‐ground challenges in plant ecology. New Phytol. 215, 15–26 (2017).

    PubMed  Google Scholar 

  21. Kattge, J. et al. TRY–a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  22. Bernhardt‐Römermann, M., Poschlod, P. & Hentschel, J. BryForTrait–A life‐history trait database of forest bryophytes. J. Veg. Sci. 29, 798–800 (2018).

    Google Scholar 

  23. Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).

    Google Scholar 

  25. Myhrvold, N. P. et al. An amniote life‐history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109–3109 (2015).

    Google Scholar 

  26. Schäfer, R. B. et al. A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Sci. Total Environ. 409, 2055–2063 (2011).

    PubMed  Google Scholar 

  27. Bland, L. Global correlates of extinction risk in freshwater crayfish. Animal Conserv. 20, 532–542 (2017).

    Google Scholar 

  28. Brun, P., Payne, M. R. & Kiørboe, T. A trait database for marine copepods. Earth Syst. Sci. Data 9, 99–113 (2017).

    Google Scholar 

  29. Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).

    Google Scholar 

  30. Froese, R. & Pauly, D. Progress Report on FishBase (Fisheries Centre, University of British Columbia, 2010).

  31. Frimpong, E. A. & Angermeier, P. L. Fish traits: a database of ecological and life-history traits of freshwater fishes of the United States. Fisheries 34, 487–495 (2009).

    Google Scholar 

  32. Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).

    PubMed  PubMed Central  Google Scholar 

  33. Garnett, S. T. et al. Biological, ecological, conservation and legal information for all species and subspecies of Australian bird. Sci. Data 2, 150061 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095‐178. Ecology 95, 2027 (2014).

    Google Scholar 

  35. Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Google Scholar 

  37. Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626 (2018).

    PubMed  Google Scholar 

  38. Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. & Arasa-Gisbert, R. Ecological traits of the world’s primates. Sci. Data 6, 55 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Flores-Moreno, H. et al. fungaltraits aka funfun: a dynamic functional trait database for the world's fungi (GitHub, 2019); https://doi.org/10.5281/zenodo.1216257.

  40. Sholler, D., Ram, K., Boettiger, C. & Katz, D. S. Enforcing public data archiving policies in academic publishing: A study of ecology journals. Big Data Soc. 6, 2053951719836258 (2019).

    Google Scholar 

  41. Fegraus, E. H., Andelman, S., Jones, M. B. & Schildhauer, M. Maximizing the value of ecological data with structured metadata: an introduction to Ecological Metadata Language (EML) and principles for metadata creation. Bull. Ecol. Soc. Am. 86, 158–168 (2005).

    Google Scholar 

  42. Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).

    PubMed  Google Scholar 

  43. Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Google Scholar 

  44. Cornwell, W. K., Pearse, W. D., Dalrymple, R. L. & Zanne, A. E. What we (don’t) know about global plant diversity. Ecography 42, 1819–1831 (2019).

    Google Scholar 

  45. Stodden, V., Seiler, J. & Ma, Z. An empirical analysis of journal policy effectiveness for computational reproducibility. Proc. Natl Acad. Sci. USA 115, 2584–2589 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lowndes, J. S. S. et al. Our path to better science in less time using open data science tools. Nat. Ecol. Evol. 1, 0160 (2017).

    Google Scholar 

  47. Weigelt, P., König, C. & Kreft, H. GIFT–a global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. https://doi.org/10.1111/jbi.13623 (2019).

  48. Parker, T., Nakagawa, S. & Gurevitch, J., IIEE workshop participants. Promoting transparency in evolutionary biology and ecology. Ecol. Lett. 19, 726–728 (2016).

    CAS  PubMed  Google Scholar 

  49. McKiernan, E. C. et al. Point of view: How open science helps researchers succeed. eLife 5, e16800 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big-data science: current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    Google Scholar 

  53. Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. Ecology 96, 1445–1445 (2015).

    Google Scholar 

  54. Salguero‐Gómez, R. et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 85, 371–384 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Salguero‐Gómez, R. et al. The COMPADRE Plant Matrix Database: an open online repository for plant demography. J. Ecol. 103, 202–218 (2015).

