Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology, pathogenesis, biology and evolving management of MSI-H/dMMR cancers

Abstract

Deficiency in DNA mismatch repair (dMMR) is a common pathway of carcinogenesis across different tumour types and confers a characteristic microsatellite instability-high (MSI-H) molecular phenotype. The prevalence of the MSI-H/dMMR phenotype is highest in endometrial and colorectal cancers, and this phenotype is associated with a distinct tumour biology, prognosis and responsiveness to various anticancer treatments. In a minority of patients, MSI-H/dMMR cancers result from an inherited pathogenic variant in the context of Lynch syndrome, which has important implications for familial genetic screening. Whether these hereditary cancers have a different biology and clinical behaviour to their sporadic counterparts remains uncertain. Interest in this tumour molecular subtype has increased following the discovery of the high sensitivity of metastatic MSI-H/dMMR cancers to immune-checkpoint inhibitors (ICIs) in a histology-agnostic manner, which reflects the genomic hypermutation resulting from dMMR that renders these tumours highly immunogenic and immune infiltrated. This vulnerability is now also being exploited in early stage disease settings. Despite this common biological foundation, different MSI-H/dMMR cancers have histotype-specific features that correspond to their particular cell or tissue of origin, which might be associated with differences in prognosis and sensitivity to ICIs. In this Review, we provide an overview of the epidemiology, biology, pathogenesis, clinical diagnosis and treatment of MSI-H/dMMR tumours as a histology-agnostic cancer phenomenon. We also highlight peculiarities associated with specific pathogenetic alterations and histologies of MSI-H/dMMR tumours.

Key points

  • Defects in the DNA mismatch repair machinery lead to the accumulation of organ-specific patterns of mutations and ultimately drive the carcinogenesis of microsatellite instability-high/deficient DNA mismatch repair (MSI-H/dMMR) tumours.

  • The prevalence of the MSI-H/dMMR phenotype as well as its prognostic and predictive implications, particularly as a biomarker of response to immune-checkpoint inhibitors (ICIs), vary depending on the cancer type.

  • Universal MSI/MMR testing is pivotal in patients with colorectal, endometrial and gastroesophageal cancers, with active consideration of referral for genetic counselling; immunohistochemistry, PCR and next-generation sequencing assays capture distinct biological features and mechanisms of MSI-H and can provide complementary information.

  • ICIs have robust efficacy in patients with advanced-stage MSI-H/dMMR cancers, leading to both cancer type-specific and histology-agnostic approvals of anti-PD-1 antibodies; combinations incorporating anti-CTLA4 antibodies might improve outcomes but also increase toxicity.

  • However, not all MSI-H/dMMR tumours respond to ICIs and — beyond MSI-H/dMMR status — no validated predictive biomarkers for sensitivity of these tumours to ICIs exist; genomic and transcriptomic signatures might have utility in predicting responsiveness and help to refine patient selection, warranting further validation studies.

  • The implementation of ICIs in the neoadjuvant treatment of early stage MSI-H/dMMR cancers is associated with promising efficacy, potentially enabling non-operative, organ-preservation strategies and improved clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Most common pathogenically mutated genes in MSI-H colorectal, endometrial, gastric and prostate cancers.
Fig. 2: The landscape of the MSI-H/dMMR phenotype across tumour types.
Fig. 3: Timeline of FDA and EMA approvals of ICIs specifically for MSI-H/dMMR cancers.

Similar content being viewed by others

References

  1. Warren, J. J. et al. Structure of the human MutSalpha DNA lesion recognition complex. Mol. Cell 26, 579–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Park, J. C. et al. MutSα and MutSβ as size-dependent cellular determinants for prime editing in human embryonic stem cells. Mol. Ther. Nucleic Acids 32, 914–922 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Longley, M. J., Pierce, A. J. & Modrich, P. DNA polymerase δ is required for human mismatch repair in vitro. J. Biol. Chem. 272, 10917–10921 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Bradford, K. C. et al. Dynamic human MutSα–MutLα complexes compact mismatched DNA. Proc. Natl Acad. Sci. USA 117, 16302–16312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sammalkorpi, H. et al. Background mutation frequency in microsatellite-unstable colorectal cancer. Cancer Res. 67, 5691–5698 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Kim, T. M., Laird, P. W. & Park, P. J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155, 858 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Laiho, P. et al. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res. 62, 1166–1170 (2002).

    CAS  PubMed  Google Scholar 

  8. Umar, A. et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl Cancer Inst. 96, 261–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ligtenberg, M. J. L., Kuiper, R. P., Geurts Van Kessel, A. & Hoogerbrugge, N. EPCAM deletion carriers constitute a unique subgroup of Lynch syndrome patients. Fam. Cancer 12, 169–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, B. C. H. et al. Mutational landscape of normal epithelial cells in Lynch syndrome patients. Nat. Commun. 13, 1–10 (2022).

