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Interaction-driven breakdown of  
Aharonov–Bohm caging in flat-band 
Rydberg lattices

Tao Chen    1,5, Chenxi Huang    1,5, Ivan Velkovsky    1, Tomoki Ozawa    2  , 
Hannah Price    3  , Jacob P. Covey    1   & Bryce Gadway    1,4 

Flat bands in condensed matter systems can host emergent states of 
matter, from insulating states in twisted bilayer graphene to fractionalized 
excitations in frustrated magnets and quantum Hall materials. A key 
phenomenon in certain flat-band systems is Aharonov–Bohm caging, 
where particles become localized due to destructive interference caused 
by gauge fields. Here we report on the experimental realization of highly 
tunable flat-band models populated by strongly interacting Rydberg 
atoms. By employing synthetic dimensions, we engineer a flat-band 
rhombic lattice with twisted boundaries and explore the control of 
Aharonov–Bohm caging during non-equilibrium dynamics through a 
tunable gauge field. Microscopic measurements of Rydberg pairs reveal 
the interaction-driven breakdown of Aharonov–Bohm caging in the limit 
of strong dipolar interactions, where lattice bands mix. In the limit of weak 
interactions, where caging persists, we observe effective magnetism arising 
from the interaction-driven mixing of degenerate flat-band states. These 
observations offer insights into emergent phenomena in synthetic quantum 
materials and expand our understanding of quantum many-body physics in 
engineered lattice systems.

Frustration, resulting in degenerate eigenstates and flat energy bands 
that are sensitive to perturbations, underlies many of the phases and 
phenomena that define the forefront topics of condensed matter 
physics. This includes the fractionalized quasiparticles of quantum 
Hall matter1 and spin models2, the intertwined orders of heavy fer-
mion compounds3, and the rapidly growing field of moiré materials4. 
Flat-band lattices5, in which the frustration of electronic wavefunctions 
or interacting spins leads to perfectly degenerate energy bands, have 
played a specifically important role in enriching the understanding 
of itinerant ferromagnetism6,7 and lattice analogues8,9 of fractional 
Hall states1,10.

Recently, researchers have used the tools of synthetic quan-
tum matter to engineer frustration5,11 in electronic12, photonic13 and 
atomic14–19 systems. The tunability of such platforms has even ena-
bled the realization of Aharonov–Bohm (AB) caging18,20–23, a condition 
in which all bands become perfectly flat in the presence of a gauge 
field due to destructively interfering tunnelling pathways. Under AB  
caging, delocalized Bloch waves are transformed into compact local-
ized states (CLSs).

Although many exciting questions relate to how interactions can 
lead to emergent physics in an AB-caged flat-band lattice24–27, realiza-
tions with light and atoms have been restricted to the non-interacting 
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S1/2, P1/2 and P3/2 manifolds for principal quantum numbers n ∈ {42, 
44} (Methods). To make a connection to the flat-band lattice model 
of interest, in Fig. 1a we label the 12 atomic levels that are used, and in 
Fig. 1b,c we depict how these states relate to the unit cells and sublat-
tice sites of the rhombic or diamond lattice18,20,24,41. This well-studied 
lattice possesses a unit cell with three sublattice sites, which we label 
a, b and c. Our 12-state implementation of periodic boundary condi-
tions thus contains four unit cells, which we label by an index m ∈ [0, 
3]. By controlling the relative phases of the applied microwave tones, 
we control the values of a uniform U(1) abelian flux ϕ that penetrates 
each rhombic plaquette as well as the ‘twist phase’ θ associated with 
twisted boundary conditions (TBCs)39, shown in Fig. 1b,c.

We implemented the rhombic lattice Hamiltonian:

̂H = Ω

2
∑m∈[0,3] [e

iϕ(1)
ab,m ̂b

†
m ̂am + eiϕ

(1)
ca,m ̂a†m ̂cm

+ e
iϕ(2)

ba,m ̂a†m+1 ̂bm + eiϕ
(2)
ac,m ̂c†m ̂am+1] + h.c.

(1)

with ̂a4 = ̂a0  for TBCs. Here, α̂†m(α̂m)  is the creation (annihilation) 
operator for sublattice site α ∈ {a,b,c} of unit cell m and the ϕ terms 

relate to the phases of specific hopping elements. Specifically, ϕ(x)
αβ,m 

relates to the phase acquired when hopping from sublattice site  
β to α, within unit cell m when x = 1 and between adjacent unit cells when  
x = 2. The in-diamond plaquette phase ϕ and the twist phase θ were set 

by letting ϕ(1)
ab,0 = θ, ϕ(1)

ca,0 = ϕ − θ, ϕ(1)
ab,2 = ϕ, ϕ(2)

ac,1 = ϕ and ϕ(2)
ba,3 = ϕ, 

whereas the other phases were set to zero. The tunnelling energies 
were set to a uniform value of Ω/2 by calibrating and controlling the 
megahertz-scale state-to-state Rabi rates (Supplementary Fig. 1). The 
uniform but tunable flux values ϕ were calibrated by measuring the 
single-atom dynamics for isolated plaquettes. Finally, the twist angle 
θ was controlled by the intracell tunnelling phases of the first unit cell, 
as indicated by the dashed lines in Fig. 1a–c. TBCs39 allow for the explo-
ration of effectively large systems with translation invariance, by using 
the twist phase θ to encode the phase accumulated by Bloch states with 
quasimomentum k. This correspondence is depicted in Fig. 1d,e, which 
reveals the dispersion of eigenenergies with k and θ when ϕ = 0, 

limit. Recently, experiments with superconducting qubits and Rydberg 
atoms have begun to probe interaction effects on a single frustrated 
plaquette28,29. Here we explore the breakdown of AB caging in a flat-band 
lattice due to dipolar Rydberg interactions. We engineered tunable 
flat-band tight-binding models with microwave-driven Rydberg syn-
thetic lattices29–33. For single atoms, we directly observed the AB caging 
and the independence of the dynamics on the twist phase. For pairs, we 
observed the predicted24 breakdown of AB caging due to interactions, 
with interaction-enabled delocalization for intermediate interaction 
strengths and the slow dynamics of bound pairs in the limit of strong 
interactions. Finally, we characterized the emergent magnetism of 
flat-band pseudospin states due to dipolar interactions.

AB caging in rhombic flat-band lattices
We constructed flat-band lattices using the nascent approach of 
Rydberg synthetic dimensions29–36. Here, Rydberg states play the role of 
lattice sites, and the elements of an effective tight-binding model—the 
potential energy landscape and (complex) hopping terms—can be finely 
tuned through spectroscopic control over the transitions between the 
Rydberg levels32. Dipolar interactions37 between neighbouring Rydberg 
atoms in an array further introduce correlated-pair-tunnelling terms 
along the synthetic dimension29,38.

Extending earlier work29–31, we used up to 12 Rydberg levels to 
engineer intricate three-dimensional-like lattice structures with kinetic 
frustration and twisted39, periodic boundary conditions as depicted 
in Fig. 1a. Using this synthetic lattice, we explored both the single-atom 
and correlated-pair dynamics by preparing arrays of isolated atoms 
and isolated atom pairs. We prepared our Rydberg atom samples using 
the methods detailed in refs. 29,40, based on the loading, cooling and 
imaging of 39K atoms in optical tweezer arrays, followed by their excita-
tion to the Rydberg level nLJ,mJ = 42S1/2,1/2  (labelled by the synthetic 
‘site’ index 6 in Fig. 1a), where n, L, J and mJ, respectively, correspond to 
the principle number, orbital angular momentum, total angular 
momentum and projection of total angular momentum along quantiza-
tion axis.

Figure 1a depicts how we created our twisted-boundary rhombic 
lattice structure by simultaneously driving 16 different microwave 
transitions between the magnetic sublevels (mj = ±1/2 states) of the 
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Fig. 1 | Implementation of a twisted rhombic flat-band lattice in Rydberg 
synthetic dimensions. a, A set of Rydberg states (top) are coupled with 
engineered multi-tone microwaves (bottom) to form a twisted rhombic 
structure. The red and blue circles correspond to mj = 1/2 and −1/2 sublevels in 
each S or P Rydberg state manifold, respectively. Both the plaquette flux ϕ and 
twist phase θ were introduced by tuning the phases of the microwave 
components driving the transitions (indicated by bold and dashed lines) relative 
to those driving the other transitions (thin solid lines). The coupling strength for 
each transition was calibrated by pairwise Rabi dynamics (Methods and 
Supplementary Information) and set to a common value ~Ω/2. b,c, Expansion (b) 

and side view (c) of the twisted structure, depicting unit cells (with index m) and 
sublattice sites labelled as am, bm and cm. The plaquette flux was controlled by 
adding another phase ϕ to four transitions (|2⟩ ↔ |0⟩, |10⟩ ↔ |0⟩, |6⟩ ↔ |5⟩ and 
|6⟩ ↔ |7⟩, bold lines) relative to that of the other transitions in each plaquette. For 
ϕ = 0 and π, the twist phase θ could be tuned by introducing another phase −θ to 
the transitions |1⟩ ↔ |0⟩ and |2⟩ ↔ |0⟩. d, Eigenenergy bands of the extended 
rhombic lattice for plaquette flux ϕ = 0 (left) and π (right) versus 
quasimomentum k. e, Fourfold-folded eigenenergy spectrum of the twisted 
rhombic lattice for ϕ = 0 (left) and π (right) versus the twist phase θ. Here n is the 
eigenstate index.
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contrasted with the flat response of all bands due to AB caging when 
ϕ = π. The energy dispersion of the (four-unit-cell) TBC lattice versus 
θ (Fig. 1e) is just the fourfold-folded version of the infinite lattice  
dispersion versus k (Fig. 1d).

The results of experimental single-atom dynamics in the twisted 
rhombic lattice are presented in Fig. 2. Starting with atoms prepared 
in state |6⟩, the microwave-driven dynamics reveal our flux-based 
control of single-atom AB caging. Figure 2a–d shows the full set of 
simulated state dynamics, along with the measured and simulated 
dynamics for the initialized state (|6⟩, blue circles) and a neighbouring 
state (|5⟩, red squares). The measured population data have been renor-
malized (scaled) based on calibration measurements to correct for 
state preparation and measurement (SPAM) errors (Methods). The 
dynamics of more states are presented in Supplementary Fig. 2.

The dynamics under uncaged (ϕ = 0) and caged (ϕ = π) conditions 
are contrasted in Fig. 2a,b for zero twist phase. In the absence of caging 
(ϕ = 0), the population spread out from the initial unit cell. In contrast, 
under AB caging (ϕ = π), the population oscillated between state |6⟩ 
and its four neighbouring states. The initial population projected onto 
just three nearby CLSs that beat against each other leading to 
short-range oscillatory dynamics but no large-scale delocalization. 
These two trends are reflected in the measured population dynamics 
for states |5⟩ and |6⟩ in Fig. 2a,b, which are in good agreement with the 
simulations and show the emergence of large, regular population 
revivals under caging.

Figure 2c,d presents corresponding simulations and state popula-
tion dynamics but for twist phase θ = π. Although the dynamics under 

caging in Fig. 2d are identical to those in Fig. 2b, the change of twist 
phase from 0 to π led to notable modifications of the uncaged dynamics 
in Fig. 2c. Microscopically, a π twist phase around the periodic bound-
ary structure of Fig. 1c can be understood as having caused another, 
larger-scale, caging condition, wherein the population starting at state 
|6⟩ was forbidden from reaching the opposing site |0⟩ due to destructive 
interference. This resulted in the enhanced revival at state |6⟩ after a 
time ~1.2 μs, as seen in Fig. 2c.

We probed this larger-scale caging condition more directly 
(Fig. 2e) by measuring the state |0⟩ population dynamics under a twist 
phase of 0 (green circles) and π (grey squares). Indeed, following ini-
tialization at |6⟩, we found that the population reached |0⟩, in good 
agreement with the theory (equation (1)) under zero twist phase, 
whereas very little of the population reached |0⟩ for θ = π. In Fig. 2f, we 
probe another key feature of the twist phase θ, namely the independ-
ence of the non-equilibrium dynamics on θ under AB caging conditions. 
We specifically measured the population remaining at the initialized 
state |6⟩ after a time of ~1.1 μs, corresponding to two oscillations with 
caging (t = h/Ω). We found that the dynamics were dependent on θ for 
ϕ = 0 (purple circles), reflecting the dispersive energy bands under the 
non-caging conditions in Fig. 1d,e, whereas the measurements were 
essentially independent of θ for the caging condition (ϕ = π, orange 
squares), consistent with the all-flat-bands condition.