    Google Scholar 

  56. Marques, G. M. et al. The AmP project: comparing species on the basis of dynamic energy budget parameters. PLOS Comput. Biol. 14, e1006100 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl Acad. Sci. USA 116, 9658–9664 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wieczorek, J. et al. Darwin Core: an evolving community-developed biodiversity data standard. PLOS ONE 7, e29715 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Guralnick, R., Walls, R. & Jetz, W. Humboldt Core–toward a standardized capture of biological inventories for biodiversity monitoring, modeling and assessment. Ecography 41, 713–725 (2018).

    Google Scholar 

  60. Deans, A. R. et al. Finding our way through phenotypes. PLOS Biol. 13, e1002033 (2015).

    PubMed  PubMed Central  Google Scholar 

  61. Haendel, M. A. et al. Unification of multi-species vertebrate anatomy ontologies for comparative biology in Uberon. J. Biomed. Semant. 5, 21 (2014).

    Google Scholar 

  62. Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2017).

    Google Scholar 

  63. The Gene Ontology Consortium. The Gene Ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2018).

    PubMed Central  Google Scholar 

  64. Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J. & Lewis, S. E. The environment ontology: contextualising biological and biomedical entities. J. Biomed. Semant. 4, 43 (2013).

    Google Scholar 

  65. Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl Acad. Sci. USA 114, E5070–E5076 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies - New Edition (Princeton Univ. Press, 2008).

  67. Tenopir, C. et al. Data sharing by scientists: practices and perceptions. PLOS ONE 6, e21101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tyler, E. H. et al. Extensive gaps and biases in our knowledge of a well‐known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21, 922–934 (2012).

    Google Scholar 

  69. Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).

    PubMed  Google Scholar 

  70. Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019).

    CAS  PubMed  Google Scholar 

  71. Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: a start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).

    Google Scholar 

  72. Ankenbrand, M. J., Hohlfeld, S. C., Weber, L., Förster, F. & Keller, A. Functional exploration of natural networks and ecological communities. Methods Ecol. Evol. 9, 2028–2033 (2018).

    Google Scholar 

  73. Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).

    PubMed  Google Scholar 

  74. Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Andelman, S. J., Bowles, C. M., Willig, M. R. & Waide, R. B. Understanding environmental complexity through a distributed knowledge network. BioScience 54, 240–246 (2004).

    Google Scholar 

  76. Schneider, F. D. et al. Towards an ecological trait-data standard. Methods Ecol. Evol. 10, 2006–2019 (2019).

    Google Scholar 

  77. Perez-Harguindeguy, N. et al. A new handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716 (2013).

    Google Scholar 

  78. Fang, J. et al. Methods and protocols for plant community inventory. Biodivers. Sci. 17, 533–548 (2009).

    Google Scholar 

  79. Sack, L. et al. A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. Funct. Plant Biol. 37, 687–693 (2010).

    CAS  Google Scholar 

  80. Bjorkman, A. D. et al. Tundra Trait Team: a database of plant traits spanning the tundra biome. Glob. Ecol. Biogeogr. 27, 1402–1411 (2018).

    Google Scholar 

  81. Moretti, M. et al. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct. Ecol. 31, 558–567 (2017).

    Google Scholar 

  82. Ferris, H. NEMAPLEX: The Nematode-Plant Expert Information System (Univ. California Davis, 2005); http://nemaplex.ucdavis.edu/

  83. Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Palomares, M. L. D. & Pauly, D. SeaLifeBase v.12/2010 (2010); www.sealifebase.org

  85. Le Bagousse‐Pinguet, Y. et al. Traits of neighbouring plants and space limitation determine intraspecific trait variability in semi‐arid shrublands. J. Ecol. 103, 1647–1657 (2015).

    Google Scholar 

  86. Cornelissen, J. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Google Scholar 

  87. Maitner, B. S. et al. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar 

  88. Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS  PubMed  Google Scholar 

  89. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed  Google Scholar 

  90. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  91. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    PubMed  Google Scholar 

  92. Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 217–241 (2016).

    CAS  Google Scholar 

  93. Neuheimer, A. B. et al. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies. Ecology 96, 3303–3311 (2015).

    CAS  PubMed  Google Scholar 

  94. Ernest, S. M. et al. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990–995 (2003).

    Google Scholar 

  95. Weiss, K. C. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).

    Google Scholar 

  96. Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 185–195 (Oxford Univ. Press, 2009).

  97. Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).

    CAS  PubMed  Google Scholar 

  98. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).

    CAS  PubMed  Google Scholar 

  99. Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    PubMed  PubMed Central  Google Scholar 

  100. Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004).

    Google Scholar 

  101. van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Change Biol. 21, 2711–2725 (2015).

    Google Scholar 

  103. Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    PubMed  Google Scholar 

  105. Fordham, D. A. et al. How complex should models be? Comparing correlative and mechanistic range dynamics models. Glob. Change Biol. 24, 1357–1370 (2018).

    Google Scholar 

  106. Enriquez‐Urzelai, U., Kearney, M. R., Nicieza, A. G. & Tingley, R. Integrating mechanistic and correlative niche models to unravel range‐limiting processes in a temperate amphibian. Glob. Change Biol. 25, 2633–2647 (2019).

    Google Scholar 

  107. Benito Garzón, M., Robson, T. M. & Hampe, A. ΔTrait SDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol. 222, 1757–1765 (2019).

    PubMed  Google Scholar 

  108. Berzaghi, F. et al. Assessing the role of megafauna in tropical forest ecosystems and biogeochemical cycles–the potential of vegetation models. Ecography 41, 1934–1954 (2018).

    Google Scholar 

  109. Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

    Google Scholar 

  110. Huang, Y. et al. Orchimic (v1. 0), a microbe-mediated model for soil organic matter decomposition. Geosci. Model Dev. 11, 2111–2138 (2018).

    CAS  Google Scholar 

  111. McGuire, K. L. & Treseder, K. K. Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol. Biochem. 42, 529–535 (2010).

    CAS  Google Scholar 

  112. Todd-Brown, K. E., Hopkins, F. M., Kivlin, S. N., Talbot, J. M. & Allison, S. D. A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109, 19–33 (2012).

    Google Scholar 

  113. Hardisty, A. R. et al. The Bari Manifesto: an interoperability framework for essential biodiversity variables. Ecol. Inform. 49, 22–31 (2019).

    Google Scholar 

Download references

Acknowledgements

Ideas presented stem from initial discussions at three international meetings—the Australian National Climate Change Adaptation Research Facility Roundtable on Species Traits, the iDigBio ALA Traits workshop, and the preliminary Open Traits workshop held at the Ecological Society of America. R.V.G. is supported by an Australian Research Council DECRA Fellowship (DE170100208). D.S.F. is supported by an Australian Research Council Future Fellowship (FT160100113). R.S.-G. is supported by NERC R/142195-11-1. W.D.P. is supported by NSF ABI-1759965, NSF EF-1802605, and USDA Forest Service agreement 18-CS-11046000-041. A.K. received financial support for M.J.A. by the German Research Foundation (DFG KE1743/7-1). C.M.I. was supported by the Biological and Environmental Research program in the United States Department of Energy’s Office of Science. C.P. is supported by the DFG Priority Program 1374. M.J. was supported by the German Research Foundation within the framework of the Jena Experiment (FOR 1451) and by the Swiss National Science Foundation. S.P.-M. was supported by the Benson Fund from the Department of Paleobiology, National Museum of Natural History. S.T.M. is supported by SERDP project RC18-1346. B.J.E. was supported by NSF Grants DEB0133974, HDR1934790 and EF1065844, a Leverhulme Trust Visiting Professorship Grant, and an Oxford Martin School Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

R.V.G. wrote the manuscript with contributions from D.S.F., B.S.M., R.S.-G., V.V., W.D.P., F.D.S., J.K., J.H.P., J.S.M., M.J.A., C.P., X.F., V.M.A., J.A., S.C.A., M.A.B., L.M.B., B.L.B., C.H.B.-A., I.B., A.J.R.C., R.C., B.R.C., D.A.C., S.L.C., B.F., H.G., A.H.H., J.H., J.A.H., H.H., M.H., C.M.I., M.J., M.K., A.K., P.Mabee, P.Manning, L.M., S.T.M., D.S.P., T.M.P., S.P.-M., C.A.R., M.R., H.S., B.S., M.J.S., R.J.T., J.A.T., C.V., R.W., K.C.B.W., M.W., I.J.W. and B.J.E.

Corresponding author

Correspondence to Rachael V. Gallagher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, R.V., Falster, D.S., Maitner, B.S. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat Ecol Evol 4, 294–303 (2020). https://doi.org/10.1038/s41559-020-1109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-1109-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing