Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancing in situ cancer vaccines using delivery technologies

Abstract

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cancer-immunity cycle.
Fig. 2: The history of in situ cancer vaccines.
Fig. 3: Improving in situ cancer vaccines using delivery technologies.
Fig. 4: Delivery technologies to improve tumour antigen processing and presentation.
Fig. 5: Delivery technologies to overcome the suppressive immune microenvironment.

Similar content being viewed by others

References

  1. Saxena, M., van der Burg, S. H., Melief, C. J. & Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 21, 360–378 (2021).

    CAS  PubMed  Google Scholar 

  2. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  3. Li, Q. et al. Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharm. Sin. B 12, 107–134 (2022).

    PubMed  Google Scholar 

  4. Duan, X., Chan, C. & Lin, W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angew. Chem. Int. Ed. 58, 670–680 (2019).

    CAS  Google Scholar 

  5. Hammerich, L., Binder, A. & Brody, J. D. In situ vaccination: cancer immunotherapy both personalized and off-the-shelf. Mol. Oncol. 9, 1966–1981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Formenti, S. C. & Demaria, S. Radiation therapy to convert the tumor into an in situ vaccine. Int. J. Radiat. Oncol. Biol. Phys. 84, 879–880 (2012).

    PubMed  Google Scholar 

  7. Grass, G. D., Krishna, N. & Kim, S. The immune mechanisms of abscopal effect in radiation therapy. Curr. Probl. Cancer 40, 10–24 (2016).

    PubMed  Google Scholar 

  8. Sheen, M. R. & Fiering, S. In situ vaccination: harvesting low hanging fruit on the cancer immunotherapy tree. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1524 (2019).

    PubMed  Google Scholar 

  9. Lamm, D. L. et al. Incidence and treatment of complications of bacillus Calmette–Guerin intravesical therapy in superficial bladder cancer. J. Urol. 147, 596–600 (1992).

    CAS  PubMed  Google Scholar 

  10. Li, J., Zhan, L. & Qin, C. The double-sided effects of Mycobacterium bovis bacillus Calmette–Guérin vaccine. NPJ Vaccines 6, 14 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Adams, S. et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res. 18, 6748–6757 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vacchelli, E. et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 1, 894–907 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan, B., Wang, G., Tang, X., Tong, A. & Zhou, L. Immunotherapy of glioblastoma: recent advances and future prospects. Hum. Vaccin. Immunother. 18, 2055417 (2022).

    PubMed  PubMed Central  Google Scholar 

  15. Svensson-Arvelund, J. et al. Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity. Nat. Commun. 13, 7149 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerken, L. R., Gerdes, M. E., Pruschy, M. & Herrmann, I. K. Prospects of nanoparticle-based radioenhancement for radiotherapy. Mater. Horiz. 10, 4059–4082 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hammerich, L. et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat. Med. 25, 814–824 (2019).

    CAS  PubMed  Google Scholar 

  18. Hong, W. X. et al. Intratumoral immunotherapy for early-stage solid tumors. Clin. Cancer Res. 26, 3091–3099 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blankenstein, T., Coulie, P. G., Gilboa, E. & Jaffee, E. M. The determinants of tumour immunogenicity. Nat. Rev. Cancer 12, 307–313 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 21, 298–312 (2021).

    CAS  PubMed  Google Scholar 

  21. Munn, D. H. & Bronte, V. Immune suppressive mechanisms in the tumor microenvironment. Curr. Opin. Immunol. 39, 1–6 (2016).

    CAS  PubMed  Google Scholar 

  22. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16, 71 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Bozzuto, G. & Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 10, 975 (2015).

    CAS  Google Scholar 

  25. Begines, B. et al. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials 10, 1403 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaumet, M., Vargas, A., Gurny, R. & Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9 (2008).

    CAS  PubMed  Google Scholar 

  28. Truong, N. P., Whittaker, M. R., Mak, C. W. & Davis, T. P. The importance of nanoparticle shape in cancer drug delivery. Expert Opin. Drug Deliv. 12, 129–142 (2015).

    CAS  PubMed  Google Scholar 

  29. Ha, C.-S. & Gardella, J. A. Surface chemistry of biodegradable polymers for drug delivery systems. Chem. Rev. 105, 4205–4232 (2005).

    CAS  PubMed  Google Scholar 

  30. Liu, Q., Guan, J., Qin, L., Zhang, X. & Mao, S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov. Today 25, 150–159 (2020).

    CAS  PubMed  Google Scholar 

  31. Cho, K., Wang, X., Nie, S., Chen, Z. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008).

    CAS  PubMed  Google Scholar 

  32. Malaviya, P., Shukal, D. & Vasavada, A. R. Nanotechnology-based drug delivery, metabolism and toxicity. Curr. Drug Metab. 20, 1167–1190 (2019).

    CAS  PubMed  Google Scholar 

  33. Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug. Chem. 21, 797–802 (2010).

    CAS  PubMed  Google Scholar 

  34. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Shafei, A. et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother. 95, 1209–1218 (2017).

    CAS  PubMed  Google Scholar 

  36. El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M. & Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives. ACS Nano 12, 10636–10664 (2018).

    CAS  PubMed  Google Scholar 

  37. Qiao, Y. et al. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11, e1527 (2019).

    PubMed  Google Scholar 

  38. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ouyang, L. et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 45, 487–498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shewach, D. S. & Kuchta, R. D. Introduction to cancer chemotherapeutics. Chem. Rev. 109, 2859–2861 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, T., Yang, K. & Liu, Z. Recent advances in functional nanomaterials for X-ray triggered cancer therapy. Prog. Nat. Sci. Mater. 30, 567–576 (2020).

    CAS  Google Scholar 

  42. Yakkala, C., Denys, A., Kandalaft, L. & Duran, R. Cryoablation and immunotherapy of cancer. Curr. Opin. Biotechnol. 65, 60–64 (2020).

    CAS  PubMed  Google Scholar 

  43. Zhou, Q. et al. Mannose-derived carbon dots amplify microwave ablation-induced antitumor immune responses by capturing and transferring “danger signals” to dendritic cells. ACS Nano 15, 2920–2932 (2021).

    CAS  PubMed  Google Scholar 

  44. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    PubMed  Google Scholar 

  45. Antonio Chiocca, E. Oncolytic viruses. Nat. Rev. Cancer 2, 938–950 (2002).

    CAS  PubMed  Google Scholar 

  46. Pan, H., Soman, N. R., Schlesinger, P. H., Lanza, G. M. & Wickline, S. A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3, 318–327 (2011).

    CAS  PubMed  Google Scholar 

  47. Laviano, A. & Rossi Fanelli, F. Toxicity in chemotherapy — when less is more. N. Engl. J. Med. 366, 2319–2320 (2012).

    CAS  PubMed  Google Scholar 

  48. Yan, L. et al. Nanoparticle-based drug delivery system: a patient-friendly chemotherapy for oncology. Dose Response 18, 1559325820936161 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rezaei-Tavirani, M. et al. TiO2 nanoparticle as a sensitizer drug in radiotherapy: in vitro study. Int. J. Cancer 6, e80460 (2013).

    Google Scholar 

  50. Fu, L.-Q. et al. Recent advances in oncolytic virus-based cancer therapy. Virus Res. 270, 197675 (2019).

    CAS  PubMed  Google Scholar 

  51. Kennedy, E. M. et al. Development of intravenously administered synthetic RNA virus immunotherapy for the treatment of cancer. Nat. Commun. 13, 5907 (2022). LNPs encapsulating an mRNA encoding oncolytic virus can shield the virus from immune clearance and improve in situ vaccination.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. DeVita, V. T. Jr & Chu, E. A history of cancer chemotherapy. Cancer Res. 68, 8643–8653 (2008).

    CAS  PubMed  Google Scholar 

  53. D’arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592 (2019).

    PubMed  Google Scholar 

  54. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008).

    CAS  PubMed  Google Scholar 

  55. Vanmeerbeek, I. et al. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 9, 1703449 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Banfi, A. et al. High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post–bone marrow transplantation osteopenia. Cancer 92, 2419–2428 (2001).

    CAS  PubMed  Google Scholar 

  58. Shi, Y., Van der Meel, R., Chen, X. & Lammers, T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10, 7921 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  PubMed  Google Scholar 

  60. Liu, X. et al. Mixed‐charge nanoparticles for long circulation, low reticuloendothelial system clearance, and high tumor accumulation. Adv. Healthc. Mater. 3, 1439–1447 (2014).

    CAS  PubMed  Google Scholar 

  61. Jokerst, J. V., Lobovkina, T., Zare, R. N. & Gambhir, S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011).

    CAS  PubMed  Google Scholar 

  62. Chidambaram, M., Manavalan, R. & Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 14, 67–77 (2011).

    PubMed  Google Scholar 

  63. Yu, Z., Guo, J., Hu, M., Gao, Y. & Huang, L. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma. ACS Nano 14, 4816–4828 (2020). Co-delivery of icaritin and doxorubicin leads to ICD and triggers a robust immune response against tumours.

    CAS  PubMed  Google Scholar 

  64. Bazak, R., Houri, M., El Achy, S., Kamel, S. & Refaat, T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 141, 769–784 (2015).

    CAS  PubMed  Google Scholar 

  65. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    CAS  PubMed  Google Scholar 

  66. Von Maltzahn, G. et al. Nanoparticles that communicate in vivo to amplify tumour targeting. Nat. Mater. 10, 545–552 (2011).

    Google Scholar 

  67. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    CAS  PubMed  Google Scholar 

  68. Chatterjee, S. & Chi-leung HUI, P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 24, 2547 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, Y. et al. Chemotherapy-sensitized in situ vaccination for malignant osteosarcoma enabled by bioinspired calcium phosphonate nanoagents. ACS Nano 17, 6247–6260 (2023).

    CAS  PubMed  Google Scholar 

  70. Gu, Z. et al. Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer. J. Control. Release 353, 490–506 (2023).

    CAS  PubMed  Google Scholar 

  71. Liu, Y. et al. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Acta Biomater. 66, 310–324 (2018).

    CAS  PubMed  Google Scholar 

  72. Kuai, R. et al. Elimination of established tumors with nanodisc-based combination chemoimmunotherapy. Sci. Adv. 4, eaao1736 (2018). A nanodisc that delivers doxorubicin triggers ICD and improves anti-PD1 therapy.

    PubMed  PubMed Central  Google Scholar 

  73. Chao, Y. et al. Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Sci. Adv. 6, eaaz4204 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Famta, P. et al. Nanocarrier-based drug delivery via cell-hitchhiking: emphasizing pharmacokinetic perspective towards taming the “big-old” tumors. J. Drug Deliv. Sci. Technol. 89, 105050 (2023).

    CAS  Google Scholar 

  75. An, M. et al. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale 10, 9311–9319 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, X.-D. et al. Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci. Rep. 5, 8669 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ni, K. et al. Nanoscale metal–organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 9, 2351 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    CAS  PubMed  Google Scholar 

  79. Liang, G., Jin, X., Zhang, S. & Xing, D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials 144, 95–104 (2017).

    CAS  PubMed  Google Scholar 

  80. Wang, K. et al. Anion receptor-mediated multicomponent synergistic self-assembly of porphyrin for efficient phototherapy to elicit tumor immunotherapy. Nano Today 46, 101579 (2022).

    CAS  Google Scholar 

  81. Chen, Z. et al. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 12, 8633–8645 (2018).

    CAS  PubMed  Google Scholar 

  82. Lan, G. et al. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 140, 5670–5673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, X. et al. ER-targeting PDT converts tumors into in situ therapeutic tumor vaccines. ACS Nano 16, 9240–9253 (2022).

    CAS  PubMed  Google Scholar 

  84. Yue, W. et al. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat. Commun. 10, 2025 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Blum, N. T., Yildirim, A., Chattaraj, R. & Goodwin, A. P. Nanoparticles formed by acoustic destruction of microbubbles and their utilization for imaging and effects on therapy by high intensity focused ultrasound. Theranostics 7, 694 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yildirim, A., Blum, N. T. & Goodwin, A. P. Colloids, nanoparticles, and materials for imaging, delivery, ablation, and theranostics by focused ultrasound (FUS). Theranostics 9, 2572 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, X. et al. PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity against abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials 275, 120921 (2021).

    CAS  PubMed  Google Scholar 

  88. Zhang, L. et al. NIR responsive tumor vaccine in situ for photothermal ablation and chemotherapy to trigger robust antitumor immune responses. J. Nanobiotechnology 19, 142 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, D. et al. In situ photothermal nano-vaccine based on tumor cell membrane-coated black phosphorus-Au for photo-immunotherapy of metastatic breast tumors. Biomaterials 289, 121808 (2022).

    CAS  PubMed  Google Scholar 

  90. Hou, Q. et al. Physical & chemical microwave ablation (MWA) enabled by nonionic MWA nanosensitizers repress incomplete MWA-arised liver tumor recurrence. ACS Nano 16, 5704–5718 (2022).

    CAS  PubMed  Google Scholar 

  91. Di, D.-R., He, Z.-Z., Sun, Z.-Q. & Liu, J. A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed. Nanotechnol. 8, 1233–1241 (2012).

    CAS  Google Scholar 

  92. Yuan, F., Zhao, G. & Panhwar, F. Enhanced killing of HepG2 during cryosurgery with Fe3O4-nanoparticle improved intracellular ice formation and cell dehydration. Oncotarget 8, 92561 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Yu, X. et al. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat. Commun. 11, 1110 (2020). A melittin-decorated nanoparticle promotes tumour antigen release and results in systemic antitumour immune responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, J.-j et al. Genetically engineered and self-assembled oncolytic protein nanoparticles for targeted cancer therapy. Biomaterials 120, 22–31 (2017).

    CAS  PubMed  Google Scholar 

  95. Li, L. et al. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat. Biomed. Eng. 4, 1102–1116 (2020).

    CAS  PubMed  Google Scholar 

  96. Demaria, S., Coleman, C. N. & Formenti, S. C. Radiotherapy: changing the game in immunotherapy. Trends Cancer 2, 286–294 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Shekarian, T. et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann. Oncol. 28, 1756–1766 (2017).

    CAS  PubMed  Google Scholar 

  99. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    CAS  PubMed  Google Scholar 

  100. Petrizzo, A. et al. Human endogenous retrovirus reactivation: implications for cancer immunotherapy. Cancers 13, 1999 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vasou, A., Sultanoglu, N., Goodbourn, S., Randall, R. E. & Kostrikis, L. G. Targeting pattern recognition receptors (PRR) for vaccine adjuvantation: from synthetic PRR agonists to the potential of defective interfering particles of viruses. Viruses 9, 186 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Brennan, F. R. & Dougan, G. Non-clinical safety evaluation of novel vaccines and adjuvants: new products, new strategies. Vaccine 23, 3210–3222 (2005).

    CAS  PubMed  Google Scholar 

  103. Kaur, A., Baldwin, J., Brar, D., Salunke, D. B. & Petrovsky, N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr. Opin. Chem. Biol. 70, 102172 (2022).

    CAS  PubMed  Google Scholar 

  104. Jacoberger-Foissac, C. et al. Liposomes as tunable platform to decipher the antitumor immune response triggered by TLR and NLR agonists. Eur. J. Pharm. Biopharm. 152, 348–357 (2020).

    CAS  PubMed  Google Scholar 

  105. Pulendran, B., Arunachalam, P. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Den Brok, M. H. et al. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res. 66, 7285–7292 (2006).

    Google Scholar 

  107. Li, Z. et al. NIR/ROS‐responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy. Adv. Funct. Mater. 30, 1905758 (2020).

    CAS  Google Scholar 

  108. Su, T. et al. STING activation in cancer immunotherapy. Theranostics 9, 7759 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    CAS  PubMed  Google Scholar 

  110. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dane, E. L. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 21, 710–720 (2022). Nanocarriers delivering STING-activating CDNs deep into tumour tissues lead to rejection of established tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Y. et al. An amphiphilic dendrimer as a light-activable immunological adjuvant for in situ cancer vaccination. Nat. Commun. 12, 4964 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, S. & Jiang, S. Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response. Nano Today 11, 285–291 (2016).

    CAS  Google Scholar 

  114. Nogueira, S. S. et al. Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl. Nano Mater. 3, 10634–10645 (2020).

    CAS  Google Scholar 

  115. Nguyen, T., Avci, N. G., Shin, D. H., Martinez-Velez, N. & Jiang, H. Tune up in situ autovaccination against solid tumors with oncolytic viruses. Cancers 10, 171 (2018).

    PubMed  PubMed Central  Google Scholar 

  116. Lawler, S. E., Speranza, M.-C., Cho, C.-F. & Chiocca, E. A. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 3, 841–849 (2017).

    PubMed  Google Scholar 

  117. Power, A. T. et al. Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol. Ther. 15, 123–130 (2007).

    CAS  PubMed  Google Scholar 

  118. Hotte, S. J. et al. An optimized clinical regimen for the oncolytic virus PV701. Clin. Cancer Res. 13, 977–985 (2007).

    CAS  PubMed  Google Scholar 

  119. Guo, Z. S., Thorne, S. H. & Bartlett, D. L. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. BBA Rev. Cancer 1785, 217–231 (2008).

    CAS  Google Scholar 

  120. Willmon, C. et al. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol. Ther. 17, 1667–1676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, L., Liu, S., Han, D., Tang, B. & Ma, J. Delivery and biosafety of oncolytic virotherapy. Front. Oncol. 10, 475 (2020).

    PubMed  PubMed Central  Google Scholar 

  122. Gorbet, M.-J., Singh, A., Mao, C., Fiering, S. & Ranjan, A. Using nanoparticles for in situ vaccination against cancer: mechanisms and immunotherapy benefits. Int. J. Hyperthermia 37, 18–33 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lee, K. L. et al. Combination of plant virus nanoparticle-based in situ vaccination with chemotherapy potentiates antitumor response. Nano Lett. 17, 4019–4028 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Luo, L. et al. Targeted nanoparticle‐mediated gene therapy mimics oncolytic virus for effective melanoma treatment. Adv. Funct. Mater. 28, 1800173 (2018).

    Google Scholar 

  125. Patel, R., Czapar, A. E., Fiering, S., Oleinick, N. L. & Steinmetz, N. F. Radiation therapy combined with cowpea mosaic virus nanoparticle in situ vaccination initiates immune-mediated tumor regression. ACS Omega 3, 3702–3707 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kreitz, J. et al. Programmable protein delivery with a bacterial contractile injection system. Nature 616, 357–364 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen, Q. et al. A hybrid eukaryotic–prokaryotic nanoplatform with photothermal modality for enhanced antitumor vaccination. Adv. Mater. 32, 1908185 (2020).

    CAS  Google Scholar 

  129. Li, Y. et al. Antigen capture and immune modulation by bacterial outer membrane vesicles as in situ vaccine for cancer immunotherapy post‐photothermal therapy. Small 18, 2107461 (2022).

    CAS  Google Scholar 

  130. Patel, R. B. et al. Development of an in situ cancer vaccine via combinational radiation and bacterial‐membrane‐coated nanoparticles. Adv. Mater. 31, 1902626 (2019).

    CAS  Google Scholar 

  131. Wang, D. et al. Bacterial vesicle–cancer cell hybrid membrane-coated nanoparticles for tumor specific immune activation and photothermal therapy. ACS Appl. Mater. Interfaces 12, 41138–41147 (2020).

    CAS  PubMed  Google Scholar 

  132. Raza, A., Hayat, U., Rasheed, T., Bilal, M. & Iqbal, H. M. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J. Mater. Res. Technol. 8, 1497–1509 (2019).

    CAS  Google Scholar 

  133. Shahriari, M. et al. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 308, 172–189 (2019).

    CAS  PubMed  Google Scholar 

  134. Ahmed, A. & Tait, S. W. Targeting immunogenic cell death in cancer. Mol. Oncol. 14, 2994–3006 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Garg, A. D. et al. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 6, e1386829 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Adkins, I., Fucikova, J., Garg, A. D., Agostinis, P. & Špíšek, R. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 3, e968434 (2014).

    PubMed  Google Scholar 

  138. Wang, L. et al. An ER‐targeting iridium (III) complex that induces immunogenic cell death in non‐small‐cell lung cancer. Angew. Chem. 133, 4707–4715 (2021).

    Google Scholar 

  139. Cao, Z., Li, D., Wang, J. & Yang, X. Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomater. 130, 17–31 (2021).

    CAS  PubMed  Google Scholar 

  140. Gonzalez-Cao, M. et al. Human endogenous retroviruses and cancer. Cancer Biol. Med. 13, 483 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Leung, D. C. & Lorincz, M. C. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem. Sci. 37, 127–133 (2012).

    CAS  PubMed  Google Scholar 

  142. Ishak, C. A., Classon, M. & De Carvalho, D. D. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 4, 583–597 (2018).

    CAS  PubMed  Google Scholar 

  143. Häsler, J. & Strub, K. Alu elements as regulators of gene expression. Nucleic Acids Res. 34, 5491–5497 (2006).

    PubMed  PubMed Central  Google Scholar 

  144. Giorgi, G., Virgili, M., Monti, B. & Del Re, B. Long INterspersed nuclear Elements (LINEs) in brain and non-brain tissues of the rat. Cell Tissue Res. 374, 17–24 (2018).

    CAS  PubMed  Google Scholar 

  145. Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Gnyszka, A., Jastrzębski, Z. & Flis, S. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer. Res. 33, 2989–2996 (2013).

    CAS  PubMed  Google Scholar 

  148. Jones, P. A., Ohtani, H., Chakravarthy, A. & De Carvalho, D. D. Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19, 151–161 (2019).

    CAS  PubMed  Google Scholar 

  149. Naz, A., Cui, Y., Collins, C. J., Thompson, D. H. & Irudayaraj, J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed. Pharmacother. 90, 586–597 (2017).

    CAS  PubMed  Google Scholar 

  150. Denis, I. et al. Histone deacetylase inhibitor-polymer conjugate nanoparticles for acid-responsive drug delivery. Eur. J. Med. Chem. 95, 369–376 (2015).

    CAS  PubMed  Google Scholar 

  151. Zhai, Y. et al. T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. Nat. Nanotechnol. 16, 1271–1280 (2021). T cell membrane-derived nanoparticle decorated with a lysine-specific LSD1 inhibitor activates retroviral genes and leads to strong tumour-specific immune responses.

    CAS  PubMed  Google Scholar 

  152. Hammerich, L., Bhardwaj, N., Kohrt, H. E. & Brody, J. D. In situ vaccination for the treatment of cancer. Immunotherapy 8, 315–330 (2016).

    CAS  PubMed  Google Scholar 

  153. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  154. Tan, S., Li, D. & Zhu, X. Cancer immunotherapy: pros, cons and beyond. Biomed. Pharmacother. 124, 109821 (2020).

    PubMed  Google Scholar 

  155. Han, Y., Liu, D. & Li, L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res. 10, 727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Krieg, C., Boyman, O., Fu, Y.-X. & Kaye, J. B and T lymphocyte attenuator regulates CD8+ T cell–intrinsic homeostasis and memory cell generation. Nat. Immunol. 8, 162–171 (2007).

    CAS  PubMed  Google Scholar 

  158. Brochez, L., Chevolet, I. & Kruse, V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur. J. Cancer 76, 167–182 (2017).

    CAS  PubMed  Google Scholar 

  159. Ni, L. & Dong, C. New checkpoints in cancer immunotherapy. Immunol. Rev. 276, 52–65 (2017).

    CAS  PubMed  Google Scholar 

  160. Ngamcherdtrakul, W. et al. In situ tumor vaccination with nanoparticle co‐delivering CpG and STAT3 siRNA to effectively induce whole‐body antitumor immune response. Adv. Mater. 33, 2100628 (2021).

    CAS  Google Scholar 

  161. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang, C. & Steinmetz, N. F. CD47 blockade and cowpea mosaic virus nanoparticle in situ vaccination triggers phagocytosis and tumor killing. Adv. Healthc. Mater. 8, 1801288 (2019).

    Google Scholar 

  163. Han, X., Li, H., Zhou, D., Chen, Z. & Gu, Z. Local and targeted delivery of immune checkpoint blockade therapeutics. Acc. Chem. Res. 53, 2521–2533 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Le, Q.-V. et al. In situ nanoadjuvant-assembled tumor vaccine for preventing long-term recurrence. ACS Nano 13, 7442–7462 (2019).

    CAS  PubMed  Google Scholar 

  165. Phuengkham, H., Song, C. & Lim, Y. T. A designer scaffold with immune nanoconverters for reverting immunosuppression and enhancing immune checkpoint blockade therapy. Adv. Mater. 31, 1903242 (2019).

    CAS  Google Scholar 

  166. Wang, C. et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 1, 0011 (2017).

    CAS  Google Scholar 

  167. Morad, G., Helmink, B. A., Sharma, P. & Wargo, J. A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell 184, 5309–5337 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Wang, C. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, eaan3682 (2018).

    PubMed  Google Scholar 

  169. Liu, Y. et al. Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy. Biomaterials 242, 119933 (2020).

    CAS  PubMed  Google Scholar 

  170. Ruan, H. et al. A dual‐bioresponsive drug‐delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 31, 1806957 (2019).

    Google Scholar 

  171. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019). A hydrogel delivering anti-CD47 antibody blocks the ‘don’t eat me’ signal of cancer cells and increases phagocytosis of cancer cells by macrophages.

    CAS  PubMed  Google Scholar 

  172. Luo, J.-Q. et al. Nanoparticle-mediated CD47-SIRPα blockade and calreticulin exposure for improved cancer chemo-immunotherapy. ACS Nano 17, 8966–8979 (2023).

    CAS  PubMed  Google Scholar 

  173. Farhood, B., Najafi, M. & Mortezaee, K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J. Cell. Physiol. 234, 8509–8521 (2019).

    CAS  PubMed  Google Scholar 

  174. Hoekstra, M. E., Vijver, S. V. & Schumacher, T. N. Modulation of the tumor micro-environment by CD8+ T cell-derived cytokines. Curr. Opin. Immunol. 69, 65–71 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Cheng, E. M., Tsarkovsky, N. W., Sondel, P. M. & Rakhmilevich, A. L. Interleukin-12 as an in situ cancer vaccine component: a review. Cancer Immunol. Immunother. 71, 2057–2065 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Barberio, A. E. et al. Cancer cell coating nanoparticles for optimal tumor-specific cytokine delivery. ACS Nano 14, 11238–11253 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, J. et al. Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell. Immunol. 349, 104042 (2020).

    CAS  PubMed  Google Scholar 

  178. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    CAS  PubMed  Google Scholar 

  179. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    CAS  PubMed  Google Scholar 

  180. Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020). LNPs delivering self-replicating RNA encoding cytokines induce potent antitumour immune responses and eradicate large established tumours.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  182. Assier, E. et al. Constitutive expression of IL-2Rbeta chain and its effects on IL-2-induced vascular leak syndrome. Cytokine 32, 280–286 (2005).

    CAS  PubMed  Google Scholar 

  183. Perez Horta, Z. et al. Human and murine IL2 receptors differentially respond to the human-IL2 component of immunocytokines. Oncoimmunology 8, e1238538 (2019).

    PubMed  Google Scholar 

  184. Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

    PubMed  Google Scholar 

  185. Kumar, V. & Gabrilovich, D. I. Hypoxia‐inducible factors in regulation of immune responses in tumour microenvironment. Immunology 143, 512–519 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Sheu, B.-C. et al. Cytokine regulation networks in the cancer microenvironment. Front. Biosci. 13, 6255–6268 (2008).

    CAS  PubMed  Google Scholar 

  187. Li, J.-Y. et al. Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J. Immunol. Res. 2014, 286170 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Dimeloe, S. et al. Human regulatory T cells lack the cyclophosphamide‐extruding transporter ABCB 1 and are more susceptible to cyclophosphamide‐induced apoptosis. Eur. J. Immunol. 44, 3614–3620 (2014).

    CAS  PubMed  Google Scholar 

  189. Zhang, L. et al. In situ formed fibrin scaffold with cyclophosphamide to synergize with immune checkpoint blockade for inhibition of cancer recurrence after surgery. Adv. Funct. Mater. 30, 1906922 (2020).

    CAS  Google Scholar 

  190. Li, Z. et al. Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat. Commun. 13, 1845 (2022). A hydrogel delivering pexidartinib leads to depletion of TAMs and improves anti-PD1 therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. McKinlay, C. J. et al. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl Acad. Sci. USA 114, E448–E456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Haabeth, O. A. W. et al. Local delivery of Ox40l, Cd80, and Cd86 mRNA kindles global anticancer immunity. Cancer Res. 79, 1624–1634 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang, F. et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 10, 3974 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–109.e108 (2021).

    CAS  PubMed  Google Scholar 

  195. Chen, B. et al. Metabolic modulation via mTOR pathway and anti-angiogenesis remodels tumor microenvironment using PD-L1-targeting codelivery. Biomaterials 255, 120187 (2020).

    CAS  PubMed  Google Scholar 

  196. Xia, C. et al. Redox-responsive nanoassembly restrained myeloid-derived suppressor cells recruitment through autophagy-involved lactate dehydrogenase A silencing for enhanced cancer immunochemotherapy. J. Control. Release 335, 557–574 (2021).

    CAS  PubMed  Google Scholar 

  197. Zeng, Z. et al. Activatable polymer nanoenzymes for photodynamic immunometabolic cancer therapy. Adv. Mater. 33, 2007247 (2021).

    CAS  Google Scholar 

  198. Liu, H. et al. ADORA1 inhibition promotes tumor immune evasion by regulating the ATF3-PD-L1 axis. Cancer Cell 37, 324–339.e328 (2020).

    CAS  PubMed  Google Scholar 

  199. Bergers, G. & Fendt, S.-M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bloom, A. C. et al. Intratumorally delivered formulation, INT230-6, containing potent anticancer agents induces protective T cell immunity and memory. OncoImmunology 8, e1625687 (2019).

    PubMed  PubMed Central  Google Scholar 

  201. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    PubMed  PubMed Central  Google Scholar 

  202. Márquez-Rodas, I. et al. Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti–PD-1 for patients with anti–PD-1–refractory tumors. Sci. Transl. Med. 12, eabb0391 (2020).

    PubMed  Google Scholar 

  203. Sabree, S., Voigt, A., Weiner, G. J. & Blackwell, S. Direct and indirect immune effects of CMP-001, a virus like particle containing a TLR9 agonist. Cancer Res. 81, 1699–1699 (2021).

    Google Scholar 

  204. Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    CAS  PubMed  Google Scholar 

  205. Chan, T. A. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann. Oncol. 30, 44–56 (2019).

    CAS  PubMed  Google Scholar 

  206. Giavridis, T. et al. CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Lin, M. J. et al. Cancer vaccines: the next immunotherapy frontier. Nat. Cancer 3, 911–926 (2022).

    CAS  PubMed  Google Scholar 

  208. Shae, D. et al. At the bench: engineering the next generation of cancer vaccines. J. Leukoc. Biol. 108, 1435–1453 (2020).

    CAS  PubMed  Google Scholar 

  209. Marabelle, A., Tselikas, L., De Baere, T. & Houot, R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 28, xii33–xii43 (2017).

    CAS  PubMed  Google Scholar 

  210. Hinohara, K. & Polyak, K. Intratumoral heterogeneity: more than just mutations. Trends Cell Biol. 29, 569–579 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Buonaguro, L. & Tagliamonte, M. Selecting target antigens for cancer vaccine development. Vaccines 8, 615 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Makkouk, A. & Weiner, G. J. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75, 5–10 (2015).

    CAS  PubMed  Google Scholar 

  214. Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Ariff, B. et al. Imaging of liver cancer. World J. Gastroenterol. 15, 1289 (2009).

    PubMed  PubMed Central  Google Scholar 

  216. Oliva, M. R. & Saini, S. Liver cancer imaging: role of CT, MRI, US and PET. Cancer Imaging 4, S42 (2004).

    PubMed  PubMed Central  Google Scholar 

  217. Coulie, P. G., Van den Eynde, B. J., Van Der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    CAS  PubMed  Google Scholar 

  218. Schiller, J. T. & Lowy, D. R. Vaccines to prevent infections by oncoviruses. Annu. Rev. Microbiol. 64, 23–41 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Lang, F., Schrörs, B., Löwer, M., Türeci, Ö. & Sahin, U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21, 261–282 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.M. acknowledges support from a US NIH Director’s New Innovator Award (no. DP2TR002776), a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), the American Cancer Society (RSG-22-122-01-ET) and an NSF CAREER Award (no. CBET-2145491).

Author information

Authors and Affiliations

Authors

Contributions

N.G., M.-G.A., D.W. and M.J.M. developed the concept, researched data and wrote the article. R.E.-M. and L.X. contributed substantially to discussion of the content. R.E.-M. helped with language and figure modifications. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Drew Weissman or Michael J. Mitchell.

Ethics declarations

Competing interests

D.W. is named on patents that describe the use of nucleoside modified as a platform to deliver therapeutic proteins and vaccines. M.J.M, N.G., D.W. and M.-G.A. are named on patents describing the use of lipid nanoparticles and lipid compositions for nucleic acid delivery. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Joshua Brody, Zhen Gu and Zongmin Zhao for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adjuvant

A substance that enhances the immune response to an antigen with which it is mixed.

Antigen-presenting cells

(APCs). Immune cells that process antigens and display their peptide fragments on the cell surface together with molecules required for T cell activation. The main APCs for T cells are dendritic cells, macrophages and B cells.

Cytokines

Secreted proteins that act on specific cytokine receptors to affect cellular behaviour. Cytokines made by lymphocytes are often called lymphokines or interleukins.

Enhanced permeability and retention effect

(EPR effect). An effect defined by the heightened build-up of macromolecules, including liposomes, drugs and nanoparticles, in tumours compared with normal tissues. This phenomenon occurs because the blood vessels in tumour areas are permeable and the lymphatic system is impaired.

Immune checkpoint

Inhibitory regulator of the immune system that is crucial to maintain self-tolerance, prevent autoimmunity and control the duration and extent of immune response to minimize collateral tissue damage. Immune checkpoint proteins are often overexpressed on tumour cells and compromise the antitumour immune response.

Immune escape

The growth and metastasis of tumours by avoiding recognition and attack by the immune system through various mechanisms.

Immune surveillance

The detection and elimination of tumours by lymphocytes specific for tumour antigens.

Pattern recognition receptors

Proteins capable of recognizing molecules frequently found in pathogens (pathogen-associated molecular patterns; PAMPs) or molecules released by damaged cells (damage-associated molecular patterns; DAMPs).

Stimuli-responsive materials

Materials that are capable of altering their chemical and/or physical properties upon exposure to external stimuli.

T cell exhaustion

The gradual loss of T cell effector function and memory characteristics that occurs under continuous antigen exposure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, N., Alameh, MG., El-Mayta, R. et al. Enhancing in situ cancer vaccines using delivery technologies. Nat Rev Drug Discov 23, 607–625 (2024). https://doi.org/10.1038/s41573-024-00974-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-00974-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research