    Google Scholar 

  11. Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 95, 8698–8702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mensenkamp, A. R. et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146, 643–646.e8 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Picó, M. D. et al. Clinical and pathological characterization of Lynch-like syndrome. Clin. Gastroenterol. Hepatol. 18, 368–374.e1 (2020).

    Article  PubMed  Google Scholar 

  14. Rodríguez-Soler, M. et al. Risk of cancer in cases of suspected Lynch syndrome without germline mutation. Gastroenterology 144, 926–932.e1 (2013).

    Article  PubMed  Google Scholar 

  15. Salem, M. E. et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int. J. Cancer 147, 2948–2956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaffrelot, M. et al. An unusual phenotype occurs in 15% of mismatch repair-deficient tumors and is associated with non-colorectal cancers and genetic syndromes. Mod. Pathol. 35, 427–437 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Ahadova, A. et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 143, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Ahadova, A., von Knebel Doeberitz, M., Bläker, H. & Kloor, M. CTNNB1-mutant colorectal carcinomas with immediate invasive growth: a model of interval cancers in Lynch syndrome. Fam. Cancer 15, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Yozu, M. et al. Loss of expression of MLH1 in non-dysplastic crypts is a harbinger of neoplastic progression in sessile serrated adenomas/polyps. Histopathology 75, 376–384 (2019).

    Article  PubMed  Google Scholar 

  21. De Palma, F. D. E. et al. The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers 11, 1017 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Roudko, V. et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell 183, 1634–1649.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bass, A. J. et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  24. Getz, G. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  CAS  Google Scholar 

  25. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ferreira, A. M. et al. New target genes in endometrial tumors show a role for the estrogen-receptor pathway in microsatellite-unstable cancers. Hum. Mutat. 35, 1514–1523 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Ma, Y. T. et al. Clinicopathological characteristics, molecular landscape, and biomarker landscape for predicting the efficacy of PD-1/PD-L1 inhibitors in Chinese population with mismatch repair deficient urothelial carcinoma: a real-world study. Front. Immunol. 14, 1269097 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, H. et al. Clinicopathological and molecular analysis of microsatellite instability in prostate cancer: a multi-institutional study in China. Front. Oncol. 13, 1277233 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schweizer, M. T. et al. Genomic characterization of prostatic ductal adenocarcinoma identifies a high prevalence of DNA repair gene mutations. JCO Precis. Oncol. 3, 1–9 (2019).

    Article  Google Scholar 

  30. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bauer, K. et al. T cell responses against microsatellite instability-induced frameshift peptides and influence of regulatory T cells in colorectal cancer. Cancer Immunol. Immunother. 62, 27–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Grasso, C. S. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kloor, M. et al. β2-microglobulin mutations in microsatellite unstable colorectal tumors. Int. J. Cancer 121, 454–458 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Michel, S. et al. Lack of HLA class II antigen expression in microsatellite unstable colorectal carcinomas is caused by mutations in HLA class II regulatory genes. Int. J. Cancer 127, 889–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Albacker, L. A. et al. Loss of function JAK1 mutations occur at high frequency in cancers with microsatellite instability and are suggestive of immune evasion. PLoS ONE 12, e0176181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu, G. C. et al. The heterogeneity between Lynch-associated and sporadic MMR deficiency in colorectal cancers. J. Natl Cancer Inst. 110, 975–984 (2018).

    Article  PubMed  Google Scholar 

  38. Ramchander, N. C. et al. Distinct immunological landscapes characterize inherited and sporadic mismatch repair deficient endometrial cancer. Front. Immunol. 10, 503158 (2020).

    Article  Google Scholar 

  39. Chow, R. D. et al. Distinct mechanisms of mismatch-repair deficiency delineate two modes of response to anti–PD-1 immunotherapy in endometrial carcinoma. Cancer Discov. 13, 312–331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bellone, S. et al. A phase 2 evaluation of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability. Cancer 128, 1206–1218 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Bonneville, R. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, 1–15 (2017).

    Article  Google Scholar 

  42. Latham, A. et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J. Clin. Oncol. 37, 286–295 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cortes-Ciriano, I., Lee, S., Park, W.-Y., Kim, T.-M. & Park, P. J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Power, R. F. et al. Modifiable risk factors and risk of colorectal and endometrial cancers in Lynch syndrome: a systematic review and meta-analysis. JCO Precis. Oncol. 8, e2300196 (2024).

    Article  PubMed  Google Scholar 

  47. Carr, P. R. et al. Lifestyle factors and risk of sporadic colorectal cancer by microsatellite instability status: a systematic review and meta-analyses. Ann. Oncol. 29, 825–834 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X. et al. Association between smoking and molecular subtypes of colorectal cancer. JNCI Cancer Spectr. 5, pkab056 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Amankwah, E. K. et al. Hormonal and reproductive risk factors for sporadic microsatellite stable and unstable endometrial tumors. Cancer Epidemiol. Biomark. Prev. 22, 1325–1331 (2013).

    Article  Google Scholar 

  50. Roth, A. D. et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J. Natl Cancer Inst. 104, 1635–1646 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Sinicrope, F. A. et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J. Natl Cancer Inst. 103, 863–875 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hutchins, G. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. 29, 1261–1270 (2011).

    Article  PubMed  Google Scholar 

  53. Sargent, D. J. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 28, 3219–3226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyers, M., Wagner, M. W., Hwang, H.-S., Kinsella, T. J. & Boothman, D. A. Role of the HMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses 1. Cancer Res. 61, 5193–5201 (2001).

    CAS  PubMed  Google Scholar 

  55. Argilés, G. et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1291–1305 (2020).

    Article  PubMed  Google Scholar 

  56. Benson, A. B. et al. NCCN Guidelines Version 1.2025 Colon Cancer (NCCN, 2025).

  57. Cohen, R. et al. Microsatellite instability in patients with stage iii colon cancer receiving fluoropyrimidine with or without oxaliplatin: an ACCENT pooled analysis of 12 adjuvant trials. J. Clin. Oncol. 39, 642–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Morton, D. et al. Preoperative chemotherapy for operable colon cancer: mature results of an international randomized controlled trial. J. Clin. Oncol. 41, 1541–1552 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu, H. et al. Neoadjuvant chemotherapy with oxaliplatin and fluoropyrimidine versus upfront surgery for locally advanced colon cancer: the randomized, phase III OPTICAL trial. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.01889 (2024).

  60. Chalabi, M. et al. Neoadjuvant immunotherapy in locally advanced mismatch repair–deficient colon cancer. N. Engl. J. Med. 390, 1949–1958 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Smyth, E. C. et al. Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol. 3, 1197–1203 (2017).

    Article  PubMed  Google Scholar 

  62. Pietrantonio, F. et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J. Clin. Oncol. 37, 3392–3400 (2019).

    Article  PubMed  Google Scholar 

  63. Lordick, F. et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1005–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Lordick, F. et al. ESMO Gastric Cancer Living Guideline, v1.4 September 2024 https://www.esmo.org/living-guidelines/esmo-gastric-cancer-living-guideline (ESMO, 2024).

  65. Al-Batran, S. E. et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet 393, 1948–1957 (2019).

    Article  PubMed  Google Scholar 

  66. André, T. et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 41, 255–265 (2023).

    Article  PubMed  Google Scholar 

  67. Lorenzen, S. et al. Perioperative atezolizumab plus fluorouracil, leucovorin, oxaliplatin, and docetaxel for resectable esophagogastric cancer: interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial. J. Clin. Oncol. 42, 410–420 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Shitara, K. et al. Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol. 25, 212–224 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Janjigian, Y. Y. et al. LBA73 Pathological complete response (pCR) to durvalumab plus 5-fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT) in resectable gastric and gastroesophageal junction cancer (GC/GEJC): Interim results of the global, phase III MATTERHORN study. Ann. Oncol. 34, S1315–S1316 (2023).

    Article  Google Scholar 

  70. Raimondi, A. et al. Tremelimumab and durvalumab as neoadjuvant or non-operative management strategy of patients with microsatellite instability-high resectable gastric or gastroesophageal junction adenocarcinoma: the INFINITY study by GONO. Ann. Oncol. 36, 285–296 (2025).

    Article  CAS  PubMed  Google Scholar 

  71. Ajani, J. A. & D’Amico, T. A. NCCN Guidelines Version 5.2024 Gastric Cancer (NCCN, 2024).

  72. Janjigian, Y. Y. et al. Genetic predictors of response to systemic therapy in esophagogastric cancer. Cancer Discov. 8, 49–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Venderbosch, S. et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 20, 5322–5330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  75. Chao, J. et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol. 7, 895–902 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ludford, K. et al. Pathological tumor response following immune checkpoint blockade for deficient mismatch repair advanced colorectal cancer. J. Natl Cancer Inst. 113, 208–211 (2021).

    Article  PubMed  Google Scholar 

  77. Oaknin, A. et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 860–877 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Concin, N. et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 31, 12–39 (2021).

    Article  PubMed  Google Scholar 

  79. Lé On-Castillo, A. et al. Molecular classification of the PORTEC-3 trial for high-risk endometrial cancer: impact on prognosis and benefit from adjuvant therapy. J. Clin. Oncol. 38, 3388–3397 (2020).

    Article  Google Scholar 

  80. Horeweg, N. et al. Molecular classification predicts response to radiotherapy in the randomized PORTEC-1 and PORTEC-2 trials for early-stage endometrioid endometrial cancer. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.00062 (2017).

  81. Van Den Heerik, A. S. V. M. et al. PORTEC-4a: international randomized trial of molecular profile-based adjuvant treatment for women with high-intermediate risk endometrial cancer. Int. J. Gynecol. Cancer 30, 2002–2007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Van Gorp, T. et al. ENGOT-en11/GOG-3053/KEYNOTE-B21: a randomised, double-blind, phase III study of pembrolizumab or placebo plus adjuvant chemotherapy with or without radiotherapy in patients with newly diagnosed, high-risk endometrial cancer 5 behalf of the ENGOT-en11/GOG-3053/KEYNOTE-B21 investigators. Ann. Oncol. 35, 968–980 (2024).

    Article  PubMed  Google Scholar 

  83. Liu, Y. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Halvarsson, B., Anderson, H., Domanska, K., Lindmark, G. & Nilhert, M. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers. Am. J. Clin. Pathol. 129, 238–244 (2008).

    Article  PubMed  Google Scholar 

  85. Nakagawa, H. et al. Age-related hypermethylation of the 5 region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development 1. Cancer Res. http://aacrjournals.org/cancerres/article-pdf/61/19/6991/2487214/ch1901006991.pdf (2001).

  86. Polom, K. et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 105, 159–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Latham, A. et al. Characterization and clinical outcomes of DNA mismatch repair-deficient small bowel adenocarcinoma. Clin. Cancer Res. 27, 1429–1437 (2021).

    Article  PubMed  Google Scholar 

  88. Manning-Geist, B. L. et al. Microsatellite instability-high endometrial cancers with MLH1 promoter hypermethylation have distinct molecular and clinical profiles. Clin. Cancer Res. 28, 4302–4311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chandran, E. B. A. et al. Mismatch repair deficiency and microsatellite instability in urothelial carcinoma: a systematic review and meta-analysis. BMJ Oncol. 3, 335 (2024).

    Google Scholar 

  90. Vasen, H. F. A., Watson, P., Mecklin, J. P. & Lynch, H. T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116, 1453–1456 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Kastrinos, F., Balmaña, J. & Syngal, S. Prediction models in Lynch syndrome. Fam. Cancer 12, 217–228 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Stjepanovic, N. et al. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 1558–1571 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. National Comprehensive Cancer Network. Genetic/Familial High-Risk Assessment: Colorectal, Endometrial, and Gastric - Guidelines Detail https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1544 (NCCN, 2024).

  94. Adar, T. et al. A tailored approach to BRAF and MLH1 methylation testing in a universal screening program for Lynch syndrome. Mod. Pathol. 30, 440–447 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Gayhart, M. G. et al. Universal mismatch repair protein screening in upper tract urothelial carcinoma: a validation study with comparison to colorectal and endometrial adenocarcinoma. Am. J. Clin. Pathol. 154, 792–801 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Food and Drug Administration. FDA grants accelerated approval to dostarlimab-gxly for dMMR advanced solid tumors. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (2023).

  97. Food and Drug Administration. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (2017).

  98. Dedeurwaerdere, F. et al. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci. Rep. 11, 12880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gilson, P. et al. Evaluation of 3 molecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci. Rep. 10, 1–10 (2020).

    Article  Google Scholar 

  100. Hechtman, J. F. et al. Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes. Mod. Pathol. 33, 871–879 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Luchini, C. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann. Oncol. 30, 1232–1243 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Vikas, P. et al. Mismatch repair and microsatellite instability testing for immune checkpoint inhibitor therapy: ASCO endorsement of college of American Pathologists Guideline. J. Clin. Oncol. 41, 1943–1948 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Pearlman, R. et al. Two-stain immunohistochemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency. Mod. Pathol. 31, 1891–1900 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Parente, P. et al. The day-to-day practice of MMR and MSI assessment in colorectal adenocarcinoma: what we know and what we still need to explore. Digestive Dis. 41, 746–756 (2023).

    Article  Google Scholar 

  105. Verma, L. et al. Mononucleotide microsatellite instability and germline MSH6 mutation analysis in early onset colorectal cancer. J. Med. Genet. 36, 678 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Buhard, O. et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J. Clin. Oncol. 24, 241–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, Y., Shi, C., Eisenberg, R. & Vnencak-Jones, C. L. Differences in microsatellite instability profiles between endometrioid and colorectal cancers: a potential cause for false-negative results? J. Mol. Diagnostics 19, 57–64 (2017).

    Article  Google Scholar 

  108. Chung, Y. et al. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 23, 1–11 (2023).

    Article  Google Scholar 

  109. Hampel, H. et al. Assessment of tumor sequencing as a replacement for Lynch syndrome screening and current molecular tests for patients with colorectal cancer. JAMA Oncol. 4, 806–813 (2018).

    Article  PubMed  Google Scholar 

  110. Kather, J. N. et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 25, 1054–1056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gustav, M. et al. Deep learning for dual detection of microsatellite instability and POLE mutations in colorectal cancer histopathology. npj Precis. Oncol. 8, 115 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. O’Malley, D. M. et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 study. J. Clin. Oncol. 40, 752–761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Oaknin, A. et al. Safety, efficacy, and biomarker analyses of dostarlimab in patients with endometrial cancer: interim results of the phase I GARNET study. Clin. Cancer Res. 29, 4564–4574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Berton, D. et al. Antitumor activity of dostarlimab in patients with mismatch repair-deficient/microsatellite instability-high tumors: a combined analysis of two cohorts in the GARNET study. J. Clin. Oncol. 39, 2564–2564 (2021).

    Article  Google Scholar 

  117. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Maio, M. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 33, 929–938 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Taïeb, J. et al. Efficacy of immune checkpoint inhibitors in microsatellite unstable/mismatch repair-deficient advanced pancreatic adenocarcinoma: an AGEO European Cohort. Eur. J. Cancer 188, 90–97 (2023).

    Article  PubMed  Google Scholar 

  121. Coston, T. et al. Efficacy of immune checkpoint inhibition and cytotoxic chemotherapy in mismatch repair-deficient and microsatellite instability-high pancreatic cancer: mayo clinic experience. JCO Precis. Oncol. 7, e2200706 (2023).

    Article  PubMed  Google Scholar 

  122. Westin, S. N. et al. Durvalumab plus carboplatin/paclitaxel followed by maintenance durvalumab with or without olaparib as first-line treatment for advanced endometrial cancer: the phase III DUO-E trial. J. Clin. Oncol. 42, 283–299 (2017).

    Article  Google Scholar 

  123. Mirza, M. R. et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N. Engl. J. Med. 388, 2145–2158 (2023).

    Article  CAS  PubMed  Google Scholar 

  124. Colombo, N. et al. Atezolizumab and chemotherapy for advanced or recurrent endometrial cancer (AtTEnd): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 25, 1135–1146 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Eskander, R. et al. Overall survival and progression-free survival by PD-L1 status among endometrial cancer patients treated with pembrolizumab plus carboplatin/paclitaxel as compared to carboplatin/paclitaxel plus placebo in the NRG GY018 trial. Gynecol. Oncol. 190, S5 (2024).

    Article  Google Scholar 

  126. Diaz, L. A. et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. André, T. et al. Pembrolizumab versus chemotherapy in microsatellite instability-high or mismatch repair–deficient metastatic colorectal cancer: 5-year follow-up from the randomized phase 3 KEYNOTE-177 study. Ann. Oncol. 36, 277–284 (2024).

    Article  PubMed  Google Scholar 

  128. Taïeb, J. et al. Avelumab vs standard second-line chemotherapy in patients with metastatic colorectal cancer and microsatellite instability: a randomized clinical trial. JAMA Oncol. 9, 1356–1363 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Lenz, H. J. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II checkmate 142 study. J. Clin. Oncol. 40, 161–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Andre, T. et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer. N. Engl. J. Med. 391, 2014–2026 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. André, T. et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial. Lancet 405, 383–395 (2025).

    Article  PubMed  Google Scholar 

  132. Mazzoli, G. et al. Prognostic impact of performance status on the outcomes of immune checkpoint inhibition strategies in patients with dMMR/MSI-H metastatic colorectal cancer. Eur. J. Cancer 172, 171–181 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Fucà, G. et al. Ascites and resistance to immune checkpoint inhibition in dMMR/MSI-H metastatic colorectal and gastric cancers. J. Immunother. Cancer 10, e004001 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Corti, F. et al. The pan-immune-inflammation value in microsatellite instability-high metastatic colorectal cancer patients treated with immune checkpoint inhibitors. Eur. J. Cancer 150, 155–167 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Flecchia, C. et al. Primary resistance to immunotherapy in patients with a dMMR/MSI metastatic gastrointestinal cancer: who is at risk? An AGEO real-world study. Br. J. Cancer 130, 442–449 (2024).

    Article  CAS  PubMed  Google Scholar 

  136. André, T. et al. KEYSTEP-008: phase II trial of pembrolizumab-based combination in MSI-H/dMMR metastatic colorectal cancer. Future Oncol. 19, 2445–2452 (2023).

    Article  PubMed  Google Scholar 

  137. Ambrosini, M. et al. BRAF + EGFR +/- MEK inhibitors after immune checkpoint inhibitors in BRAF V600E mutated and deficient mismatch repair or microsatellite instability high metastatic colorectal cancer. Eur. J. Cancer 210, 114290 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Elez, E. et al. SEAMARK: phase II study of first-line encorafenib and cetuximab plus pembrolizumab for MSI-H/dMMR BRAFV600E-mutant mCRC. Future Oncol. https://doi.org/10.2217/fon-2022-1249 (2023).

  139. Rha, S. Y. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 24, 1181–1195 (2023).

    Article  CAS  PubMed  Google Scholar 

  140. Shitara, K. et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pietrantonio, F. et al. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials. ESMO Open. 6, 100036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yoon, H. H. et al. Association of PD-L1 expression and other variables with benefit from immune checkpoint inhibition in advanced gastroesophageal cancer: systematic review and meta-analysis of 17 phase 3 randomized clinical trials. JAMA Oncol. 8, 1456–1465 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy for advanced gastric, gastroesophageal junction, and esophageal adenocarcinoma: 3-year follow-up of the phase III CheckMate 649 trial. J. Clin. Oncol. 42, 2012–2020 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398, 27–40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leone, A. G. et al. Immune checkpoint inhibitors in advanced gastroesophageal adenocarcinoma: a series of patient-level meta-analyses in different programmed death-ligand 1 subgroups. ESMO Open 9, 103962 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Muro, K. et al. 1513MO A phase II study of nivolumab plus low dose ipilimumab as first -line therapy in patients with advanced gastric or esophago-gastric junction MSI-H tumor: first results of the NO LIMIT study (WJOG13320G/CA209-7W7). Ann. Oncol. 34, S852–S853 (2023).

    Article  Google Scholar 

  147. Shitara, K. et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 6, 1571–1580 (2020).

    Article  PubMed  Google Scholar 

  148. Powell, M. A., Bjørge, L., Willmott, L. & Mirza, R. Overall survival in patients with endometrial cancer treated with dostarlimab plus carboplatin–paclitaxel in the randomized ENGOT-EN6/GOG-3031/RUBY trial. Ann. Oncol. 35, 728–738 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Bogani, G. et al. Adding immunotherapy to first-line treatment of advanced and metastatic endometrial cancer. Ann. Oncol. 35, 414–428 (2024).

    Article  CAS  PubMed  Google Scholar 

  150. Mirza, M. et al. Dostarlimab plus chemotherapy followed by dostarlimab plus niraparib maintenance therapy among patients with primary advanced or recurrent endometrial cancer in the ENGOT-EN6-NSGO/GOG-3031/RUBY trial. Gynecol. Oncol. 190, S6 (2024).

    Article  Google Scholar 

  151. Pignata, S. et al. 39MO Phase III ENGOT-En9/LEAP-001 study: Lenvatinib + pembrolizumab (LEN/PEMBRO) vs chemotherapy (chemo) as first-line (1L) therapy for advanced or recurrent endometrial cancer. ESMO Open. 9, 103539 (2024).

    Article  Google Scholar 

  152. US National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/study/NCT05112601 (2024).

  153. Abida, W. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 5, 471–478 (2019).

    Article  PubMed  Google Scholar 

  154. Lenis, A. T. et al. Microsatellite instability, tumor mutational burden, and response to immune checkpoint blockade in patients with prostate cancer. Clin. Cancer Res. 30, 3894–3903 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. André, T. et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann. Oncol. 33, 1052–1060 (2022).

    Article  PubMed  Google Scholar 

  156. Colle, R. et al. BRAFV600E/RAS mutations and Lynch syndrome in patients with MSI-H/dMMR metastatic colorectal cancer treated with immune checkpoint inhibitors. Oncologist 28, 771–779 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Toboni, M. D. et al. Differential outcomes and immune checkpoint inhibitor response among endometrial cancer patients with MLH1 hypermethylation versus MLH1 ‘Lynch-like’ mismatch repair gene mutation. Gynecol. Oncol. 177, 132–141 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Mirza, M. R. et al. Post hoc analysis of progression-free survival (PFS) and overall survival (OS) by mechanism of mismatch repair (MMR) protein loss in patients with endometrial cancer (EC) treated with dostarlimab plus chemotherapy in the RUBY trial. J. Clin. Oncol. 42, 5606–5606 (2024).

    Article  Google Scholar 

  159. Eskander, R. N. et al. LBA43 Updated response data and analysis of progression free survival by mechanism of mismatch repair loss in endometrial cancer (EC) patients (pts) treated with pembrolizumab plus carboplatin/paclitaxel (CP) as compared to CP plus placebo (PBO) in the NRG GY018 trial. Ann. Oncol. 34, S1284 (2023).

    Article  Google Scholar 

  160. Khushman, M. M. et al. Differential responses to immune checkpoint inhibitors are governed by diverse mismatch repair gene alterations. Clin. Cancer Res. 30, 1906–1915 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Alouani, E. L. et al. 143P Efficacy of immunotherapy in gastro-intestinal (GI) tumors with mismatch repair deficient (MMRd) unusual phenotype. Ann. Oncol. 35, S272 (2024).

    Article  Google Scholar 

  162. Schrock, A. B. et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30, 1096–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Manca, P. et al. Tumour mutational burden as a biomarker in patients with mismatch repair deficient/microsatellite instability-high metastatic colorectal cancer treated with immune checkpoint inhibitors. Eur. J. Cancer 187, 15–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Kwon, M. et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11, 2168–2185 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Ratovomanana, T. et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann. Oncol. 34, 703–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Bortolomeazzi, M. et al. Immunogenomics of colorectal cancer response to checkpoint blockade: analysis of the KEYNOTE 177 trial and validation cohorts. Gastroenterology 161, 1179–1193 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gallois, C. et al. Transcriptomic signatures of MSI-high metastatic colorectal cancer predict efficacy of immune checkpoint inhibitors. Clin. Cancer Res. 29, 3771–3778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Grau Bejar, J. F. et al. Immune predictors of response to immune checkpoint inhibitors in mismatch repair-deficient endometrial cancer. J. Immunother. Cancer 12, e009143 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Middha, S. et al. Majority of B2M -mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, 1–14 (2019).

    Article  Google Scholar 

  171. Chida, K. et al. A low tumor mutational burden and PTEN mutations are predictors of a negative response to PD-1 blockade in MSI-H/dMMR gastrointestinal tumors. Clin. Cancer Res. 27, 3714–3724 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Wang, Z. et al. Combination of AKT1 and CDH1 mutations predicts primary resistance to immunotherapy in dMMR/MSI-H gastrointestinal cancer. J. Immunother. Cancer 10, e004703 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Wang, Z. et al. Mutations of PI3K–AKT–mTOR pathway as predictors for immune cell infiltration and immunotherapy efficacy in dMMR/MSI-H gastric adenocarcinoma. BMC Med. 20, 1–15 (2022).

    Article  Google Scholar 

  174. Collins, N. B. et al. PI3K activation allows immune evasion by promoting an inhibitory myeloid tumor microenvironment. J. Immunother. Cancer 10, e003402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Patel, S. P. et al. Neoadjuvant–adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Blank, C. U. et al. Neoadjuvant nivolumab and ipilimumab in resectable stage III melanoma. N. Engl. J. Med. 391, 1696–1708 (2024).

    Article  CAS  PubMed  Google Scholar 

  177. Xu, R.-H. et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ib study. J. Clin. Oncol. 42, 3505–3505 (2024).

    Article  Google Scholar 

  178. de la Fouchardiere, C. et al. 504O IMHOTEP phase II trial of neoadjuvant pembrolizumab in dMMR/MSI tumors: results of the colorectal cancer cohort. Ann. Oncol. 35, S428–S481 (2024).

    Article  Google Scholar 

  179. Qvortrup, C. et al. Single-cycle neoadjuvant pembrolizumab in patients with stage I-III MMR-deficient colon cancer: final analysis of the RESET-C study. J. Clin. Oncol. 43, 19–19 (2025).

    Article  Google Scholar 

  180. de Gooyer, P. G. M. et al. Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial. Nat. Med. 30, 3284–3290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Chen, G. et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study. Lancet Gastroenterol. Hepatol. 8, 422–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Platt, J. R. et al. Risk of bowel obstruction in patients with colon cancer responding to immunotherapy: an international case series. ESMO Open. 9, 103698 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Chalabi, M. et al. LBA24 Neoadjuvant immunotherapy in locally advanced MMR-deficient colon cancer: 3-year disease-free survival from NICHE-2. Ann. Oncol. 35, S1217–S1218 (2024).

    Article  Google Scholar 

  184. Hong, E. K. et al. Colon cancer CT staging according to mismatch repair status: Comparison and suggestion of imaging features for high-risk colon cancer. Eur. J. Cancer 174, 165–175 (2022).

    Article  PubMed  Google Scholar 

  185. Ludford, K. et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors. J. Clin. Oncol. 41, 2181–2190 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Cercek, A. et al. PD-1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Cercek, A. et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer. J. Clin. Oncol. 42, LBA3512–LBA3512 (2024).

    Article  Google Scholar 

  188. Venook, A. P. et al. NCCN Guidelines Version 1.2025 Rectal Cancer (NCCN, 2025).

  189. Eerkens, A. L. et al. Neoadjuvant immune checkpoint blockade in women with mismatch repair deficient endometrial cancer: a phase I study. Nat. Commun. 15, 1–17 (2024).

    Article  Google Scholar 

  190. André, T. et al. Antitumor activity and safety of dostarlimab monotherapy in patients with mismatch repair deficient solid tumors: a nonrandomized controlled trial. JAMA Netw. Open. 6, e2341165–e2341165 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Le, D. T. et al. Pembrolizumab for previously treated, microsatellite instability–high/mismatch repair–deficient advanced colorectal cancer: final analysis of KEYNOTE-164. Eur. J. Cancer 186, 185–195 (2023).

    Article  CAS  PubMed  Google Scholar 

  192. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Overman, M. J. et al. Nivolumab (NIVO) + low-dose ipilimumab (IPI) in previously treated patients (pts) with microsatellite instability-high/mismatch repair-deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC): long-term follow-up. J. Clin. Oncol. 37, 635–635 (2019).

    Article  Google Scholar 

  194. Oaknin, A. et al. Dostarlimab in advanced/recurrent (AR) mismatch repair deficient/microsatellite instability-high or proficient/stable (dMMR/MSI-H or MMRp/MSS) endometrial cancer (EC): the GARNET study. J. Clin. Oncol. 40, 5509–5509 (2022).

    Article  Google Scholar 

  195. Antill, Y. et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J. Immunother. Cancer 9, e002255 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Eskander, R. N. et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N. Engl. J. Med. 388, 2159–2170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Mirza, M. R. et al. 38MO Progression-free survival (PFS) in primary advanced or recurrent endometrial cancer (pA/rEC) in the overall and mismatch repair proficient (MMR/MSS) populations and in histological and molecular subgroups: Results from part 2 of the RUBY trial. ESMO Open. 9, 103538 (2024).

    Article  Google Scholar 

  198. Fuchs, C. S. et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4, e180013–e180013 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Shitara, K. et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet 392, 123–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  200. Hu, H. et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 7, 38–48 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. P. M. Kasi et al. 8MO Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient and deficient colorectal cancer: NEST-1 clinical trial. Ann. Oncol. 35, S1-S74 (2024).

    Article  Google Scholar 

  202. Shiu, K.-K. et al. NEOPRISM-CRC: Neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer. J. Clin. Oncol. 42, LBA3504–LBA3504 (2024).

    Article  Google Scholar 

  203. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  204. Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 30, 1015–1016 (2014).

    Article  CAS  PubMed  Google Scholar 

  205. Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 2017, 1–16 (2017).

    Article  Google Scholar 

  206. Kang, Y. J. et al. A scoping review and meta-analysis on the prevalence of pan-tumour biomarkers (dMMR, MSI, high TMB) in different solid tumours. Sci. Rep. 12, 1–13 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Filippo Pietrantonio.

Ethics declarations

Competing interests

J.F.S. has received honoraria for consultancy and/or advisory roles from Bristol Myers Squibb (BMS), GSK, Johnson & Johnson, Merck Serono, Pierre Fabre, Seagen, Servier and Takeda; speaker’s fees from GSK, Merck Serono, Pierre Fabre, Servier and Takeda; research funding from Amgen, GSK, Pierre Fabre and Merck Serono; travel grants from Takeda; and fees for provision of continuing medical education from GI Connect and OncLive. J.T. has received speaker’s honoraria from Amgen, Astellas, BMS, Merk, Merck Sharp & Dohme (MSD) and Novartis; has participated on advisory boards for Amgen, BMS, Merck, MSD, Novartis, Pfizer, Pierre Fabre, Rottapharm, Sanofi, Servier and Takeda; has provided expert testimony for Takeda; and has participated on steering committees of clinical trial for Novartis. F.P. has received institutional research funding from Agenus, Amgen, AstraZeneca, BMS, Incyte, Lilly and Rottapharm; speaker’s honoraria from Amgen, Astellas, AstraZeneca, Bayer, BeiGene, BMS, Daiichi-Sankyo, Ipsen, Johnson & Johnson, Merck Serono, MSD, Pierre Fabre, Seagen, Servier and Takeda; fees for advisory or consultancy roles from Agenus, Amgen, Astellas, AstraZeneca, Bayer, BeiGene, BMS, Daiichi-Sankyo, Gilead, GSK, Italfarmaco, Incyte, Jazz Pharmaceuticals, Johnson & Johnson, Merck-Serono, MSD, Pfizer, Pierre Fabre, Rottapharm, Servier and Takeda. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Cecchini, who co-reviewed with F. Yasin; M. Kloor; L. Shen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosini, M., Manca, P., Nasca, V. et al. Epidemiology, pathogenesis, biology and evolving management of MSI-H/dMMR cancers. Nat Rev Clin Oncol 22, 385–407 (2025). https://doi.org/10.1038/s41571-025-01015-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-025-01015-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer