Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microstructure engineering in diamond-based materials

Abstract

Diamond possesses a suite of extraordinary properties, including unparalleled hardness, excellent thermal conductivity, a wide bandgap and optical transparency. These features render it essential for a broad spectrum of scientific and industrial applications. However, the inherent brittleness and limited toughness of diamond have posed substantial barriers to broader technological integration. Recent advances have demonstrated that engineered structural configurations—including nanotwinned diamond architectures, hierarchically structured nanotwinned diamond composites, graphite–diamond hybrids, diamond–graphene composites and amorphous diamond phases—can overcome these conventional limitations, exhibiting superior mechanical and physical properties. This Review examines the latest developments in diamond and its derivative materials, focusing on microstructural design strategies, phase transition mechanisms, opportunities to enhance properties and emergent phenomena. We also outline promising research directions and potential applications for diamond-based materials, advancing the frontiers of diamond-based technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microstructure-engineered diamond-based materials from diverse carbon precursors via HPHT techniques.
Fig. 2: Phase transition mechanisms for diamond-based materials.
Fig. 3: Mechanical properties of diamond-based materials.
Fig. 4: Emerging phenomena in diamond-based materials.
Fig. 5: Electronic and optical properties engineering of diamond-based materials.

Similar content being viewed by others

References

  1. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

  6. Varma, C., Zaanen, J. & Raghavachari, K. Superconductivity in the fullerenes. Science 254, 989–992 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  8. De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).

    Article  PubMed  Google Scholar 

  9. Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).

    Article  CAS  Google Scholar 

  10. Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Pan, F. et al. Long-range ordered porous carbons produced from C60. Nature 614, 95–101 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Toh, C.-T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. McMillan, P. F. New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Harlow, G. E. The Nature of Diamonds (Cambridge Univ. Press, 1998).

  16. Brazhkin, V. et al. What does ‘harder than diamond’mean? Nat. Mater. 3, 576–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Field, J. The mechanical and strength properties of diamond. Rep. Prog. Phys. 75, 126505 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Weidner, D. J., Wang, Y. & Vaughan, M. T. Strength of diamond. Science 266, 419–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Brookes, C. Plastic deformation and anisotropy in the hardness of diamond. Nature 228, 660–661 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Graebner, J., Jin, S., Kammlott, G., Herb, J. & Gardinier, C. Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992).

    Article  CAS  Google Scholar 

  21. Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).

    Article  CAS  Google Scholar 

  22. Tönshoff, H., Hillmann-Apmann, H. & Asche, J. Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diam. Relat. Mater. 11, 736–741 (2002).

    Article  Google Scholar 

  23. Schuelke, T. & Grotjohn, T. A. Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).

    Article  CAS  Google Scholar 

  24. Drory, M., Dauskardt, R., Kant, A. & Ritchie, R. Fracture of synthetic diamond. J. Appl. Phys. 78, 3083–3088 (1995).

    Article  CAS  Google Scholar 

  25. Bundy, F., Hall, H. T., Strong, H. & Wentorfjun, R. Man-made diamonds. Nature 176, 51–55 (1955).

    Article  CAS  Google Scholar 

  26. Manjarrez, A., Zhou, K., Chen, C., Tzeng, Y.-K. & Cai, L. Atmospheric-pressure flame vapor deposition of nanocrystalline diamonds: implications for scalable and cost-effective coatings. ACS Appl. Nano Mater. 5, 10715–10723 (2022).

    Article  CAS  Google Scholar 

  27. Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Tanigaki, K. et al. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond. Nat. Commun. 4, 2343 (2013).

    Article  PubMed  Google Scholar 

  30. Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci. Rev. 9, nwab140 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Shang, Y. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 599, 599–604 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Tang, H. et al. Synthesis of paracrystalline diamond. Nature 599, 605–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Z. et al. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat. Mater. 22, 42–49 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Németh, P. T. et al. Diamond-graphene composite nanostructures. Nano Lett 20, 3611–3619 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hu, M. et al. Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ke, F. et al. Synthesis of atomically thin hexagonal diamond with compression. Nano Lett. 20, 5916–5921 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, S.-c, Yan, X.-z, Liu, J., Oganov, A. R. & Zhu, Q. A revisited mechanism of the graphite-to-diamond transition at high temperature. Matter 3, 864–878 (2020).

    Article  Google Scholar 

  40. Erskine, D. & Nellis, W. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature 349, 317–319 (1991).

    Article  CAS  Google Scholar 

  41. Celii, F. & Butler, J. Diamond chemical vapor deposition. Annu. Rev. Phys. Chem. 42, 643–684 (1991).

    Article  CAS  Google Scholar 

  42. Lu, J. et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure. Diam. Relat. Mater. 77, 41–45 (2017).

    Article  CAS  Google Scholar 

  43. Sumiya, H. & Harano, K. Innovative ultra-hard materials: binderless nano-polycrystalline diamond and nano-polycrystalline cubic boron nitride. SEI Tech. Rev. 81, 21–26 (2016).

    Google Scholar 

  44. Sumiya, H. & Harano, K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diam. Relat. Mater. 24, 44–48 (2012).

    Article  CAS  Google Scholar 

  45. Yusa, H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam. Relat. Mater. 11, 87–91 (2002).

    Article  CAS  Google Scholar 

  46. Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S. & Liebske, C. Nanocrystalline diamond synthesized from C60. Diam. Relat. Mater. 14, 16–22 (2005).

    Article  CAS  Google Scholar 

  47. Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press. Res. 26, 63–69 (2006).

    Article  CAS  Google Scholar 

  48. Sumiya, H. & Irifune, T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 22, 2345–2351 (2007).

    Article  CAS  Google Scholar 

  49. Pan, Y. et al. Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. Proc. Natl Acad. Sci. USA 118, e2108340118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yue, Y. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 582, 370–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Yang, X. et al. Diamond-graphite nanocomposite synthesized from multi-walled carbon nanotubes fibers. Carbon 172, 138–143 (2021).

    Article  CAS  Google Scholar 

  52. Németh, P. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126–1131 (2020).

    Article  PubMed  Google Scholar 

  53. Zhao, Z. et al. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nat. Commun. 6, 6212 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Li, B. et al. Heterogeneous diamond-cBN composites with superb toughness and hardness. Nano Lett. 22, 4979–4984 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, S. et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep. Phys. Sci. 2, 100575 (2021).

    Article  CAS  Google Scholar 

  56. LiBassi, A. et al. Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diam. Relat. Mater. 9, 771–776 (2000).

    Article  CAS  Google Scholar 

  57. McKenzie, D., Muller, D. & Pailthorpe, B. Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773–776 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Zeng, Z. et al. Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Han, Q., Luo, K., Gao, Q., Wu, Y. & He, J. Theoretical study on phase transition of various graphitic structures under high pressure. Diam. Relat. Mater. 133, 109725 (2023).

    Article  CAS  Google Scholar 

  60. Zhao, Y., Qian, C., Gladkikh, V. & Ding, F. Simulated pressure-temperature carbon structure map obtained through uniaxial compression of bulk C60. Carbon 202, 554–560 (2023).

    Article  CAS  Google Scholar 

  61. Bovenkerk, H., Bundy, F., Hall, H., Strong, H. & Wentorf, R. Preparation of diamond. Nature 184, 1094–1098 (1959).

    Article  CAS  Google Scholar 

  62. Bundy, F. P., Bovenkerk, H. P., Strong, H. M. & Wentorf, R. H. Jr Diamond-graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35, 383–391 (1961).

    Article  CAS  Google Scholar 

  63. Bundy, F. Direct conversion of graphite to diamond in static pressure apparatus. Science 137, 1057–1058 (1962).

    Article  CAS  PubMed  Google Scholar 

  64. Fahy, S., Louie, S. G. & Cohen, M. L. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys. Rev. B 35, 7623–7626 (1987).

    Article  CAS  Google Scholar 

  65. Scandolo, S., Bernasconi, M., Chiarotti, G., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Bundy, F. & Kasper, J. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967).

    Article  CAS  Google Scholar 

  68. Offerman, S. et al. Grain nucleation and growth during phase transformations. Science 298, 1003–1005 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Taheri Mousavi, S. M., Zhou, H., Zou, G. & Gao, H. Transition from source-to stress-controlled plasticity in nanotwinned materials below a softening temperature. npj Comput. Mater. 5, 2 (2019).

    Article  CAS  Google Scholar 

  70. Xiao, J. et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design. npj Comput. Mater. 6, 119 (2020).

    Article  CAS  Google Scholar 

  71. Xiao, J. et al. Dislocation behaviors in nanotwinned diamond. Sci. Adv. 4, eaat8195 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117, 116103 (2016).

    Article  PubMed  Google Scholar 

  73. Li, B., Sun, H. & Chen, C. Large indentation strain-stiffening in nanotwinned cubic boron nitride. Nat. Commun. 5, 4965 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. John, S. T., Klug, D. D. & Gao, F. Hardness of nanocrystalline diamonds. Phys. Rev. B 73, 140102 (2006).

    Article  Google Scholar 

  75. Hall, E. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747–753 (1951).

    Article  Google Scholar 

  76. Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).

    CAS  Google Scholar 

  77. Gao, F. et al. Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).

    Article  PubMed  Google Scholar 

  78. Kubo, R. Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn 17, 975–986 (1962).

    Article  CAS  Google Scholar 

  79. Zhao, Z., Xu, B. & Tian, Y. Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 383–406 (2016).

    Article  CAS  Google Scholar 

  80. Tian, Y., Xu, B. & Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93–106 (2012).

    Article  CAS  Google Scholar 

  81. Tao, Q. et al. Nanotwinned diamond synthesized from multicore carbon onion. Carbon 120, 405–410 (2017).

    Article  CAS  Google Scholar 

  82. Tang, H. et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions. Carbon 108, 1–6 (2016).

    Article  CAS  Google Scholar 

  83. Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Dubrovinskaia, N. et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 101912 (2007).

    Article  Google Scholar 

  85. Zeng, Y. et al. Toughening and crack healing mechanisms in nanotwinned diamond composites with various polytypes. Phys. Rev. Lett. 127, 066101 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Nie, A. et al. Direct observation of room-temperature dislocation plasticity in diamond. Matter 2, 1222–1232 (2020).

    Article  Google Scholar 

  90. Bu, Y., Wang, P., Nie, A. & Wang, H. Room-temperature plasticity in diamond. Sci. China Technol. Sci. 64, 32–36 (2021).

    Article  CAS  Google Scholar 

  91. Zhang, Y. et al. Atomic-scale observation of the deformation and failure of diamonds by in situ double-tilt mechanical testing transmission electron microscope holder. Sci. China Mater. 63, 2335–2343 (2020).

    Article  CAS  Google Scholar 

  92. Wheeler, J. M. et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales. Nano Lett. 16, 812–816 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Xu, B. & Tian, Y. High pressure synthesis of nanotwinned ultrahard materials. Acta Phys. Sin. 66, 151102 (2017).

    Google Scholar 

  94. Frick, C., Clark, B., Orso, S., Schneider, A. & Arzt, E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008).

    Article  Google Scholar 

  95. Wu, J., Tsai, W., Huang, J., Hsieh, C. & Huang, G.-R. Sample size and orientation effects of single crystal aluminum. Mater. Sci. Eng. A 662, 296–302 (2016).

    Article  CAS  Google Scholar 

  96. Amelinckx, S. & Dekeyser, W. The structure and properties of grain boundaries. Solid State Phys. 8, 325–499 (1959).

    Article  CAS  Google Scholar 

  97. Brandon, D. The structure of high-angle grain boundaries. Acta Metall. 14, 1479–1484 (1966).

    Article  CAS  Google Scholar 

  98. Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    Article  CAS  Google Scholar 

  99. Cantwell, P. R. et al. Grain boundary complexions. Acta Mater. 62, 1–48 (2014).

    Article  CAS  Google Scholar 

  100. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, J. et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262–2270 (2010).

    Article  CAS  Google Scholar 

  102. Tong, K. et al. Structural transition and migration of incoherent twin boundary in diamond. Nature 626, 79–85 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Hart, E. W. Two-dimensional phase transformation in grain boundaries. Scr. Metall. 2, 179–182 (1968).

    Article  Google Scholar 

  104. Harmer, M. P. The phase behavior of interfaces. Science 332, 182–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Shi, Z. et al. Metallization of diamond. Proc. Natl Acad. Sci. USA 117, 24634–24639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shi, Z. et al. Deep elastic strain engineering of bandgap through machine learning. Proc. Natl Acad. Sci. USA 116, 4117–4122 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    Article  CAS  Google Scholar 

  109. Dang, C. et al. Extreme mechanics of nanoscale diamond towards functional device applications. Extreme Mech. Lett. 58, 101931 (2023).

    Article  Google Scholar 

  110. Lu, A. et al. Tuning diamond electronic properties for functional device applications. Funct. Diam. 2, 151–166 (2022).

    Article  Google Scholar 

  111. Liu, C., Song, X., Li, Q., Ma, Y. & Chen, C. Superconductivity in compression-shear deformed diamond. Phys. Rev. Lett. 124, 147001 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Ge, Y. et al. Superconductivity in graphite-diamond hybrid. Mater. Today Phys. 23, 100630 (2022).

    Article  CAS  Google Scholar 

  113. Wu, Y. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ito, E. in Treatise on Geophysics Vol. 2 (ed Schubert, G.) 197–230 (Elsevier, 2007).

  115. Tian, Y. Nanostructured superhard materials. Chin. Sci. Bull. 63, 1320–1331 (2018).

    Article  Google Scholar 

  116. Li, B. et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl Acad. Sci. USA 115, 1713–1717 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kasu, M., Makimoto, T., Ebert, W. & Kohn, E. Formation of stacking faults containing microtwins in (111) chemical-vapor-deposited diamond homoepitaxial layers. Appl. Phys. Lett. 83, 3465–3467 (2003).

    Article  CAS  Google Scholar 

  118. Sun, R. et al. Nanocrystalline cubic silicon carbide: a route to superhardness. Small 18, 2201212 (2022).

    Article  CAS  Google Scholar 

  119. Willman, J. T. et al. Machine learning interatomic potential for simulations of carbon at extreme conditions. Phys. Rev. B 106, L180101 (2022).

    Article  CAS  Google Scholar 

  120. Wang, P. et al. Dislocation-mediated brittle-ductile transition of diamond under high pressure. Diam. Relat. Mater. 138, 110198 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 52288102, 52090020, 52325203 and 92463305) and the Hebei Natural Science Foundation (grant numbers E2024203054, E2022203109 and E2023203256).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. initiated the project. All authors contributed to the discussion and co-wrote the paper.

Corresponding authors

Correspondence to Anmin Nie, Zhisheng Zhao, Bo Xu or Yongjun Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jian Luo, Wenge Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, A., Zhao, Z., Xu, B. et al. Microstructure engineering in diamond-based materials. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02168-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing