Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies

Subjects

Abstract

Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light–matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exciton fine structure of LHP NCs.
Fig. 2: Stable and coherent single-photon emission from LHP NCs.
Fig. 3: SF from assemblies of LHP NCs.
Fig. 4: Coherent fine-structure exciton dynamics and control.
Fig. 5: Coherent spin dynamics in LHP NCs.
Fig. 6: Coherent spin manipulation using optical pulses.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    CAS  Google Scholar 

  2. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Google Scholar 

  3. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    CAS  Google Scholar 

  4. Zoller, P. et al. Quantum information processing and communication. Eur. Phys. J. D 36, 203–228 (2005).

    CAS  Google Scholar 

  5. Yu, C. J. et al. A molecular approach to quantum sensing. ACS Cent. Sci. 7, 712–723 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Google Scholar 

  7. Shields, A. J. Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007).

    CAS  Google Scholar 

  8. Lu, C.-Y. & Pan, J.-W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294–1296 (2021).

    CAS  PubMed  Google Scholar 

  9. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  PubMed  Google Scholar 

  10. Burkard, G. et al. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    CAS  Google Scholar 

  11. Chatterjee, A. et al. Semiconductor qubits in practice. Nat. Rev. Phys. 3, 157–177 (2021).

    Google Scholar 

  12. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    CAS  PubMed  Google Scholar 

  13. Liu, R.-B., Yao, W. & Sham, L. J. Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010).

    CAS  Google Scholar 

  14. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    PubMed  Google Scholar 

  15. Kagan, C. R. et al. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).

    PubMed  Google Scholar 

  16. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    CAS  PubMed  Google Scholar 

  17. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    CAS  Google Scholar 

  18. Sun, F. W. & Wong, C. W. Indistinguishability of independent single photons. Phys. Rev. A 79, 013824 (2009).

    Google Scholar 

  19. Berezovsky, J. et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    CAS  PubMed  Google Scholar 

  20. Press, D. et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    CAS  PubMed  Google Scholar 

  21. Zhang, J. et al. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010).

    CAS  PubMed  Google Scholar 

  22. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    CAS  PubMed  Google Scholar 

  23. Akkerman, Q. A. et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    CAS  PubMed  Google Scholar 

  24. Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Even, J. Pedestrian guide to symmetry properties of the reference cubic structure of 3D all-inorganic and hybrid perovskites. J. Phys. Chem. Lett. 6, 2238–2242 (2015).

    CAS  PubMed  Google Scholar 

  26. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    CAS  Google Scholar 

  27. Labeau, O., Tamarat, P. & Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 90, 257404 (2003).

    PubMed  Google Scholar 

  28. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    CAS  Google Scholar 

  29. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    CAS  PubMed  Google Scholar 

  30. Rainò, G. et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano 10, 2485–2490 (2016).

    PubMed Central  PubMed  Google Scholar 

  31. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    CAS  PubMed  Google Scholar 

  32. Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    CAS  PubMed  Google Scholar 

  33. Kaplan, A. E. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023).

    CAS  Google Scholar 

  34. Li, Y. et al. Strong spin-selective optical Stark effect in lead halide perovskite quantum dots. J. Phys. Chem. Lett. 11, 3594–3600 (2020).

    CAS  PubMed  Google Scholar 

  35. Lin, X. et al. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots. Nat. Nanotechnol. 18, 124–130 (2023).

    CAS  PubMed  Google Scholar 

  36. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    PubMed  Google Scholar 

  37. Dai, D. & Monkman, A. Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: evidence for spontaneous Bose–Einstein condensation of excitons. Phys. Rev. B 84, 115206 (2011).

    Google Scholar 

  38. Timothy Noe, I. I. et al. Giant superfluorescent bursts from a semiconductor magneto-plasma. Nat. Phys. 8, 219–224 (2012).

    Google Scholar 

  39. Cao, Z. et al. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv. Photon. 2, 054001 (2020).

    CAS  Google Scholar 

  40. Lv, Y. et al. Magneto-optical effects in lead halide perovskites. Adv. Phys. X 8, 2258951 (2023).

    Google Scholar 

  41. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Google Scholar 

  42. Browne, D. et al. From quantum optics to quantum technologies. Prog. Quantum Electron. 54, 2–18 (2017).

    Google Scholar 

  43. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    CAS  PubMed  Google Scholar 

  44. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    CAS  PubMed  Google Scholar 

  45. Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

    CAS  PubMed  Google Scholar 

  46. Empedocles, S. A. & Bawendi, M. G. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science 278, 2114–2117 (1997).

    CAS  PubMed  Google Scholar 

  47. Hu, F. et al. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett. 16, 6425–6430 (2016).

    CAS  PubMed  Google Scholar 

  48. Park, Y.-S. et al. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano 9, 10386–10393 (2015).

    CAS  PubMed  Google Scholar 

  49. Hu, F. et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano 9, 12410–12416 (2015).

    CAS  PubMed  Google Scholar 

  50. Fu, M. et al. Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nat. Commun. 9, 3318 (2018).

    PubMed Central  PubMed  Google Scholar 

  51. Yuan, J. et al. Single‐photon emission from single microplate MAPbI3 nanocrystals with ultranarrow photoluminescence linewidths and exciton fine structures. Adv. Opt. Mater. 10, 2200606 (2022).

    CAS  Google Scholar 

  52. Zhu, C. et al. Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22, 3751–3760 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Li, Y. et al. Size- and halide-dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 59, 14292–14295 (2020).

    CAS  Google Scholar 

  54. Lv, Y. et al. Quantum interference in a single perovskite nanocrystal. Nano Lett. 19, 4442–4447 (2019).

    CAS  PubMed  Google Scholar 

  55. Rainò, G. et al. Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots. Nat. Commun. 13, 2587 (2022).

    PubMed Central  PubMed  Google Scholar 

  56. Sun, W. et al. Elastic phonon scattering dominates dephasing in weakly confined cesium lead bromide nanocrystals at cryogenic temperatures. Nano Lett. 23, 2615–2622 (2023).

    CAS  PubMed  Google Scholar 

  57. Zhu, C. et al. Quantifying the size‐dependent exciton–phonon coupling strength in single lead‐halide perovskite quantum dots. Adv. Opt. Mater. 12, 2301534 (2024).

    CAS  Google Scholar 

  58. Ginterseder, M. et al. Lead halide perovskite nanocrystals with low inhomogeneous broadening and high coherent fraction through dicationic ligand engineering. Nano Lett. 23, 1128–1134 (2023).

    CAS  PubMed  Google Scholar 

  59. Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhu, C. et al. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 626, 535–541 (2024).

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    CAS  Google Scholar 

  62. Cherniukh, I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 593, 535–542 (2021).

    CAS  PubMed  Google Scholar 

  63. Krieg, F. et al. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies. ACS Cent. Sci. 7, 135–144 (2020).

    PubMed Central  PubMed  Google Scholar 

  64. Bonifacio, R. & Lugiato, L. Cooperative radiation processes in two-level systems: superfluorescence. Phys. Rev. A 11, 1507–1521 (1975).

    Google Scholar 

  65. Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    CAS  Google Scholar 

  66. Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    CAS  Google Scholar 

  67. Tao, W., Zhang, Y. & Zhu, H. Dynamic exciton polaron in two-dimensional lead halide perovskites and implications for optoelectronic applications. Acc. Chem. Res. 55, 345–353 (2022).

    CAS  PubMed  Google Scholar 

  68. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    CAS  PubMed  Google Scholar 

  69. Han, Y. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022).

    CAS  PubMed  Google Scholar 

  70. Cai, R. et al. Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals. Nat. Commun. 14, 2472 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Sercel, P. C. et al. Exciton fine structure in perovskite nanocrystals. Nano Lett. 19, 4068–4077 (2019).

    CAS  PubMed  Google Scholar 

  72. Sercel, P. C. et al. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 151, 234106 (2019).

    PubMed  Google Scholar 

  73. Nestoklon, M. et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B 97, 235304 (2018).

    CAS  Google Scholar 

  74. Aich, R. B. et al. Bright-exciton splittings in inorganic cesium lead halide perovskite nanocrystals. Phys. Rev. Appl. 11, 034042 (2019).

    Google Scholar 

  75. Gao, K. et al. Manipulating coherent exciton dynamics in CsPbI3 perovskite quantum dots using magnetic field. Adv. Mater. 36, 2309420 (2024).

    CAS  Google Scholar 

  76. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    CAS  PubMed  Google Scholar 

  77. Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    CAS  PubMed  Google Scholar 

  78. Liu, A. et al. Multidimensional coherent spectroscopy reveals triplet state coherences in cesium lead-halide perovskite nanocrystals. Sci. Adv. 7, eabb3594 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Liu, A. Measuring exciton fine-structure in randomly oriented perovskite nanocrystal ensembles using nonlinear optical spectroscopy: theory. Nanomaterials 12, 801 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Seiler, H. et al. Two-dimensional electronic spectroscopy reveals liquid-like lineshape dynamics in CsPbI3 perovskite nanocrystals. Nat. Commun. 10, 4962 (2019).

    PubMed Central  PubMed  Google Scholar 

  81. Brosseau, P. et al. Exciton–polaron interactions in metal halide perovskite nanocrystals revealed via two-dimensional electronic spectroscopy. J. Chem. Phys. 159, 184711 (2023).

    CAS  PubMed  Google Scholar 

  82. Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    PubMed  Google Scholar 

  83. Li, Y. et al. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5, 1701–1708 (2020).

    CAS  Google Scholar 

  84. Tao, W., Zhou, Q. & Zhu, H. Dynamic polaronic screening for anomalous exciton spin relaxation in two-dimensional lead halide perovskites. Sci. Adv. 6, eabb7132 (2020).

    PubMed Central  PubMed  Google Scholar 

  85. Dey, A. et al. Fast electron and slow hole spin relaxation in CsPbI3 nanocrystals. Appl. Phys. Lett. 121, 201106 (2022).

    CAS  Google Scholar 

  86. Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).

    CAS  PubMed  Google Scholar 

  87. Grigoryev, P. S. et al. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021).

    CAS  PubMed  Google Scholar 

  88. Kirstein, E. et al. Mode locking of hole spin coherences in CsPb(Cl,Br)3 perovskite nanocrystals. Nat. Commun. 14, 699 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Belykh, V. V. et al. Coherent spin dynamics of electrons and holes in CsPbBr3 perovskite crystals. Nat. Commun. 10, 673 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Fumani, A. K. & Berezovsky, J. Spin-pumping efficiency in room-temperature CdSe nanocrystal quantum dots. J. Phys. Chem. C 118, 28202–28206 (2014).

    CAS  Google Scholar 

  91. Cheng, H. et al. Dopant-induced slow spin relaxation in CsPbBr3 perovskite nanocrystals. ACS Energy Lett. 7, 4325–4332 (2022).

    CAS  Google Scholar 

  92. Koppens, F. H. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    CAS  PubMed  Google Scholar 

  93. De La Giroday, A. B. et al. All-electrical coherent control of the exciton states in a single quantum dot. Phys. Rev. B 82, 241301 (2010).

    Google Scholar 

  94. Nowack, K. C. et al. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007).

    CAS  PubMed  Google Scholar 

  95. De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011).

    Google Scholar 

  96. Greilich, A. et al. Optical control of one and two hole spins in interacting quantum dots. Nat. Photon. 5, 702–708 (2011).

    CAS  Google Scholar 

  97. Foletti, S. et al. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nat. Phys. 5, 903–908 (2009).

    CAS  Google Scholar 

  98. Economou, S. E. & Reinecke, T. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).

    PubMed  Google Scholar 

  99. Greilich, A. et al. Ultrafast optical rotations of electron spins in quantum dots. Nat. Phys. 5, 262–266 (2009).

    CAS  Google Scholar 

  100. Yang, Y. et al. Large polarization-dependent exciton optical Stark effect in lead iodide perovskites. Nat. Commun. 7, 12613 (2016).

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Shrivastava, M. et al. Room-temperature anomalous coherent excitonic optical Stark effect in metal halide perovskite quantum dots. Nano Lett. 22, 808–814 (2022).

    CAS  PubMed  Google Scholar 

  102. Ramsay, A. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    CAS  PubMed  Google Scholar 

  103. Kroutvar, M. et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81–84 (2004).

    CAS  PubMed  Google Scholar 

  104. Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14, 164–168 (2015).

    CAS  PubMed  Google Scholar 

  105. Morello, A. Single spins in silicon carbide. Nat. Mater. 14, 135–136 (2015).

    CAS  PubMed  Google Scholar 

  106. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photon. 4, 367–370 (2010).

    CAS  Google Scholar 

  107. Biadala, L. et al. Magnetic polaron on dangling-bond spins in CdSe colloidal nanocrystals. Nat. Nanotechnol. 12, 569–574 (2017).

    CAS  PubMed  Google Scholar 

  108. Shornikova, E. V. et al. Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nat. Nanotechnol. 15, 277–282 (2020).

    CAS  PubMed  Google Scholar 

  109. Urbaszek, B. et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys. 85, 79–133 (2013).

    CAS  Google Scholar 

  110. Merkulov, I., Efros, A. L. & Rosen, M. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B 65, 205309 (2002).

    Google Scholar 

  111. Farrow, T. et al. Ultranarrow line width room-temperature single-photon source from perovskite quantum dot embedded in optical microcavity. Nano Lett. 23, 10667–10673 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Boyle, S. et al. Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot. Phys. Rev. B 78, 075301 (2008).

    Google Scholar 

  113. Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    CAS  PubMed  Google Scholar 

  114. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    CAS  PubMed  Google Scholar 

  115. Koley, S. et al. Coupled colloidal quantum dot molecules. Acc. Chem. Res. 54, 1178–1188 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Ouyang, M. & Awschalom, D. D. Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003).

    CAS  PubMed  Google Scholar 

  117. Wasielewski, M. R. et al. Exploiting chemistry and molecular systems for quantum information science. Nat. Rev. Chem. 4, 490–504 (2020).

    CAS  PubMed  Google Scholar 

  118. Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Stoumpos, C. C. & Kanatzidis, M. G. The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48, 2791–2802 (2015).

    CAS  PubMed  Google Scholar 

  120. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    CAS  PubMed  Google Scholar 

  121. Zhao, Q. et al. Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5, 238–247 (2019).

    Google Scholar 

  122. Cottingham, P. & Brutchey, R. L. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 52, 5246–5249 (2016).

    CAS  Google Scholar 

  123. Schmitz, A. et al. Optical probing of crystal lattice configurations in single CsPbBr3 nanoplatelets. Nano Lett. 21, 9085–9092 (2021).

    CAS  PubMed  Google Scholar 

  124. Boyer-Richard, S. et al. Symmetry-based tight binding modeling of halide perovskite semiconductors. J. Phys. Chem. Lett. 7, 3833–3840 (2016).

    CAS  PubMed  Google Scholar 

  125. Giovanni, D. et al. Tunable room-temperature spin-selective optical Stark effect in solution-processed layered halide perovskites. Sci. Adv. 2, e1600477 (2016).

    PubMed Central  PubMed  Google Scholar 

  126. Ramade, J. et al. Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 10, 6393–6401 (2018).

    CAS  PubMed  Google Scholar 

  127. Amara, M.-R. et al. Spectral fingerprint of quantum confinement in single CsPbBr3 nanocrystals. Nano Lett. 23, 3607–3613 (2023).

    CAS  PubMed  Google Scholar 

  128. Tamarat, P. et al. Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nat. Commun. 14, 229 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), Dalian Institute of Chemical Physics (DICP I202106) and the Fundamental Research Funds for the Central Universities (20720220009). K.W. also acknowledges the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

K.W. proposed the topic and main organization of the paper, with help from J.Z. and Y.L. J.Z., Y.L., X.L., Y.H. and K.W. participated in writing and discussions. J.Z. and Y.L. contributed equally to this work.

Corresponding author

Correspondence to Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Li, Y., Lin, X. et al. Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies. Nat. Mater. 23, 1027–1040 (2024). https://doi.org/10.1038/s41563-024-01922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01922-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing