Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelectric topologies in BaTiO3 nanomembranes for light field manipulation

Abstract

Ferroelectric topological textures in oxides exhibit exotic dipole-moment configurations that would be ideal for nonlinear spatial light field manipulation. However, conventional ferroelectric polar topologies are spatially confined to the nanoscale, resulting in a substantial size mismatch with laser modes. Here we report a dome-shaped ferroelectric topology with micrometre-scale lateral dimensions using nanometre-thick freestanding BaTiO3 membranes and demonstrate its feasibility for spatial light field manipulation. The dome-shaped topology results from a radial flexoelectric field created through anisotropic lattice distortion, which, in turn, generates centre-convergent microdomains. The interaction between the continuous curling of dipoles and light promotes the conversion of circularly polarized waves into vortex light fields through nonlinear spin-to-orbit angular momentum conversion. Further dynamic manipulation of vortex light fields can also be achieved by thermal and electrical switching of the polar topology. Our work highlights the potential for other ferroelectric polar topologies in light field manipulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exploiting polar topology for nonlinear vortex beam generation.
Fig. 2: Synthesis and structural characterizations of freestanding BTO membranes.
Fig. 3: Topological microdomain revealed by LPFM and SHG.
Fig. 4: Generation of a nonlinear vortex beam by polar topology.
Fig. 5: Dynamic optical modulation through thermal and electrical switching.

Similar content being viewed by others

Data availability

The data that support the plots within this article and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Jia, C.-L., Urban, K. W., Alexe, M., Hesse, D. & Vrejoiu, I. Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420–1423 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Ivry, Y., Chu, D. P., Scott, J. F. & Durkan, C. Flux closure vortexlike ___domain structures in ferroelectric thin films. Phys. Rev. Lett. 104, 207602 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Tang, Y. L. et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547–551 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Yadav, A. K. et al. Observation of polar vortices in oxide superlattices. Nature 530, 198–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Nahas, Y. et al. Inverse transition of labyrinthine ___domain patterns in ferroelectric thin films. Nature 577, 47–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Seidel, J. et al. Conduction at ___domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Zubko, P. et al. Negative capacitance in multidomain ferroelectric superlattices. Nature 534, 524–528 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. J. et al. Polar meron lattice in strained oxide ferroelectrics. Nat. Mater. 19, 881–886 (2020).

    Article  PubMed  Google Scholar 

  11. Sánchez-Santolino, G. et al. A 2D ferroelectric vortex pattern in twisted BaTiO3 freestanding layers. Nature 626, 529–534 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li, Q. et al. Subterahertz collective dynamics of polar vortices. Nature 592, 376–380 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Nat. Acad. Sci. USA 115, 915–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Behera, P. et al. Electric field control of chirality. Sci. Adv. 8, eabj8030 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, H. et al. Electric field-manipulated optical chirality in ferroelectric vortex domains. Adv. Mater. 36, e2408400 (2024).

    Article  PubMed  Google Scholar 

  16. Yadav, A. K. et al. Spatially resolved steady-state negative capacitance. Nature 565, 468–471 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, J. et al. Temporary formation of highly conducting ___domain walls for non-destructive read-out of ferroelectric ___domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Junquera, J. et al. Topological phases in polar oxide nanostructures. Rev. Mod. Phys. 95, 025001 (2023).

    Article  CAS  Google Scholar 

  20. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Jisha, C. P., Nolte, S. & Alberucci, A. Geometric phase in optics: from wavefront manipulation to waveguiding. Laser Photonics Rev. https://doi.org/10.1002/lpor.202100003 (2021).

  22. Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J. et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. Opt. Express 23, 23072–23078 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, S., Zhu, Y. & Ming, N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  CAS  Google Scholar 

  25. Xu, X. et al. Femtosecond laser writing of lithium niobate ferroelectric nanodomains. Nature 609, 496–501 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Broadband spin and orbital momentum modulator using self-assembled nanostructures. Adv. Mater. 36, 2412007 (2024).

    Article  CAS  Google Scholar 

  27. Ni, J. C. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533–1556 (2018).

    Article  Google Scholar 

  30. Bai, Y., Lv, H., Fu, X. & Yang, Y. Vortex beam: generation and detection of orbital angular momentum. Chin. Opt. Lett. 20, 012601 (2022).

    Article  Google Scholar 

  31. Yao, J. et al. Generation of optical vortices by diffraction from circular apertures. ACS Photonics 10, 4267–4272 (2023).

    Article  CAS  Google Scholar 

  32. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012).

    Article  CAS  Google Scholar 

  33. Wang, J. Advances in communications using optical vortices. Photonics Res. 4, B14–B28 (2016).

    Article  Google Scholar 

  34. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photonics 14, 102–108 (2019).

    Article  Google Scholar 

  35. Tan, C. et al. Engineering polar vortex from topologically trivial ___domain architecture. Nat. Commun. 12, 4620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Govinden, V. et al. Ferroelectric solitons crafted in epitaxial bismuth ferrite superlattices. Nat. Commun. 14, 4178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dong, G. et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 366, 475–479 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, H. Y. et al. Nonvolatile ferroelectric ___domain wall memory integrated on silicon. Nat. Commun. 13, 4332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji, D. X. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Hong, S. S. et al. Extreme tensile strain states in La0.7Ca0.3MnO3 membranes. Science 368, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120, 227601 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Pugachev, A. M. et al. Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation. Phys. Rev. Lett. 108, 247601 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Denev, S. A., Lummen, T. T. A., Barnes, E., Kumar, A. & Gopalan, V. Probing ferroelectrics using optical second harmonic generation. J. Am. Ceram. Soc. 94, 2699–2727 (2011).

    Article  CAS  Google Scholar 

  45. Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric ___domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Bliokh, K. Y., Rodriguez-Fortuno, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photonics 9, 796–808 (2015).

    Article  CAS  Google Scholar 

  48. Liu, G. et al. in Fundamentals and Applications of Nonlinear Nanophotonics (ed. Panoiu N. C.) 393–440 (Elsevier, 2024).

  49. Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater. 14, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Guo, C. Q. et al. Domain evolution in bended freestanding BaTiO3 ultrathin films: a phase-field simulation. Appl. Phys. Lett. 116, 152903 (2020).

    Article  CAS  Google Scholar 

  51. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotechnol. 4, 868–875 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Matzen, S. et al. Super switching and control of in-plane ferroelectric nanodomains in strained thin films. Nat. Commun. 5, 4415 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Li, G., Zhang, S. & Zentgraf, T. Nonlinear photonic metasurfaces. Nat. Rev. Mater. 2, 17010 (2017).

    Article  CAS  Google Scholar 

  55. Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts & Company, 2005).

  56. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics 14, 498–503 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Wu and L. Gu for fruitful discussions. This work was supported by the National Natural Science Foundation of China (grant nos. 12434002, 12425410, 52372100 and U24A2011), the National Key R&D Program of China (grant nos. 2022YFA1402502, 2021YFA1400400 and 2019YFA0307900), the Natural Science Foundation of Jiangsu Province (grant nos. BK20240005 and BK20233001) and Fundamental Research Funds for the Central Universities (021314380269). H.S. acknowledges the China National Postdoctoral Program for Innovative Talents (grant no. BX20230152), the China Postdoctoral Science Foundation (grant no. 2024M751368) and the Natural Science Foundation of Jiangsu Province (grant no. BK20241189). W.S. acknowledges the National Natural Science Foundation of China (grant no. 123B2051). P.C. acknowledges the China National Postdoctoral Program for Innovative Talents (grant no. BX20240157), the Jiangsu Funding Program for Excellent Postdoctoral Talent (grant no. 2024ZB517), the China Postdoctoral Science Foundation (grant no. 2024M751366) and the Natural Science Foundation of Jiangsu Province (grant no. BK20241190).

Author information

Authors and Affiliations

Authors

Contributions

Y.N. and Y.Z. conceived and supervised the project. H.S. synthesized and analysed the crystalline structure of BTO–SAO–STO heterostructures with the help of Y.L., D.X., J.Y., S.Y., Z.M. and Z.W. under the supervision of Z.G., D.W. and Y.N. H.S. performed polarization characterizations and analysis with help from J.W., W.S., B.H., T.Z., Z.C., N.Z. and Y.G. P.C. conducted optical measurements and simulations under the supervision of Y.Z., with the help of J.M. W.M. conducted STEM measurements and analysis under the supervision of P.W. C.G. conducted the phase-field simulations under the supervision of H.H. Y.N. and H.S. wrote the paper. All authors discussed the data and contributed to the paper.

Corresponding authors

Correspondence to Yong Zhang or Yuefeng Nie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Yuanjie Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Chen, P., Mao, W. et al. Ferroelectric topologies in BaTiO3 nanomembranes for light field manipulation. Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-01919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-025-01919-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing