Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrative catalytic pairs for efficient multi-intermediate catalysis

Abstract

Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Progress in developing atomically precise catalysts.
Fig. 2: Structural characterization of Ir1–P1/ICP and its principle to lower the kinetic barrier of HOR.
Fig. 3: Tandem mechanism of C–C bond formation via a formyl-bicarbonate coupling pathway on Sn1–O1/ICP.
Fig. 4: Comparison of the limitation from linear scaling relationships for SAC, DAC and ICP systems.

Similar content being viewed by others

References

  1. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    PubMed  Google Scholar 

  2. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011). This report introduced the concept of SACs, in which single Pt atoms on a FeOx support showed high activity and stability for CO oxidation.

    CAS  PubMed  Google Scholar 

  3. Yang, X.-F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    CAS  PubMed  Google Scholar 

  4. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  5. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  PubMed  Google Scholar 

  7. Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).

    CAS  Google Scholar 

  8. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  PubMed  Google Scholar 

  9. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    CAS  PubMed  Google Scholar 

  10. Liu, D. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    CAS  Google Scholar 

  11. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    CAS  PubMed  Google Scholar 

  12. Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).

    CAS  Google Scholar 

  13. Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    CAS  Google Scholar 

  14. Tan, H. et al. Photocatalysis of water into hydrogen peroxide over an atomic Ga–N5 site. Nat. Synth. 2, 557–563 (2023).

    Google Scholar 

  15. Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    CAS  Google Scholar 

  16. Liu, Y. et al. Recent advances in carbon-supported noble-metal electrocatalysts for hydrogen evolution reaction: syntheses, structures, and properties. Adv. Energy Mater. 12, 2200928 (2022).

    CAS  Google Scholar 

  17. Wei, H. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    CAS  PubMed  Google Scholar 

  18. Sun, K., Shan, H., Neumann, H., Lu, G.-P. & Beller, M. Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles. Nat. Commun. 13, 1848 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhao, J. et al. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 4, 523–531 (2021).

    CAS  Google Scholar 

  20. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    CAS  PubMed  Google Scholar 

  21. Bajada, M. A. et al. Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst. Nat. Synth. 2, 1092–1103 (2023).

    Google Scholar 

  22. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    CAS  Google Scholar 

  23. Jung, E. et al. Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 19, 436–442 (2020).

    CAS  PubMed  Google Scholar 

  24. Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021). This work investigated a single-atom Pb-alloyed Cu catalyst in the electrochemical CO2RR and revealed that isolated Pb atoms precisely tune the electronic/geometric structure of the Cu catalyst but can not work as active sites.

    CAS  PubMed  Google Scholar 

  25. Datye, A. K. & Guo, H. Single atom catalysis poised to transition from an academic curiosity to an industrially relevant technology. Nat. Commun. 12, 895 (2021).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Li, X., Yang, X., Zhang, J., Huang, Y. & Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019).

    CAS  Google Scholar 

  27. Hulva, J. et al. Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021).

    CAS  PubMed  Google Scholar 

  28. Cao, H. et al. Engineering single-atom electrocatalysts for enhancing kinetics of acidic volmer reaction. J. Am. Chem. Soc. 145, 13038–13047 (2023).

    CAS  PubMed  Google Scholar 

  29. Yang, H. B. et al. Identification of non-metal single atomic phosphorus active sites for the CO2 reduction reaction. EES Catal. 1, 774–783 (2023). This work extended the definition of SACs to a family of non-metal catalytic centres.

    Google Scholar 

  30. Gu, Y., Xi, B. J., Zhang, H., Ma, Y. C. & Xiong, S. L. Activation of main-group antimony atomic sites for oxygen reduction catalysis. Angew. Chem. Int. Ed. 61, e202202200 (2022).

    CAS  Google Scholar 

  31. Zhao, Y. et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 12252–12257 (2019).

    CAS  Google Scholar 

  32. Fu, W. et al. Non-metal single-phosphorus-atom catalysis of hydrogen evolution. Angew. Chem. Int. Ed. 59, 23791–23799 (2020).

    CAS  Google Scholar 

  33. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  Google Scholar 

  34. Li, M. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

    CAS  Google Scholar 

  35. Wang, Q. et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting. Nat. Commun. 11, 4246 (2020).

    CAS  PubMed Central  Google Scholar 

  36. Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    CAS  Google Scholar 

  37. Campos, J. Bimetallic cooperation across the periodic table. Nat. Rev. Chem. 4, 696–702 (2020).

    CAS  Google Scholar 

  38. Zhang, W. et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv. Mater. 33, 2102576 (2021).

    CAS  Google Scholar 

  39. Li, W.-H., Yang, J. & Wang, D. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. 61, e202213318 (2022).

    CAS  Google Scholar 

  40. Zhu, P., Xiong, X., Wang, D. & Li, Y. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy Mater. 13, 2300884 (2023).

    CAS  Google Scholar 

  41. Wang, Q. et al. Atomic metal–non-metal catalytic pair drives efficient hydrogen oxidation catalysis in fuel cells. Nat. Catal. 6, 916–926 (2023). This study represented the first definition and application of ICPs, in which the reactive *OH species adsorbed on the more oxophilic P site induced an alternative thermodynamic pathway to facilely combine with the *H on the adjacent Ir atom, thus synergistically boosting the performance for HOR in fuel cells.

  42. He, Q. et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem. Int. Ed. 59, 3033–3037 (2020).

    CAS  Google Scholar 

  43. Zhao, Y. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 4, 134–143 (2021). By integrating two compatible single-atom systems of Pd and Fe as a yolk–shell structure, this catalyst simultaneously catalysed nitroaromatic hydrogenation and alkene epoxidation reactions, leading to a cascade synthesis of amino alcohols.

  44. Chen, J. et al. Dual single-atomic Ni–N4 and Fe–N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32, 2003134 (2020).

    CAS  Google Scholar 

  45. Tang, C. et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).

    CAS  PubMed  Google Scholar 

  46. Chang, X. et al. Designing single-site alloy catalysts using a degree-of-isolation descriptor. Nat. Nanotechnol. 18, 611–616 (2023).

    CAS  PubMed  Google Scholar 

  47. Jin, Z. et al. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    CAS  Google Scholar 

  48. Jiao, L. et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 143, 19417–19424 (2021).

    CAS  PubMed  Google Scholar 

  49. Luo, F. et al. Structural and reactivity effects of secondary metal doping into iron-nitrogen-carbon catalysts for oxygen electroreduction. J. Am. Chem. Soc. 145, 14737–14747 (2023).

    CAS  PubMed  Google Scholar 

  50. Zhang, L. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    PubMed Central  PubMed  Google Scholar 

  51. Cui, T. et al. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem. Int. Ed. 61, e202115219 (2022).

    CAS  Google Scholar 

  52. Yan, H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    PubMed Central  PubMed  Google Scholar 

  53. Jiang, Z. et al. Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv. Mater. 35, 2300505 (2023).

    CAS  Google Scholar 

  54. Li, Y. et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: mechanistic insight into active site structures. Angew. Chem. Int. Ed. 61, e202205632 (2022).

    CAS  Google Scholar 

  55. Zhang, N. et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter 3, 509–521 (2020).

    Google Scholar 

  56. Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019). This work reported a homologous binuclear DAC featuring stable Cu10Cu1x+ pair configurations, with Cu10 adsorbing CO2 and the neighbouring Cu1x+ adsorbing H2O, which thereby worked together to promote the critical bimolecular step in CO2 reduction.

    CAS  PubMed  Google Scholar 

  57. Hao, Q. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022).

    Google Scholar 

  58. Hai, X. et al. Geminal-atom catalysis for cross-coupling. Nature 622, 754–760 (2023).

    CAS  PubMed  Google Scholar 

  59. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018). This study discovered the synergetic interaction between neighbouring Pt monomers that reduced the activation energy barrier and underwent distinct reaction paths relative to isolated monomers.

    CAS  PubMed  Google Scholar 

  60. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    CAS  PubMed  Google Scholar 

  61. Zhang, X. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    CAS  PubMed Central  Google Scholar 

  62. Li, X. et al. Palladium and ruthenium dual-single-atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62, e202307570 (2023).

    CAS  Google Scholar 

  63. Fang, C. et al. Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction. Nat. Commun. 14, 4449 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Zhao, Q.-P. et al. Photo-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth. 3, 497–506 (2024). This work proposed a universal ‘navigation and positioning’ method to precisely and scalably synthesize a series of heteronuclear DACs and demonstrated outstanding photocatalytic HER activity for as-prepared Zn1Ru1/DACs.

  65. Du, J. et al. CoIn dual-atom catalyst for hydrogen peroxide production via oxygen reduction reaction in acid. Nat. Commun. 14, 4766 (2023).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Zhang, S. et al. Atomically dispersed bimetallic Fe–Co electrocatalysts for green production of ammonia. Nat. Sustain. 6, 169–179 (2023).

    Google Scholar 

  67. Young, D. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Wiley, 2001).

  68. Ding, J. et al. Room-temperature chemoselective hydrogenation of nitroarene over atomic metal–nonmetal catalytic pair. Adv. Mater. 36, 2306480 (2024).

    CAS  Google Scholar 

  69. Zhang, Q. et al. Boosting the proton-coupled electron transfer via Fe−P atomic pair for enhanced electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202311550 (2023).

    CAS  Google Scholar 

  70. Ding, J. et al. A tin-based tandem electrocatalyst for CO2 reduction to ethanol with 80% selectivity. Nat. Energy 8, 1386–1394 (2023). This study reported that an ICP comprising Sn and O active sites could adsorb *CHO and *CO(OH) intermediates, respectively, therefore promoting CC bond formation through a tandem formyl-bicarbonate coupling pathway in electrochemical CO2 reduction to ethanol.

    CAS  Google Scholar 

  71. Ding, J. et al. Circumventing CO2 reduction scaling relations over the heteronuclear diatomic catalytic pair. J. Am. Chem. Soc. 145, 11829–11836 (2023). In this report, the adsorption configuration transitioned from the bridge configuration of CO2 on Fe1Mo1/ICP to the linear configuration of CO on the Fe1 centre, which resulted in breaking the scaling relationship in the CO2RR, simultaneously promoting CO2 activation and CO release.

  72. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    CAS  Google Scholar 

  73. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  PubMed  Google Scholar 

  74. Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 660, 254–260 (2011).

    CAS  Google Scholar 

  75. Gao, R. et al. Pt/Fe2O3 with Pt–Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614–623 (2021).

    CAS  Google Scholar 

  76. Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh–WOx pair site catalysts. Nature 609, 287–292 (2022).

    CAS  Google Scholar 

  77. Zeng, L. et al. Cooperative Rh–O5/Ni(Fe) site for efficient biomass upgrading coupled with H2 production. J. Am. Chem. Soc. 145, 17577–17587 (2023).

    CAS  Google Scholar 

  78. Zhou, Y. et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation. Nat. Catal. 5, 1145–1156 (2022).

    CAS  Google Scholar 

  79. Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023).

    CAS  Google Scholar 

  80. Yang, Y. et al. O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    CAS  Google Scholar 

  82. Chen, Y. et al. Isolating single and few atoms for enhanced catalysis. Adv. Mater. 34, 2201796 (2022).

    CAS  Google Scholar 

  83. Wang, L. et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 5, eaax6322 (2019).

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Wang, Q. et al. Long-term stability challenges and opportunities in acidic oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 62, e202216645 (2023).

    CAS  Google Scholar 

  85. Liu, L. & Corma, A. Identification of the active sites in supported subnanometric metal catalysts. Nat. Catal. 4, 453–456 (2021).

    CAS  Google Scholar 

  86. Ajayi, T. M. et al. Characterization of just one atom using synchrotron X-rays. Nature 618, 69–73 (2023).

    CAS  PubMed  Google Scholar 

  87. Green, I. X., Tang, W., Neurock, M. & Yates, J. T. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333, 736–739 (2011).

    CAS  PubMed  Google Scholar 

  88. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    CAS  PubMed  Google Scholar 

  89. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    CAS  Google Scholar 

  90. Maurer, F. et al. Tracking the formation, fate and consequence for catalytic activity of Pt single sites on CeO2. Nat. Catal. 3, 824–833 (2020).

    CAS  Google Scholar 

  91. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    CAS  PubMed  Google Scholar 

  92. Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9, 1610 (2018).

    PubMed Central  PubMed  Google Scholar 

  93. Wang, G., Jiang, X.-L., Jiang, Y.-F., Wang, Y.-G. & Li, J. Screened Fe3 and Ru3 single-cluster catalysts anchored on MoS2 supports for selective hydrogenation of CO2. ACS Catal. 13, 8413–8422 (2023).

    CAS  Google Scholar 

  94. Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the City University of Hong Kong startup fund (no. 9020003) and ITF−RTH−Global STEM Professorship (no. 9446006). H.B.Y. acknowledges support from the National Natural Science Foundation of China under grant number 22075195. C.S. gratefully thanks financial support from National Key Research and Development Program of China (number 2021YFA1600800633), National Natural Science Foundation of China (number 22372102) and Shenzhen Science and Technology Program (number RCJC20200714114434086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Bin Yang, Chenliang Su or Bin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Shuangyin Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Cheng, Y., Yang, H.B. et al. Integrative catalytic pairs for efficient multi-intermediate catalysis. Nat. Nanotechnol. 19, 1442–1451 (2024). https://doi.org/10.1038/s41565-024-01716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01716-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing