At the recent Artificial Intelligence Applications in Biopharma Summit in Boston, USA, a panel of scientists from industry who work at the interface of machine learning and pharma discussed the diverging opinions on the past, present and future role of AI for ADME/Tox in drug discovery and development.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Advances in surface modifications of titanium and its alloys: implications for biomedical and pharmaceutical applications
Multiscale and Multidisciplinary Modeling, Experiments and Design Open Access 10 April 2025
-
Integrating artificial intelligence in drug discovery and early drug development: a transformative approach
Biomarker Research Open Access 14 March 2025
-
Application of machine learning models for property prediction to targeted protein degraders
Nature Communications Open Access 09 July 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
269,00 € per year
only 22,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Gupta, R. R. et al. Drug Metab. Dispos. 38, 2083–2090 (2010).
Ekins, S., Honeycutt, J. D. & Metz, J. T. Drug Discov. Today 15, 451–460 (2010).
Page, K. M. Mol. Pharm. 13, 609–620 (2016).
Webborn, P. J. H. Future Med. Chem. 6, 1233–1235 (2014).
Zientek, M. et al. Chem. Res. Toxicol. 23, 664–676 (2010).
Zhang, H. et al. Toxicol. In Vitro 23, 134–140 (2009).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Nature 559, 547–555 (2018).
Wang, S. et al. Mol. Pharm. 13, 2855–2866 (2016).
Ekins, S. & Williams, A. J. Lab Chip 10, 13–22 (2010).
Winiwarter, S. et al. J. Comput. Aided Mol. Des. 29, 795–807 (2015).
Clark, A. M., Williams, A. J. & Ekins, S. J. Cheminform. 7, 9 (2015).
Martin, E. J., Polyakov, V. R., Tian, L. & Perez, R. C. J. Chem. Inf. Model. 57, 2077–2088 (2017).
Ericksen, S. S. et al. J. Chem. Inf. Model. 57, 1579–1590 (2017).
Verras, A. et al. J. Chem. Inf. Model. 57, 445–453 (2017).
Capuzzi, S. J. et al. J. Chem. Inf. Model. 57, 105–108 (2017).
Sushko, I. et al. J. Comput. Aided Mol. Des. 25, 533–554 (2011).
Russo, D. P., Zorn, K. M., Clark, A. M., Zhu, H. & Ekins, S. Mol. Pharm. 15, 4361–4370 (2018).
Sheridan, R. P. J. Chem. Inf. Model. 53, 2837–2850 (2013).
Roy, K., Kar, S. & Ambure, P. Chemom. Intell. Lab. Syst. 145, 22–29 (2015).
Ma, J., Sheridan, R. P., Liaw, A., Dahl, G. E. & Svetnik, V. J. Chem. Inf. Model. 55, 263–274 (2015).
Liu, K. et al. Preprint at https://arxiv.org/abs/1803.06236 (2018).
Ramsundar, B. et al. J. Chem. Inf. Model. 57, 2068–2076 (2017).
Hop, P., Allgood, B. & Yu, J. Mol. Pharm. 15, 4371–4377 (2018).
Rodríguez-Pérez, R. & Bajorath, J. ACS Omega 3, 12033–12040 (2018).
Korotcov, A., Tkachenko, V., Russo, D. P. & Ekins, S. Mol. Pharm. 14, 4462–4475 (2018).
Lane, T. et al. Mol. Pharm. 15, 4346–4360 (2018).
Xu, Y., Ma, J., Liaw, A., Sheridan, R. P. & Svetnik, V. J. Chem. Inf. Model. 57, 2490–2504 (2017).
Ramsundar, B. et al. Preprint at https://arxiv.org/abs/1502.02072 (2015).
Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. J. Comput. Aided Mol. Des. 30, 595–608 (2016).
Ekins, S. Pharm. Res. 33, 2594–2603 (2016).
Acknowledgements
D. Chipman and E. Cutler are kindly acknowledged for organizing the AI Applications in Biopharma Summit. S.E. acknowledges A. Clark, J. Freundlich and A. Williams for their many discussions on machine learning and ADME/Tox models. S.E. acknowledges funding to Collaborations Pharmaceuticals Inc. from NIGMS R44 GM122196-02A1.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhhatarai, B., Walters, W.P., Hop, C.E.C.A. et al. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 18, 418–422 (2019). https://doi.org/10.1038/s41563-019-0332-5
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0332-5
This article is cited by
-
Integrating artificial intelligence in drug discovery and early drug development: a transformative approach
Biomarker Research (2025)
-
Artificial intelligence in drug development
Nature Medicine (2025)
-
Advances in surface modifications of titanium and its alloys: implications for biomedical and pharmaceutical applications
Multiscale and Multidisciplinary Modeling, Experiments and Design (2025)
-
A Graph-Based Transformer Neural Network for Multi-Label ADR Prediction
Arabian Journal for Science and Engineering (2025)
-
Application of machine learning models for property prediction to targeted protein degraders
Nature Communications (2024)