Abstract
Diamond possesses a suite of extraordinary properties, including unparalleled hardness, excellent thermal conductivity, a wide bandgap and optical transparency. These features render it essential for a broad spectrum of scientific and industrial applications. However, the inherent brittleness and limited toughness of diamond have posed substantial barriers to broader technological integration. Recent advances have demonstrated that engineered structural configurations—including nanotwinned diamond architectures, hierarchically structured nanotwinned diamond composites, graphite–diamond hybrids, diamond–graphene composites and amorphous diamond phases—can overcome these conventional limitations, exhibiting superior mechanical and physical properties. This Review examines the latest developments in diamond and its derivative materials, focusing on microstructural design strategies, phase transition mechanisms, opportunities to enhance properties and emergent phenomena. We also outline promising research directions and potential applications for diamond-based materials, advancing the frontiers of diamond-based technologies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
269,00 € per year
only 22,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).
Li, Y., Lu, Y., Adelhelm, P., Titirici, M.-M. & Hu, Y.-S. Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).
Varma, C., Zaanen, J. & Raghavachari, K. Superconductivity in the fullerenes. Science 254, 989–992 (1991).
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
De Volder, M. F., Tawfick, S. H., Baughman, R. H. & Hart, A. J. Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013).
Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).
Wang, L. et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).
Pan, F. et al. Long-range ordered porous carbons produced from C60. Nature 614, 95–101 (2023).
Hou, L. et al. Synthesis of a monolayer fullerene network. Nature 606, 507–510 (2022).
Toh, C.-T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).
McMillan, P. F. New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002).
Harlow, G. E. The Nature of Diamonds (Cambridge Univ. Press, 1998).
Brazhkin, V. et al. What does ‘harder than diamond’mean? Nat. Mater. 3, 576–577 (2004).
Field, J. The mechanical and strength properties of diamond. Rep. Prog. Phys. 75, 126505 (2012).
Weidner, D. J., Wang, Y. & Vaughan, M. T. Strength of diamond. Science 266, 419–422 (1994).
Brookes, C. Plastic deformation and anisotropy in the hardness of diamond. Nature 228, 660–661 (1970).
Graebner, J., Jin, S., Kammlott, G., Herb, J. & Gardinier, C. Large anisotropic thermal conductivity in synthetic diamond films. Nature 359, 401–403 (1992).
Jayaraman, A. Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).
Tönshoff, H., Hillmann-Apmann, H. & Asche, J. Diamond tools in stone and civil engineering industry: cutting principles, wear and applications. Diam. Relat. Mater. 11, 736–741 (2002).
Schuelke, T. & Grotjohn, T. A. Diamond polishing. Diam. Relat. Mater. 32, 17–26 (2013).
Drory, M., Dauskardt, R., Kant, A. & Ritchie, R. Fracture of synthetic diamond. J. Appl. Phys. 78, 3083–3088 (1995).
Bundy, F., Hall, H. T., Strong, H. & Wentorfjun, R. Man-made diamonds. Nature 176, 51–55 (1955).
Manjarrez, A., Zhou, K., Chen, C., Tzeng, Y.-K. & Cai, L. Atmospheric-pressure flame vapor deposition of nanocrystalline diamonds: implications for scalable and cost-effective coatings. ACS Appl. Nano Mater. 5, 10715–10723 (2022).
Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).
Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).
Tanigaki, K. et al. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond. Nat. Commun. 4, 2343 (2013).
Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci. Rev. 9, nwab140 (2022).
Shang, Y. et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature 599, 599–604 (2021).
Tang, H. et al. Synthesis of paracrystalline diamond. Nature 599, 605–610 (2021).
Li, Z. et al. Ultrastrong conductive in situ composite composed of nanodiamond incoherently embedded in disordered multilayer graphene. Nat. Mater. 22, 42–49 (2023).
Tian, Y. et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).
Németh, P. T. et al. Diamond-graphene composite nanostructures. Nano Lett 20, 3611–3619 (2020).
Hu, M. et al. Compressed glassy carbon: an ultrastrong and elastic interpenetrating graphene network. Sci. Adv. 3, e1603213 (2017).
Ke, F. et al. Synthesis of atomically thin hexagonal diamond with compression. Nano Lett. 20, 5916–5921 (2020).
Luo, K. et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature 607, 486–491 (2022).
Zhu, S.-c, Yan, X.-z, Liu, J., Oganov, A. R. & Zhu, Q. A revisited mechanism of the graphite-to-diamond transition at high temperature. Matter 3, 864–878 (2020).
Erskine, D. & Nellis, W. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature 349, 317–319 (1991).
Celii, F. & Butler, J. Diamond chemical vapor deposition. Annu. Rev. Phys. Chem. 42, 643–684 (1991).
Lu, J. et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure. Diam. Relat. Mater. 77, 41–45 (2017).
Sumiya, H. & Harano, K. Innovative ultra-hard materials: binderless nano-polycrystalline diamond and nano-polycrystalline cubic boron nitride. SEI Tech. Rev. 81, 21–26 (2016).
Sumiya, H. & Harano, K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diam. Relat. Mater. 24, 44–48 (2012).
Yusa, H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diam. Relat. Mater. 11, 87–91 (2002).
Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S. & Liebske, C. Nanocrystalline diamond synthesized from C60. Diam. Relat. Mater. 14, 16–22 (2005).
Sumiya, H., Yusa, H., Inoue, T., Ofuji, H. & Irifune, T. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature. High Press. Res. 26, 63–69 (2006).
Sumiya, H. & Irifune, T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 22, 2345–2351 (2007).
Pan, Y. et al. Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. Proc. Natl Acad. Sci. USA 118, e2108340118 (2021).
Yue, Y. et al. Hierarchically structured diamond composite with exceptional toughness. Nature 582, 370–374 (2020).
Yang, X. et al. Diamond-graphite nanocomposite synthesized from multi-walled carbon nanotubes fibers. Carbon 172, 138–143 (2021).
Németh, P. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126–1131 (2020).
Zhao, Z. et al. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nat. Commun. 6, 6212 (2015).
Li, B. et al. Heterogeneous diamond-cBN composites with superb toughness and hardness. Nano Lett. 22, 4979–4984 (2022).
Zhang, S. et al. Narrow-gap, semiconducting, superhard amorphous carbon with high toughness, derived from C60 fullerene. Cell Rep. Phys. Sci. 2, 100575 (2021).
LiBassi, A. et al. Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diam. Relat. Mater. 9, 771–776 (2000).
McKenzie, D., Muller, D. & Pailthorpe, B. Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773–776 (1991).
Zeng, Z. et al. Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322 (2017).
Han, Q., Luo, K., Gao, Q., Wu, Y. & He, J. Theoretical study on phase transition of various graphitic structures under high pressure. Diam. Relat. Mater. 133, 109725 (2023).
Zhao, Y., Qian, C., Gladkikh, V. & Ding, F. Simulated pressure-temperature carbon structure map obtained through uniaxial compression of bulk C60. Carbon 202, 554–560 (2023).
Bovenkerk, H., Bundy, F., Hall, H., Strong, H. & Wentorf, R. Preparation of diamond. Nature 184, 1094–1098 (1959).
Bundy, F. P., Bovenkerk, H. P., Strong, H. M. & Wentorf, R. H. Jr Diamond-graphite equilibrium line from growth and graphitization of diamond. J. Chem. Phys. 35, 383–391 (1961).
Bundy, F. Direct conversion of graphite to diamond in static pressure apparatus. Science 137, 1057–1058 (1962).
Fahy, S., Louie, S. G. & Cohen, M. L. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys. Rev. B 35, 7623–7626 (1987).
Scandolo, S., Bernasconi, M., Chiarotti, G., Focher, P. & Tosatti, E. Pressure-induced transformation path of graphite to diamond. Phys. Rev. Lett. 74, 4015–4018 (1995).
Khaliullin, R. Z., Eshet, H., Kühne, T. D., Behler, J. & Parrinello, M. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat. Mater. 10, 693–697 (2011).
Bundy, F. & Kasper, J. Hexagonal diamond—a new form of carbon. J. Chem. Phys. 46, 3437–3446 (1967).
Offerman, S. et al. Grain nucleation and growth during phase transformations. Science 298, 1003–1005 (2002).
Taheri Mousavi, S. M., Zhou, H., Zou, G. & Gao, H. Transition from source-to stress-controlled plasticity in nanotwinned materials below a softening temperature. npj Comput. Mater. 5, 2 (2019).
Xiao, J. et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design. npj Comput. Mater. 6, 119 (2020).
Xiao, J. et al. Dislocation behaviors in nanotwinned diamond. Sci. Adv. 4, eaat8195 (2018).
Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117, 116103 (2016).
Li, B., Sun, H. & Chen, C. Large indentation strain-stiffening in nanotwinned cubic boron nitride. Nat. Commun. 5, 4965 (2014).
John, S. T., Klug, D. D. & Gao, F. Hardness of nanocrystalline diamonds. Phys. Rev. B 73, 140102 (2006).
Hall, E. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747–753 (1951).
Petch, N. The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953).
Gao, F. et al. Hardness of covalent crystals. Phys. Rev. Lett. 91, 015502 (2003).
Kubo, R. Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn 17, 975–986 (1962).
Zhao, Z., Xu, B. & Tian, Y. Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 383–406 (2016).
Tian, Y., Xu, B. & Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 33, 93–106 (2012).
Tao, Q. et al. Nanotwinned diamond synthesized from multicore carbon onion. Carbon 120, 405–410 (2017).
Tang, H. et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions. Carbon 108, 1–6 (2016).
Solozhenko, V. L., Kurakevych, O. O. & Le Godec, Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).
Dubrovinskaia, N. et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 101912 (2007).
Zeng, Y. et al. Toughening and crack healing mechanisms in nanotwinned diamond composites with various polytypes. Phys. Rev. Lett. 127, 066101 (2021).
Nie, A. et al. Approaching diamond’s theoretical elasticity and strength limits. Nat. Commun. 10, 5533 (2019).
Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).
Dang, C. et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science 371, 76–78 (2021).
Nie, A. et al. Direct observation of room-temperature dislocation plasticity in diamond. Matter 2, 1222–1232 (2020).
Bu, Y., Wang, P., Nie, A. & Wang, H. Room-temperature plasticity in diamond. Sci. China Technol. Sci. 64, 32–36 (2021).
Zhang, Y. et al. Atomic-scale observation of the deformation and failure of diamonds by in situ double-tilt mechanical testing transmission electron microscope holder. Sci. China Mater. 63, 2335–2343 (2020).
Wheeler, J. M. et al. Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales. Nano Lett. 16, 812–816 (2016).
Xu, B. & Tian, Y. High pressure synthesis of nanotwinned ultrahard materials. Acta Phys. Sin. 66, 151102 (2017).
Frick, C., Clark, B., Orso, S., Schneider, A. & Arzt, E. Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng. A 489, 319–329 (2008).
Wu, J., Tsai, W., Huang, J., Hsieh, C. & Huang, G.-R. Sample size and orientation effects of single crystal aluminum. Mater. Sci. Eng. A 662, 296–302 (2016).
Amelinckx, S. & Dekeyser, W. The structure and properties of grain boundaries. Solid State Phys. 8, 325–499 (1959).
Brandon, D. The structure of high-angle grain boundaries. Acta Metall. 14, 1479–1484 (1966).
Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).
Cantwell, P. R. et al. Grain boundary complexions. Acta Mater. 62, 1–48 (2014).
Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).
Wang, J. et al. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58, 2262–2270 (2010).
Tong, K. et al. Structural transition and migration of incoherent twin boundary in diamond. Nature 626, 79–85 (2024).
Hart, E. W. Two-dimensional phase transformation in grain boundaries. Scr. Metall. 2, 179–182 (1968).
Harmer, M. P. The phase behavior of interfaces. Science 332, 182–183 (2011).
Qiu, K. et al. Self-healing of fractured diamond. Nat. Mater. 22, 1317–1323 (2023).
Shi, Z. et al. Metallization of diamond. Proc. Natl Acad. Sci. USA 117, 24634–24639 (2020).
Shi, Z. et al. Deep elastic strain engineering of bandgap through machine learning. Proc. Natl Acad. Sci. USA 116, 4117–4122 (2019).
Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).
Dang, C. et al. Extreme mechanics of nanoscale diamond towards functional device applications. Extreme Mech. Lett. 58, 101931 (2023).
Lu, A. et al. Tuning diamond electronic properties for functional device applications. Funct. Diam. 2, 151–166 (2022).
Liu, C., Song, X., Li, Q., Ma, Y. & Chen, C. Superconductivity in compression-shear deformed diamond. Phys. Rev. Lett. 124, 147001 (2020).
Ge, Y. et al. Superconductivity in graphite-diamond hybrid. Mater. Today Phys. 23, 100630 (2022).
Wu, Y. et al. Twisted-layer boron nitride ceramic with high deformability and strength. Nature 626, 779–784 (2024).
Ito, E. in Treatise on Geophysics Vol. 2 (ed Schubert, G.) 197–230 (Elsevier, 2007).
Tian, Y. Nanostructured superhard materials. Chin. Sci. Bull. 63, 1320–1331 (2018).
Li, B. et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl Acad. Sci. USA 115, 1713–1717 (2018).
Kasu, M., Makimoto, T., Ebert, W. & Kohn, E. Formation of stacking faults containing microtwins in (111) chemical-vapor-deposited diamond homoepitaxial layers. Appl. Phys. Lett. 83, 3465–3467 (2003).
Sun, R. et al. Nanocrystalline cubic silicon carbide: a route to superhardness. Small 18, 2201212 (2022).
Willman, J. T. et al. Machine learning interatomic potential for simulations of carbon at extreme conditions. Phys. Rev. B 106, L180101 (2022).
Wang, P. et al. Dislocation-mediated brittle-ductile transition of diamond under high pressure. Diam. Relat. Mater. 138, 110198 (2023).
Acknowledgements
This work was supported by the National Natural Science Foundation of China (grant numbers 52288102, 52090020, 52325203 and 92463305) and the Hebei Natural Science Foundation (grant numbers E2024203054, E2022203109 and E2023203256).
Author information
Authors and Affiliations
Contributions
Y.T. initiated the project. All authors contributed to the discussion and co-wrote the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Jian Luo, Wenge Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nie, A., Zhao, Z., Xu, B. et al. Microstructure engineering in diamond-based materials. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02168-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41563-025-02168-z