Interaction-induced breakdown of caging
More generally, the observed AB caging and flat bands result from 
kinetic frustration. Generically, perturbations strong enough to mix 
the bands can disrupt frustration and induce delocalization25. Recently, 
the onset of transport under the addition of strong disorder has been 
observed in flat-band lattices18,19, which is related to inverse Anderson 
localization. More intriguingly, it has been predicted that interparticle 
interactions alone can lead to the emergent breakdown of flat-band 
localization24. Although nonlinear modifications to flat lattice bands 
have recently been measured in bosonic quantum gases15,16, the pre-
dicted delocalization of particles due to strong interactions has not 
yet been realized.

Using pairs of Rydberg atoms with dipole–dipole interactions, we 
next explored the dynamics of strongly interacting pairs in the same 
flat-band lattice from Figs. 1 and 2. As depicted in Fig. 3a, we studied pairs 
of atoms prepared in an optical tweezer array, labelled A and B and spaced 
by a tunable distance RAB > 4 μm, relating to tunable megahertz-scale 
interactions. The atoms primarily interacted through a resonant dipolar 
exchange37, which is related to the anticorrelated hopping of the A and B 
Rydberg electrons along the synthetic lattice29,38, characterized by a  
rate Vij ∝ Cij

3
/2R3

AB
 for the transition |i⟩A| j⟩B ↔ | j⟩A|i⟩B  (with Cij

3
 the 

state-dependent C3 coefficient and i and j the corresponding Rydberg 
state indices; see Supplementary Tables I and II for more details). These 
interactions lack translational symmetry along the synthetic dimension 
due to the dependence of the exchange rates on the participating 
Rydberg levels (Supplementary Information). For simplicity, we char-
acterized the A–B interactions by a single scale V relating to the rate V67 
for |6⟩A|7⟩B ↔ |7⟩A|6⟩B  exchange, but note that our simulations did 
account for the variation of the individual resonant dipolar interaction 
terms (see the Supplementary Information for more details of the 
numerical simulations and for a comparison to a model that assumes 
uniform interaction terms).

For moderate strengths, despite their structure along the synthetic 
dimension, we expected that the interactions would generically disrupt 
the AB caging and induce transport. This is reflected in the energy 
spectrum in Fig. 3b, where for V/Ω ≈ 1, the flat, isolated energy bands 
became strongly mixed. The resulting reorganization of the system 
eigenstates would also be reflected in the non-equilibrium dynamics. 
Figure 3c shows the simulated dynamics of the mean state |6⟩ popula-
tion, P6, as a function of V/Ω, for an initial product state |6⟩A|6⟩B. Like 
the energy spectrum, three regimes were expected: robust revivals 
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Fig. 2 | Phase-dependent single-atom caging dynamics on a synthetic 
rhombic lattice. a–d, Top, time evolution of the site populations (Rydberg state) 
from numerical simulations of equation (1) under different combinations of the 
twist phase θ and plaquette phase ϕ: (a) θ = 0, ϕ = 0, (b) θ = 0, ϕ = π, (c) θ = π, ϕ = 0 
and (d) θ = π, ϕ = π. Bottom, experimentally measured population dynamics 
(corrected for SPAM errors; Methods) for states |5⟩ (red squares) and |6⟩  
(blue circles) under the same phase combinations. Coupling strength 
Ω/h = 0.90(2) MHz. e, Time evolution of the population in state |0⟩ for θ = 0 (green 
circles) and π (grey squares), for plaquette phase ϕ = 0. f, Population in the initial 
state |6⟩ after dynamics for a time t = h/Ω ≈ 1.1 μs as a function of the twist phase θ, 
for ϕ = 0 (purple circles) and π (orange squares). Solid lines are numerical 
simulations with the ideal tight-binding Hamiltonian. Error bars are the standard 
error from several independent datasets.
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due to AB caging for V/Ω ≲ 1, a decay due to delocalization dynamics 
for 1 ≲ V/Ω ≲ 20 and a freeze-out of P6 dynamics for very large V/Ω due 
to the inhibition of hopping by strong, nearly random interactions 
(Supplementary Information)42. We specifically note that whereas 
strong interactions alone should inhibit transport on short timescales, 
the unique structure of interactions along the Rydberg synthetic 
dimension (with substantial variations of the dipolar exchange terms 
for different state pairs that is proportional to their C3 coefficients as 
listed in Supplementary Tables I and II) can be expected to result in an 
actual localization due to interaction disorder42.

For Fig. 3d, we experimentally measured P6 for interacting atom 
pairs at the first single-atom revival time (t = ℏ/2Ω, dashed line in Fig. 3c), 
using several values of the spacing RAB and the tunnelling strength to 
vary V/Ω by more than two orders of magnitude. We observed the 
expected disruption of AB caging for intermediate interactions, in good 
agreement with the ideal simulations (solid line) based on equation (1) 
and resonant dipolar exchange interactions (ignoring non-resonant, 
state-changing exchange terms; Supplementary Information). For 
strong interactions, we found that the measured P6 rises back up, in 
qualitative agreement with the expectations based on Figs. 3b,c. For 
the largest interactions (V/Ω ≳ 10), the data began to lose agreement 
with the idealized description of resonant exchange interactions that 
conserve the net populations (A and B combined) of each Rydberg 
level. Better agreement was found when we accounted for the expected 
contributions from dipolar interaction terms that interconvert spin 
and orbital angular momentum37, represented by the ‘full simulation’ 
dashed curve in Fig. 3d. With the inclusion of the state-changing dipolar 
interactions, which can be thought of as both enabling off-resonant 
(pairwise) transitions to other states and introducing perturbative 
corrections to the synthetic lattice site energies, a complete freeze-out 

of the P6 dynamics was not expected until inaccessibly large interac-
tions (V/Ω ≳ 100). The dashed lines also account for minor sources of 
parameter uncertainty, that is, from calibration uncertainty and the 
thermal spread of interactions (Supplementary Information).

For broader context on the Rydberg lattice platform, note that 
control of the parameters in our study was mainly limited by technical 
considerations. The finite Rydberg lifetime limited our evolution time-
scales, and correspondingly how small we could set Ω (see ref. 31 for 
longer-time dynamics using higher-n Rydberg states). In the other limit, 
when choosing to increase the scales of V and Ω, we were limited by the 
relatively small Zeeman energy splittings between various Rydberg 
mj levels. For large Ω or V, these small energy separations resulted in 
the off-resonant driving of microwave transitions or the activation of 
non-resonant dipolar interactions, respectively. In a larger magnetic 
bias field, the upper ranges of the Ω and V control could reasonably be 
increased by an order of magnitude.

Figure 3e plots traces of the measured dynamics for a few repre-
sentative values of V/Ω. There is good agreement with the expected pair 
dynamics (dashed curves). We identified two main sources of disagree-
ment between the data and the simple idealized model (solid lines). 
For intermediate V/Ω (V/Ω = 7.5), the disagreement arose mainly from 
the non-negligible contribution of single atoms. With a 92% Rydberg 
state preparation fidelity (combination of the efficiencies of opti-
cal pumping and the stimulated Raman adiabatic passage), roughly 
15% of our ‘pair’ data contained only a single Rydberg atom. This was 
accounted for in the dashed curve by weighting the expected dynamics 
of singles and pairs. For large interactions, V/Ω ≳ 10, the non-resonant 
state-changing interactions became the dominant source of disagree-
ment. Such dipolar terms37, which did not conserve the net popula-
tions of individual Rydberg states, were energetically suppressed in 
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Fig. 3 | Breakdown of AB caging by interactions and the crossover to 
bound-pair dynamics. a, Atom pair A and B prepared in tweezers with a spatial 
separation of RAB. The dipolar exchange interaction for states |i⟩ and | j⟩ is Vij. We 
scaled all interactions to V = V67 with calculated C3 coefficients (Supplementary 
Information). b, Eigenenergy distribution for atom pairs in the 12-state rhombic 
lattice (with ϕ = π and θ = 0) under different interaction-to-coupling ratios V/Ω. 
Here n is the eigenstate index. c, Time evolution of the population in |6⟩, P6, for 
different V/Ω ratios from ideal numerical simulations. The dashed line indicates 
the single-atom revival time. d, Measured crossovers from caging to 
delocalization to pairs with reduced mobility. e, Experimentally measured time 
evolution of the SPAM-corrected population in |6⟩ for different V/Ω. The vertical 

grey dashed line again corresponds to the single-atom revival time. f, Population 
distributions for the central five sites at the first revival time t = h/2Ω for different 
V/Ω. The red and white bars correspond to experimental measurements and ideal 
numerical simulations, respectively. The blue bars indicate the full numerical 
simulations that include all interactions (including state-changing terms), SPAM 
errors and finite-temperature effects. Solid lines in d and e are simulations based 
on equation (1) with resonant flip-flop interactions, whereas the dashed lines and 
their shaded confidence intervals are Monte Carlo simulations that also include 
state-changing interaction terms and thermal variations of RAB, along with 
contributions from single-atom dynamics due to state preparation infidelity.  
All error bars are the standard error of several independent datasets.
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the presence of a magnetic bias field but could still have affected the 
dynamics when V was large.

Figure 3f separately displays the population of several different 
Rydberg states as a further probe of the predicted interaction-induced 
breakdown of AB caging. After an evolution for t = ℏ/2Ω, we read out 
the population at different Rydberg levels by performing 
state-swapping microwave transitions before the optical de-excitation 
of 42S1/2,1/2. We plot histograms of the populations for states |4⟩ to |8⟩ 
(the initialized state and its neighbours) and compare the measured 
populations (red bars) to those predicted by the full (blue) and ideal 
(white) simulations. In general, we found good evidence for a sizable 
population residing on state |6⟩ for both small and large V/Ω, with the 
population spread across the set of measured states for intermediate 
V/Ω values. Although we focused on the delocalization of just two 
interacting particles, the Rydberg synthetic dimensions can be 
extended to hundreds of atoms43 and many dozens of states, so that 
this approach is a versatile complement to explorations of correlated 
quantum walks with neutral atoms44,45 and photons46.

Emergent magnetism within interacting  
flat bands
Our observation of the interaction-induced breakdown of AB caging 
in Fig. 3 occurred in the V > Ω regime, where pairwise interactions 
were so large that they mixed the bands and destroyed the flat-band 
localization. In contrast, when V < Ω, weak interactions did not directly 
mix the bands but acted as a first-order perturbation to the physics 
of the individual, isolated bands. This regime resulted in rich, emer-
gent physics driven by interactions. In generic flat bands occupied by 
short-range-interacting particles, one encounters emergent long-range 
interactions and phenomena like charge-density-wave ordering47. More 
exotic phenomena have been encountered in topological flat bands48, 
including analogues of the fractional quantum Hall effect in lattice 
systems8. In Fig. 4, we use a simple flat-band structure to explore the 
emergent magnetism of localized flat-band states.

Figure 4a,b depicts the six Rydberg levels we used and the geo-
metric representation of the engineered flat-band structure. Solid lines 
denote the hopping links. A π hopping phase was applied to the two 
thick lines (|4⟩ ↔ |6⟩  and |6⟩ ↔ |2⟩). The resulting structure is a 
three-dimensional rhombic bipyramid that has a π flux penetrating 
each of its four surfaces, which can be thought to result from an 
enclosed magnetic monopole. This leads to an AB caging, with three 
degenerate pairs of CLSs. This is exemplified in Fig. 4c,d, where we label 
the ground pair of degenerate states as Ψ↓ and Ψ↑. The result of weak 
interactions between neighbouring Rydberg atoms (referred to again 
as A and B) is an emergent spin-1/2 quantum magnetism of these degen-
erate pseudospin state pairs (Supplementary Information), reflected 
in the linear splitting of two-atom eigenstates in Fig. 4e with increasing 
interactions.

In the idealized picture of uniform interactions between nearest 
synthetic neighbours (V6j = V1j = V for j ∈ [2, 5]), the low-energy physics 
is effectively described by the spin model JXX(σ x

A
σ x
B
+ σ y

A
σ y
B
) + JZZ(σzAσ

z
B
), 

where JZZ = JXX = V/4 in the well-studied Heisenberg XXX model. Here, 
σjα  is the Pauli-j operator acting on atom α (with j ∈ {x, y, z}  and 
α ∈ {A,B}) and the symbols JXX and JZZ denote the strengths of the 
flip-flop (σxσx + σyσy) and Ising (σzσz) interactions. Considering the 
state-specific form of the Vij in our system, the actual description 
includes another spin–spin interaction term, JXZ(σ x

A
σz
B
+ σz

A
σ x
B
). With 

the experimental interaction terms {V62, V63, V64, V65} = {V, −V/4, V/2, 
−V/2} and {V12, V13, V14, V15} = {− V/4, V, −V/2, V/2} (with V ≡ V62), we have 
JXZ = 3JZZ = 3JXX = 9V/64. To probe this emergent magnetism, we simply 
monitored the dynamical response of atom pairs initialized to the state 
|6⟩A|6⟩B . Figure 4f shows the dynamics of the mean P6 for several 
interaction-to-hopping ratios V/Ω. For weak V/Ω, we observe two 
well-separated contributions to the dynamics: a fast oscillation and a 
slower beating that leads to an apparent contrast decay. The fast term, 
~Ω, is related to the intracell dynamics that stems from the beating of 
the different energy bands. The low-frequency part results from the 
interaction-induced splitting of the individual bands and is directly 
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Fig. 4 | Emergent magnetism in a flat-band π-flux rhombic bipyramid. a,b, Six 
Rydberg levels are coupled by eight microwave tones (a) to generate the 
bipyramid structure (b). The two connections for |6⟩ ↔ |2⟩ and |6⟩ ↔ |4⟩, 
indicated by bold lines, have a π phase shift relative to the other transitions.  
c, Doubly degenerate eigenspectrum of the non-interacting six-state system. We 
denote the degenerate pairs of eigenstates by effective pseudospins Ψ↓ (blue) 
and Ψ↑ (red), shown for the lowest two states. d, Representation of the lowest 
degenerate single-atom eigenstates Ψ↑ (red) and Ψ↓ (blue). In the presence of a 
weak dipolar exchange (V ≪ Ω), the emergent magnetic interactions Jeff are 
proportional to V (scaled to V = V62; Supplementary Information). e, Atom pair 
eigenenergies for increasing V/Ω. f, Time evolution of the SPAM-corrected mean 
population in |6⟩ for different V/Ω ratios. The coupling strength 

Ω/h = 2.50(4) MHz. The interaction strength V was varied by changing the atomic 
separation. The solid lines are numerical simulations with experimental 
parameters. The dashed lines and shaded regions are numerical simulations that 
consider both the finite-temperature spread of interactions and the Rydberg 
state preparation infidelity. g, Short-time beating frequency ω versus the 
interaction strength, found by fitting the experimental measurements over the 
first 0.5 μs to the function P6(t) = a+ b cos(2ωt/ℏ) cos(2Ωt/ℏ). The solid line is 
the analytical prediction Jeff based on the emergent magnetism in the {Ψ↓, Ψ↑} 
subspace (Supplementary Information). The dotted dashed line is a fit to the 
numerical results in f over the same time and with the same function. All error 
bars are standard errors from several experimental measurements.
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related to the emergent magnetism. For our physical interactions, we 

expected it to scale approximately as Jeff = √J2XX + J2XZ/2 . Figure 4g 

shows the low-frequency contribution determined from the fitting, ω. 
This emergent oscillation term scales roughly linearly with V for small 
V/Ω, in good agreement with the Jeff prediction and with the prediction 
based on numerical simulations. It begins to deviate from a linear  
relation (proportional to V) at large V due to band mixing.

Conclusion
These explorations of strongly interacting particles in flat-band lat-
tices suggest several future extensions. Using the many states avail-
able to Rydberg synthetic lattices, it is possible to explore the related 
phenomena of non-abelian AB caging49 and caging structures with 
non-abelian symmetries50,51, as well as AB caging in higher (three or 
even four) dimensions. By working at higher principal quantum num-
bers, by using Rydberg D orbital states or simply by using even higher 
bandwidth microwave sources, it is realistic to envision the extension to 
lattices with over 100 synthetic sites. Extending to topological flat-band 
models, we may ask whether the non-local (in space) interactions can 
result in emergent topological order. Finally, in the context of pseudo-
magnetism emerging from the projection of interactions onto flat-band 
CLSs, higher-spin models will emerge from lattices with more unit cells 
(for example, a spin-3/2 model emerges from the four-cell rhombic lat-
tice), providing a route for exploring, for example, emergent quantum 
Potts models52,53. In this context, although our current study is limited to 
pairs of atoms due to Rydberg state preparation infidelity, one can read-
ily envision extending such Rydberg synthetic lattice experiments to 
larger one- and two-dimensional atom arrays54 with hundreds of atoms.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41567-024-02714-7.
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Methods
Microwave control system
Compared to our previous demonstration of Rydberg synthetic dimen-
sions in atom arrays29, here we drive more transitions between more 
Rydberg levels. Most importantly, to address transitions between states 
with principal quantum numbers n = 42, 43 and 44, here we had to apply 
coherent microwaves over a greater span of frequencies. To address 
these transitions, here we modified the set-up used in ref. 29 to use a 
Tabor P9484D for the intermediate-frequency signal, achieving a band-
width of ~9 GHz centred around a frequency of approximately 48 GHz.

Calibrating synthetic lattice hopping amplitudes and 
plaquette fluxes
We calibrated the mapping between the parameters of our applied 
microwave spectrum and those of the effective tight-binding model, 
equation (1), based on the atomic response. The control of the param-
eters (tunnelling amplitudes, plaquette fluxes and twist phase) through 
the microwave tone parameters is discussed in the main text. In short, 
we calibrated the hopping rates by simply measuring the state-to-state 
Rabi dynamics. We calibrated the fluxes in each of the four primary 
lattice plaquettes by measuring the recurrence dynamics beginning 
from one of the adjoining A sublattice sites. We similarly calibrated the 
twist phase by measuring the dynamical response. More details of the 
calibration procedures are given in the Supplementary Information.

Corrections for state preparation and read-out infidelity
As discussed in ref. 29, there are two limiting quantities to note: the 
upper and lower limits of the measured raw data. First, there is an 
upper ceiling that is on average equal to Pu = 0.88(1), which stems 
from an inefficiency of the stimulated Raman adiabatic passage and 
loss during release and recapture. There is also a lower baseline of the 
measurements, having an average value Pl = 0.21(1), which we believe 
stems from the decay (and subsequent recapture) of the short-lived 
Rydberg states (n ∈ {42, 43, 44}), such that the Rydberg states have some 
probability of appearing bright in a subsequent fluorescence detection. 
These infidelities limit the contrast of the state population dynamics.

We renormalized all the data to account for these known  
infidelities in the following way: we defined the renormalized popula-
tions Pi in relation to the measured bare populations Pbare

i  as 
Pi = (Pbare

i − Pl)/(Pu − Pl). In the main text, we refer to such renormalized 
population measurements as being corrected for SPAM.

Note that the statistical fluctuations associated with the processes 
that motivate this discussed renormalization are systematically not 
reflected in either the error bars of the renormalized data nor the 
error bars of the full theory, which only accounts for the calibrated 
uncertainties of the control parameters and the thermal fluctuations 
of the interatomic separations.

Accounting for parameter uncertainties in the numerical 
simulations
For our full simulations (dashed lines), we also included confidence 
intervals (shaded regions) that reflect our uncertainties of the cali-
brated system parameters as well as the shot-to-shot position variance 

of the finite-temperature atoms due to trap release; for details of the 
Monte Carlo simulations used to model our confidence intervals, see 
ref. 29. Note that the shaded confidence regions shown in Figs. 3d,e 
and 4f were largely determined by the spread (uncertainty) of the 
interaction strengths that resulted from the thermal spread of the 
interatomic distances.
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