Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified laser stabilization and isolation on a silicon chip

Abstract

Rapid progress in photonics has led to an explosion of integrated devices that promise to deliver the same performance as table-top technology at the nanoscale, heralding the next generation of optical communications, sensing and metrology, and quantum technologies. However, the challenge of co-integrating the multiple components of high-performance laser systems has left application of these nanoscale devices thwarted by bulky laser sources that are orders of magnitude larger than the devices themselves. Here we show that the two main components for high-performance lasers—noise reduction and isolation—can be sourced simultaneously from a single, passive, CMOS-compatible nanophotonic device, eliminating the need to combine incompatible technologies. To realize this, we take advantage of both the long photon lifetime and the non-reciprocal Kerr nonlinearity of a high-quality-factor silicon nitride ring resonator to self-injection lock a semiconductor laser chip while also providing isolation. We also identify a previously unappreciated power regime limitation of current on-chip laser architectures, which our system overcomes. Using our device, which we term a unified laser stabilizer, we demonstrate an on-chip integrated laser system with built-in isolation and noise reduction that operates with turnkey reliability. This approach departs from efforts to directly miniaturize and integrate traditional laser system components and serves to bridge the gap to fully integrated optical technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theory of operation.
Fig. 2: Isolation versus NRF tradeoff.
Fig. 3: High-Q feedback.
Fig. 4: Device performance.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors on reasonable request.

References

  1. Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2015).

    Google Scholar 

  2. McGrew, W. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    Article  Google Scholar 

  3. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article  Google Scholar 

  4. Yang, K. Y. et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nat. Commun. 13, 7862 (2022).

    Article  ADS  Google Scholar 

  5. Rizzo, A. et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photon. 17, 781–790 (2023).

    Article  Google Scholar 

  6. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  Google Scholar 

  7. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

    Article  Google Scholar 

  8. Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science 380, 398–404 (2023).

    Article  Google Scholar 

  9. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  Google Scholar 

  10. Rogers, C. et al. A universal 3D imaging sensor on a silicon photonics platform. Nature 590, 256–261 (2021).

    Article  Google Scholar 

  11. Li, B., Lin, Q. & Li, M. Frequency–angular resolving lidar using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).

    Article  Google Scholar 

  12. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  Google Scholar 

  13. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  Google Scholar 

  14. Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).

    Article  Google Scholar 

  15. Zhou, Z. et al. Prospects and applications of on-chip lasers. eLight 3, 1 (2023).

    Article  Google Scholar 

  16. Liu, A. Y., Komljenovic, T., Davenport, M. L., Gossard, A. C. & Bowers, J. E. Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon. Opt. Express 25, 9535 (2017).

    Article  ADS  Google Scholar 

  17. Dong, B. et al. Dynamic performance and reflection sensitivity of quantum dot distributed feedback lasers with large optical mismatch. Photon. Res. 9, 1550 (2021).

    Article  Google Scholar 

  18. Matsui, Y. et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat. Photon. 15, 59–63 (2021).

    Article  Google Scholar 

  19. Tkach, R. & Chraplyvy, A. Regimes of feedback effects in 1.5-μm distributed feedback lasers. J. Lightwave Technol. 4, 1655–1661 (1986).

    Article  Google Scholar 

  20. Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    Google Scholar 

  21. Guo, J. et al. Chip-based laser with 1-hertz integrated linewidth. Sci. Adv. 8, eabp9006 (2022).

    Article  Google Scholar 

  22. Herrmann, J. F. et al. Mirror symmetric on-chip frequency circulation of light. Nat. Photon. 16, 603–608 (2022).

    Article  Google Scholar 

  23. Yu, M. et al. Integrated electro-optic isolator on thin-film lithium niobate. Nat. Photon. 17, 666–671 (2023).

    Article  ADS  Google Scholar 

  24. Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photon. 15, 828–836 (2021).

    Article  Google Scholar 

  25. Del Bino, L., Silver, J. M., Stebbings, S. L. & Del’Haye, P. Symmetry breaking of counter-propagating light in a nonlinear resonator. Sci. Rep. 7, 43142 (2017).

    Article  ADS  Google Scholar 

  26. Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Google Scholar 

  27. White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2023).

    Article  Google Scholar 

  28. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940 (1958).

    Article  ADS  Google Scholar 

  29. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article  Google Scholar 

  30. Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).

    Article  ADS  Google Scholar 

  31. Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).

    Article  ADS  Google Scholar 

  32. Lihachev, G. et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun. 13, 1771 (2022).

    Article  ADS  Google Scholar 

  33. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  Google Scholar 

  34. Shim, E. et al. Tunable single-mode chip-scale mid-infrared laser. Commun. Phys. 4, 268 (2021).

    Article  Google Scholar 

  35. Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157 (2023).

    Article  ADS  Google Scholar 

  36. Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).

    Article  ADS  Google Scholar 

  37. Snigirev, V. et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023).

    Article  Google Scholar 

  38. Li, B. et al. High-coherence hybrid-integrated 780 nm source by self-injection-locked second-harmonic generation in a high-Q silicon-nitride resonator. Optica 10, 1241 (2023).

    Article  ADS  Google Scholar 

  39. Ling, J. et al. Self-injection locked frequency conversion laser. Laser Photon. Rev. 17, 2200663 (2023).

    Article  ADS  Google Scholar 

  40. Clementi, M. et al. A chip-scale second-harmonic source via self-injection-locked all-optical poling. Light Sci. Appl. 12, 296 (2023).

    Article  ADS  Google Scholar 

  41. Kondratiev, N. et al. Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt. Express 25, 28167 (2017).

    Article  ADS  Google Scholar 

  42. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  Google Scholar 

  43. Yuan, Z. et al. Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements. Opt. Express 30, 25147–25161 (2022).

    Article  Google Scholar 

  44. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365 (2020).

    Article  ADS  Google Scholar 

  45. Kondratiev, N. M. & Gorodetsky, M. L. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).

    Article  Google Scholar 

  46. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.W. acknowledges the Herb and Jane Dwight Stanford Graduate Fellowship (SGF) and the NTT Research Fellowship. G.H.A. acknowledges support from STMicroelectronics Stanford Graduate Fellowship (SGF) and Kwanjeong Educational Foundation. Authors from Stanford University and UCSB acknowledge funding support from DARPA under the LUMOS programme. Authors from University of Washington acknowledge funding support from NSF under NSF-QII-TAQS-1936100. Part of this work was performed at the Stanford Nano Shared Facilities (SNSF)/Stanford Nanofabrication Facility (SNF), supported by the National Science Foundation under award ECCS-2026822.

Author information

Authors and Affiliations

Authors

Contributions

A.D.W., G.H.A., and K.V.G. conceived of the project. A.D.W., G.H.A., R.L., and K.V.G. performed the experiments. G.H.A. developed the silicon-nitride fabrication process and fabricated the devices with assistance from A.S. and A.M. J.G., T.J.M., L.C. and J.E.B. provided the semiconductor laser chip and experimental guidance. J.V. supervised the project. All authors contributed to data analysis and writing of the paper.

Corresponding authors

Correspondence to Alexander D. White or Geun Ho Ahn.

Ethics declarations

Competing interests

A.D.W., G.H.A., K.V.G. and J.V. have filed a patent application for the ULS laser architecture (PCT/US2023/032287). The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Pascal Del’Haye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, A.D., Ahn, G.H., Luhtaru, R. et al. Unified laser stabilization and isolation on a silicon chip. Nat. Photon. 18, 1305–1311 (2024). https://doi.org/10.1038/s41566-024-01539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01539-3

This article is cited by

  • Two in one

    • Mohamad Hossein Idjadi
    • Firooz Aflatouni

    Nature Photonics (2024)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing