Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stabilizing lithium-metal electrodes with polymer coatings

Abstract

Increasing the energy density of batteries can accelerate the deployment of electric vehicles, expand the utilization of renewable energy and, in turn, reduce greenhouse gas emissions. Different from commercially available lithium-ion batteries, high-energy-density lithium-metal batteries use metallic lithium instead of graphite as the negative electrode. The commercialization of lithium-metal batteries is hindered by the electrochemical instability of lithium metal. Polymer coatings have shown promise in addressing issues related to each step of heterogeneous lithium deposition. Here we summarize the current understanding of key design principles and highlight relevant coating compositions. Moreover, we discuss high-performing coating–electrolyte pairs and provide an outlook on interface design for novel electrolytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms and chemistries of polymer coatings.
Fig. 2: Polymer coatings aimed at maintaining coverage of the electrode surface.
Fig. 3: Polymer coatings can help to promote more homogeneous charge distribution at the interface.
Fig. 4: Polymer coatings that modify the reaction at the interface.
Fig. 5: Summary of coating versus electrolyte performance, accounting for the operating conditions.

Similar content being viewed by others

References

  1. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). This paper proposed practical guidelines for the characterization of LMBs.

    Article  Google Scholar 

  2. Whittingham, M. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

    Article  Google Scholar 

  3. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016). This paper highlights challenges related to the instability of Li-metal anodes.

    Article  Google Scholar 

  4. Gong, H. et al. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host. ACS Energy Lett. 7, 4417–4426 (2022).

    Article  Google Scholar 

  5. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  Google Scholar 

  6. Xu, R. et al. Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019).

    Article  Google Scholar 

  7. Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).

    Article  Google Scholar 

  8. Sun, S. et al. Facile ex situ formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. J. Mater. Chem. A 8, 17229–17237 (2020).

    Article  Google Scholar 

  9. Basile, A., Bhatt, A. I. & O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, ncomms11794 (2016).

    Article  Google Scholar 

  10. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).

    Article  Google Scholar 

  11. Chen, L. et al. Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. J. Mater. Chem. A 5, 12297–12309 (2017).

    Article  Google Scholar 

  12. Chen, L. et al. Directly formed alucone on lithium metal for high-performance Li batteries and Li–S batteries with high sulfur mass loading. ACS Appl. Mater. Interfaces 10, 7043–7051 (2018).

    Article  Google Scholar 

  13. Zhou, H., Yu, S., Liu, H. & Liu, P. Protective coatings for lithium metal anodes: recent progress and future perspectives. J. Power Sources 450, 227632 (2020).

    Article  Google Scholar 

  14. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article  Google Scholar 

  15. Stalin, S. et al. Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter 4, 3753–3773 (2021).

    Article  Google Scholar 

  16. Stalin, S. et al. Designing polymeric interphases for stable lithium metal deposition. Nano Lett. 20, 5749–5758 (2020).

    Article  Google Scholar 

  17. Kim, J.-M. et al. High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode. Adv. Funct. Mater. 32, 2207172 (2022).

    Article  Google Scholar 

  18. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  Google Scholar 

  19. Zheng, G. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    Article  Google Scholar 

  20. Huang, Z. et al. Effects of polymer coating mechanics at solid–electrolyte interphase for stabilizing lithium metal anodes. Adv. Energy Mater. 12, 2103187 (2022).

    Article  Google Scholar 

  21. Liu, K. et al. Lithium metal anodes with an adaptive “solid–liquid” interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).

    Article  Google Scholar 

  22. Yu, Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    Article  Google Scholar 

  23. Li, N.-W. et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).

    Article  Google Scholar 

  24. Weng, Y.-T. et al. An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte. Nat. Commun. 10, 5824 (2019).

    Article  Google Scholar 

  25. Liu, F. et al. Fabrication of hybrid silicate coatings by a simple vapor deposition method for lithium metal anodes. Adv. Energy Mater. 8, 1701744 (2018).

    Article  Google Scholar 

  26. Xu, R. et al. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018).

    Article  Google Scholar 

  27. Gao, Y. et al. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 18, 384–389 (2019).

    Article  Google Scholar 

  28. Zhao, Y. et al. Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode. Matter 1, 1215–1231 (2019).

    Article  Google Scholar 

  29. Tu, Z. et al. Designing artificial solid–electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394–406 (2017).

    Article  Google Scholar 

  30. Kozen, A. C. et al. Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem. Mater. 29, 6298–6307 (2017).

    Article  Google Scholar 

  31. Huang, Z., Choudhury, S., Gong, H., Cui, Y. & Bao, Z. A cation-tethered flowable polymeric interface for enabling stable deposition of metallic lithium. J. Am. Chem. Soc. 142, 21393–21403 (2020).

    Article  Google Scholar 

  32. Baran, M. J. et al. Diversity-oriented synthesis of polymer membranes with ion solvation cages. Nature 592, 225–231 (2021).

    Article  Google Scholar 

  33. Zhu, B. et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 29, 1603755 (2017).

    Article  Google Scholar 

  34. Liu, Y. et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2017).

    Article  Google Scholar 

  35. Sun, Y. et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv. Mater. 31, 1806541 (2019).

    Article  Google Scholar 

  36. Zhou, H. et al. Quantification of the ion transport mechanism in protective polymer coatings on lithium metal anodes. Chem. Sci. 12, 7023–7032 (2021).

    Article  Google Scholar 

  37. Luo, J., Fang, C.-C. & Wu, N.-L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018).

    Article  Google Scholar 

  38. Fu, C. et al. Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nat. Mater. 19, 758–766 (2020).

    Article  Google Scholar 

  39. Fu, C. & Battaglia, C. Polymer–inorganic nanocomposite coating with high ionic conductivity and transference number for a stable lithium metal anode. ACS Appl. Mater. Interfaces 12, 41620–41626 (2020).

    Article  Google Scholar 

  40. Liu, H.-J. et al. Engineering lithiophilic silver sponge integrated with ion-conductive PVDF/LiF protective layer for dendrite-free and high-performance lithium metal batteries. ACS Appl. Energy Mater. 6, 519–529 (2023).

    Article  Google Scholar 

  41. Jang, E. K., Ahn, J., Yoon, S. & Cho, K. Y. High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode. Adv. Funct. Mater. 29, 1905078 (2019).

    Article  Google Scholar 

  42. Choudhury, S. et al. Ion conducting polymer interfaces for lithium metal anodes: impact on the electrodeposition kinetics. Adv. Energy Mater. 13, 2301899 (2023).

    Article  Google Scholar 

  43. Guo, Q. et al. CNT/PVDF composite coating layer on Cu with a synergy of uniform current distribution and stress releasing for improving reversible Li plating/stripping. ACS Appl. Mater. Interfaces 14, 46043–46055 (2022).

    Article  Google Scholar 

  44. Guo, S. et al. PVDF-HFP/LiF composite interfacial film to enhance the stability of Li-metal anodes. ACS Appl. Energy Mater. 3, 7191–7199 (2020).

    Article  Google Scholar 

  45. Wang, G. et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020).

    Article  Google Scholar 

  46. Gao, Y. et al. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).

    Article  Google Scholar 

  47. Zhao, Y. et al. Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid–electrolyte interphase layer. Nano Energy 64, 103893 (2019).

    Article  Google Scholar 

  48. Liu, Y. et al. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 9, 3656 (2018).

    Article  Google Scholar 

  49. Huang, Z. et al. A salt-philic, solvent-phobic interfacial coating design for lithium metal electrodes. Nat. Energy 8, 577–585 (2023).

    Article  Google Scholar 

  50. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  Google Scholar 

  51. Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    Article  Google Scholar 

  52. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005). This work links the Li deposition morphology to interfacial mechanical properties.

    Article  Google Scholar 

  53. Cao, D. et al. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 3, 57–94 (2020).

    Article  Google Scholar 

  54. Kong, X., Rudnicki, P. E., Choudhury, S., Bao, Z. & Qin, J. Dendrite suppression by a polymer coating: a coarse-grained molecular study. Adv. Funct. Mater. 30, 1910138 (2020).

    Article  Google Scholar 

  55. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    Article  Google Scholar 

  56. Hallinan, D. T. Jr & Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503–525 (2013).

    Article  Google Scholar 

  57. Mavila, S., Eivgi, O., Berkovich, I. & Lemcoff, N. G. Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem. Rev. 116, 878–961 (2016).

    Article  Google Scholar 

  58. Utomo, N. W. et al. Solid-state polymer–particle hybrid electrolytes: structure and electrochemical properties. Sci. Adv. 10, eado4719 (2024).

    Article  Google Scholar 

  59. Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    Article  Google Scholar 

  60. Zheng, J. et al. In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries. Mater. Today Energy 26, 100984 (2022).

    Article  Google Scholar 

  61. Aurbach, D., Youngman, O. & Dan, P. The electrochemical behavior of 1,3-dioxolane–LiClO4 solutions—II. Contaminated solutions. Electrochim. Acta 35, 639–655 (1990).

    Article  Google Scholar 

  62. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14–27 (2011).

    Article  Google Scholar 

  63. Stukalin, E. B., Cai, L.-H., Kumar, N. A., Leibler, L. & Rubinstein, M. Self-healing of unentangled polymer networks with reversible bonds. Macromolecules 46, 7525–7541 (2013).

    Article  Google Scholar 

  64. Mackanic, D. G. et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 10, 5384 (2019).

    Article  Google Scholar 

  65. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  Google Scholar 

  66. Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355–7367 (1990). This work describes how charge imbalance leads to heterogeneous metal deposition.

    Article  Google Scholar 

  67. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  Google Scholar 

  68. Wang, X. et al. Poly(ionic liquid)s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries. Joule 3, 2687–2702 (2019).

    Article  Google Scholar 

  69. Zhou, X. et al. Electrical breakdown and ultrahigh electrical energy density in poly(vinylidene fluoride–hexafluoropropylene) copolymer. Appl. Phys. Lett. 94, 162901 (2009).

    Article  Google Scholar 

  70. Liu, Y. et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8, 2003301 (2021).

    Article  Google Scholar 

  71. Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article  Google Scholar 

  72. Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018).

    Article  Google Scholar 

  73. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). This work summarizes common salts and solvents for Li batteries.

    Article  Google Scholar 

  74. Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    Article  Google Scholar 

  75. Etacheri, V. et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28, 965–976 (2012).

    Article  Google Scholar 

  76. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  Google Scholar 

  77. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  Google Scholar 

  78. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  Google Scholar 

  79. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  Google Scholar 

  80. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J.-G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  81. Kim, S. C. et al. Data-driven electrolyte design for lithium metal anodes. Proc. Natl Acad. Sci. USA 120, e2214357120 (2023).

    Article  Google Scholar 

  82. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  Google Scholar 

  83. Song, Y. et al. The significance of imperceptible crosstalk in high-energy batteries. Energy Storage Mater. 63, 103018 (2023).

    Article  Google Scholar 

  84. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies (VTO) of the US Department of Energy (DOE) under the Battery Materials Research (BMR) Program and Battery 500 Consortium.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing and revision of the manuscript.

Corresponding authors

Correspondence to Yi Cui or Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Jia-Qi Huang, Wei-Hong Lai and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Lyu, H., Greenburg, L.C. et al. Stabilizing lithium-metal electrodes with polymer coatings. Nat Energy (2025). https://doi.org/10.1038/s41560-025-01767-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41560-025-01767-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing