Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced technologies for the development of infectious disease vaccines

Abstract

Vaccines play a critical role in the prevention of life-threatening infectious disease. However, the development of effective vaccines against many immune-evading pathogens such as HIV has proven challenging, and existing vaccines against some diseases such as tuberculosis and malaria have limited efficacy. The historically slow rate of vaccine development and limited pan-variant immune responses also limit existing vaccine utility against rapidly emerging and mutating pathogens such as influenza and SARS-CoV-2. Additionally, reactogenic effects can contribute to vaccine hesitancy, further undermining the ability of vaccination campaigns to generate herd immunity. These limitations are fuelling the development of novel vaccine technologies to more effectively combat infectious diseases. Towards this end, advances in vaccine delivery systems, adjuvants, antigens and other technologies are paving the way for the next generation of vaccines. This Review focuses on recent advances in synthetic vaccine systems and their associated challenges, highlighting innovation in the field of nano- and nucleic acid-based vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram showing a stepwise mechanism of vaccine processing by antigen-presenting cells.
Fig. 2: Schematic showing different strategies for designing engineered antigens.
Fig. 3: Different delivery vehicles and their advantages to generate a stronger immune response.
Fig. 4: Molecular structures of ionizable lipids that have been utilized to develop clinical infectious disease vaccines.

Similar content being viewed by others

References

  1. Morens, D. M. & Fauci, A. S. Emerging pandemic diseases: how we got to COVID-19. Cell 182, 1077–1092 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Toor, J. et al. Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world. eLife 10, e67635 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Fan, V. Y., Jamison, D. T. & Summers, L. H. Pandemic risk: how large are the expected losses? Bull. World Health Organ. 96, 129–134 (2018).

    PubMed  Google Scholar 

  4. Mascola, J. R. & Fauci, A. S. Novel vaccine technologies for the 21st century. Nat. Rev. Immunol. 20, 87–88 (2020).

    CAS  PubMed  Google Scholar 

  5. Excler, J. L., Saville, M., Berkley, S. & Kim, J. H. Vaccine development for emerging infectious diseases. Nat. Med. 27, 591–600 (2021).

    CAS  PubMed  Google Scholar 

  6. Gebre, M. S. et al. Novel approaches for vaccine development. Cell 184, 1589–1603 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Haynes, B. F. et al. Prospects for a safe COVID-19 vaccine. Sci. Transl. Med. 12, eabe0948 (2020).

    CAS  PubMed  Google Scholar 

  8. Roth, G. A. et al. Designing spatial and temporal control of vaccine responses. Nat. Rev. Mater. 7, 174–195 (2022).

    CAS  PubMed  Google Scholar 

  9. Cirelli, K. M. et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell 177, 1153–1171.e28 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Satti, I. et al. Safety and immunogenicity of a candidate tuberculosis vaccine MVA85A delivered by aerosol in BCG-vaccinated healthy adults: a phase 1, double-blind, randomised controlled trial. Lancet Infect. Dis. 14, 939–946 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Payne, R. P. et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell 184, 5699–5714.e11 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei, C. J. et al. Next-generation influenza vaccines: opportunities and challenges. Nat. Rev. Drug Discov. 19, 239–252 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice. Nat. Med. 29, 247–257 (2023).

    CAS  PubMed  Google Scholar 

  14. Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 70, 91–104 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O. & De Gregorio, E. Reverse vaccinology 2.0: human immunology instructs vaccine antigen design. J. Exp. Med. 213, 469–481 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jeyanathan, M. et al. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 20, 615–632 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Singh, A. Eliciting B cell immunity against infectious diseases using nanovaccines. Nat. Nanotechnol. 16, 16–24 (2021).

    CAS  PubMed  Google Scholar 

  19. Irvine, D. J., Swartz, M. A. & Szeto, G. L. Engineering synthetic vaccines using cues from natural immunity. Nat. Mater. 12, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Verbeke, R., Hogan, M. J., Loré, K. & Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 55, 1993–2005 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Diamond, M. S. & Kanneganti, T.-D. Innate immunity: the first line of defense against SARS-CoV-2. Nat. Immunol. 23, 165–176 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ziogas, A. & Netea, M. G. Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol. Med. 28, 497–512 (2022).

    CAS  PubMed  Google Scholar 

  23. Mulder, W. J. M., Ochando, J., Joosten, L. A. B., Fayad, Z. A. & Netea, M. G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18, 553–566 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gasteiger, G. et al. Cellular innate immunity: an old game with new players. J. Innate Immun. 9, 111–125 (2017).

    CAS  PubMed  Google Scholar 

  25. Worbs, T., Hammerschmidt, S. I. & Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

    CAS  PubMed  Google Scholar 

  26. Swartz, M. A., Hubbell, J. A. & Reddy, S. T. Lymphatic drainage function and its immunological implications: from dendritic cell homing to vaccine design. Semin. Immunol. 20, 147–156 (2008).

    CAS  PubMed  Google Scholar 

  27. Rauch, S., Jasny, E., Schmidt, K. E. & Petsch, B. New vaccine technologies to combat outbreak situations. Front. Immunol. 9, 1963 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Brooks, J. T., Marks, P., Goldstein, R. H. & Walensky, R. P. Intradermal vaccination for monkeypox — benefits for individual and public health. N. Engl. J. Med. 387, 1151–1153 (2022).

    PubMed  Google Scholar 

  29. Alu, A. et al. Intranasal COVID-19 vaccines: from bench to bed. EBioMedicine 76, 103841 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bull, N. C. et al. Enhanced protection conferred by mucosal BCG vaccination associates with presence of antigen-specific lung tissue-resident PD-1+ KLRG1 CD4+ T cells. Mucosal Immunol. 12, 555–564 (2019).

    CAS  PubMed  Google Scholar 

  31. Zhao, J. et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44, 1379–1391 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Carter, N. J. & Curran, M. P. Live attenuated influenza vaccine (FluMist®; FluenzTM). Drugs 71, 1591–1622 (2011).

    CAS  PubMed  Google Scholar 

  33. Baldeon Vaca, G. et al. Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection. Sci. Adv. 9, eadh1655 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2024).

    Google Scholar 

  35. Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2024).

    Google Scholar 

  36. Ganley, M. et al. mRNA vaccine against malaria tailored for liver-resident memory T cells. Nat. Immunol. 24, 1487–1498 (2023).

    CAS  PubMed  Google Scholar 

  37. Darrah, P. A. et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature 577, 95–102 (2020). This study investigates the association between BCG vaccine efficacy and its administration route, revealing that intravenous BCG provides exceptional protection against Mycobacterium tuberculosis infection.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    CAS  PubMed  Google Scholar 

  39. Prins, M. L. M. et al. Immunogenicity and reactogenicity of intradermal mRNA-1273 SARS-CoV-2 vaccination: a non-inferiority, randomized-controlled trial. NPJ Vaccines 9, 1 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Syenina, A. et al. Adverse effects following anti–COVID-19 vaccination with mRNA-based BNT162b2 are alleviated by altering the route of administration and correlate with baseline enrichment of T and NK cell genes. PLoS Biol. 20, e3001643 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eshaghi, B. et al. The role of engineered materials in mucosal vaccination strategies. Nat. Rev. Mater. 9, 29–45 (2024).

    CAS  Google Scholar 

  42. Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    CAS  PubMed  Google Scholar 

  43. McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, M. et al. SARS-CoV-2 prefusion spike protein stabilized by six rather than two prolines is more potent for inducing antibodies that neutralize viral variants of concern. Proc. Natl Acad. Sci. USA 119, e2110105119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Milder, F. J. et al. Universal stabilization of the influenza hemagglutinin by structure-based redesign of the pH switch regions. Proc. Natl Acad. Sci. USA 119, e2115379119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulp, D. W. et al. Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. Nat. Commun. 8, 1655 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Sanders, R. W. et al. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog. 9, e1003618 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nachbagauer, R. et al. A universal influenza virus vaccine candidate confers protection against pandemic H1N1 infection in preclinical ferret studies. NPJ Vaccines 2, 26 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Steichen, J. M. et al. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45, 483–496 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dubrovskaya, V. et al. Vaccination with glycan-modified HIV NFL envelope trimer-liposomes elicits broadly neutralizing antibodies to multiple sites of vulnerability. Immunity 51, 915–929.e7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Walker, L. M. & Burton, D. R. Passive immunotherapy of viral infections: ‘super-antibodies’ enter the fray. Nat. Rev. Immunol. 18, 297–308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Haynes, B. F. et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142–158 (2023).

    CAS  PubMed  Google Scholar 

  53. Xu, D. et al. Vaccine design via antigen reorientation. Nat. Chem. Biol. 20, 1012–1021 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsieh, C.-L. et al. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat. Commun. 15, 1553 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pang, W. et al. A variant-proof SARS-CoV-2 vaccine targeting HR1 ___domain in S2 subunit of spike protein. Cell Res. 32, 1068–1085 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Patterson, D. P., Rynda-Apple, A., Harmsen, A. L., Harmsen, A. G. & Douglas, T. Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7, 3036–3044 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001).

    CAS  PubMed  Google Scholar 

  58. Trombetta, E. S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    CAS  PubMed  Google Scholar 

  59. Bale, J. B. et al. Accurate design of megadalton-scale two-component icosahedral protein complexes. Science 353, 389–394 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431.e17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brouwer, P. J. M. et al. Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nat. Commun. 10, 4272 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Walls, A. C. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 183, 1367–1382.e17 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184, 1188–1200.e19 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Walls, A. C. et al. Elicitation of broadly protective sarbecovirus immunity by receptor-binding ___domain nanoparticle vaccines. Cell 184, 5432–5447.e16 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shin, M. D. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020).

    CAS  PubMed  Google Scholar 

  67. Fries, C. N. et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 16, 1–14 (2021).

    CAS  PubMed  Google Scholar 

  68. Saunders, K. O. et al. Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science 366, eaay7199 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015). This study demonstrates that HA stem immunogen displayed on self-assembling nanoparticles induces stem-specific antibodies and protects against diverse viral challenges in animal models.

    CAS  PubMed  Google Scholar 

  71. Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015).

    CAS  PubMed  Google Scholar 

  72. He, D. & Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. New Biotechnol. 32, 651–657 (2015).

    CAS  Google Scholar 

  73. Kanekiyo, M. et al. Rational design of an Epstein–Barr virus vaccine targeting the receptor-binding site. Cell 162, 1090–1100 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 20, 362–372 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sanders, R. W. & Moore, J. P. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275, 161–182 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jardine, J. G. et al. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015). This work demonstrates that HIV immunogen eOD-GT8 binds with VRC01 bnAB precursor germline B cells at the CD4 binding site to prime bnAb response.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Saunders, K. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594, 553–559 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cohen, A. A. et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science 371, 735–741 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gordon, D. M. et al. Safety, immunogenicity, and efficacy of a recombinantly produced Plasmodium falciparum circumsporozoite protein-hepatitis B surface antigen subunit vaccine. J. Infect. Dis. 171, 1576–1585 (1995).

    CAS  PubMed  Google Scholar 

  81. RTS,S Clinical Trials Partnership Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386, 31–45 (2015).

    Google Scholar 

  82. Datoo, M. S. et al. Safety and efficacy of malaria vaccine candidate R21/Matrix-M in African children: a multicentre, double-blind, randomised, phase 3 trial. Lancet 403, 533–544 (2024).

    CAS  PubMed  Google Scholar 

  83. Kraft, J. C. et al. Antigen- and scaffold-specific antibody responses to protein nanoparticle immunogens. Cell Rep. Med. 3, 100780 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Houser, K. V. et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat. Med. 28, 383–391 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Widge, A. T. et al. An influenza hemagglutinin stem nanoparticle vaccine induces cross-group 1 neutralizing antibodies in healthy adults. Sci. Transl. Med. 15, eade4790 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang, T. T. et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl Acad. Sci. USA 107, 18979–18984 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Tzarum, N., Wilson, I. A. & Law, M. The neutralizing face of hepatitis C virus E2 envelope glycoprotein. Front. Immunol. 9, 1315 (2018).

    PubMed  PubMed Central  Google Scholar 

  89. Jelínková, L. et al. A vaccine targeting the L9 epitope of the malaria circumsporozoite protein confers protection from blood-stage infection in a mouse challenge model. NPJ Vaccines 7, 34 (2022).

    PubMed  PubMed Central  Google Scholar 

  90. Wang, S. et al. A novel RBD-protein/peptide vaccine elicits broadly neutralizing antibodies and protects mice and macaques against SARS-CoV-2. Emerg. Microbes Infect. 11, 2724–2734 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao, F., Zai, X., Zhang, Z., Xu, J. & Chen, W. Challenges and developments in universal vaccine design against SARS-CoV-2 variants. NPJ Vaccines 7, 167 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Q. et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in non-human primates. ACS Infect. Dis. 2, 361–376 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mosmann, T. R., McMichael, A. J., LeVert, A., McCauley, J. W. & Almond, J. W. Opportunities and challenges for T cell-based influenza vaccines. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-024-01030-8 (2024).

  94. Nathan, A. et al. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell 184, 4401–4413.e10 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Arieta, C. M. et al. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 186, 2392–2409.e21 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tai, W. et al. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat. Commun. 14, 2962 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Carter, B. et al. A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta. Front. Immunol. 14, 1135815 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dasari, V. et al. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat. Commun. 14, 4371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Deeks, S. G. & Walker, B. D. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity 27, 406–416 (2007).

    CAS  PubMed  Google Scholar 

  100. Moyo, N. et al. Efficient induction of T cells against conserved HIV-1 regions by mosaic vaccines delivered as self-amplifying mRNA. Mol. Ther. Methods Clin. Dev. 12, 32–46 (2019).

    CAS  PubMed  Google Scholar 

  101. Hamley, I. W. Peptides for vaccine development. ACS Appl. Bio Mater. 5, 905–944 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bloom, K., van den Berg, F. & Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 28, 117–129 (2021).

    CAS  PubMed  Google Scholar 

  104. Niu, D., Wu, Y. & Lian, J. Circular RNA vaccine in disease prevention and treatment. Signal. Transduct. Target. Ther. 8, 341 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Tregoningo, J. S. & Kinnear, E. Using plasmids as DNA vaccines for infectious diseases. Microbiol. Spectr. 10.1128/microbiolspec.plas-0028–2014 (2014).

  106. Cunliffe, R. F. et al. Optimizing a linear ‘Doggybone’ DNA vaccine for influenza virus through the incorporation of DNA targeting sequences and neuraminidase antigen. Discov. Immunol. 3, kyad030 (2024).

    PubMed  PubMed Central  Google Scholar 

  107. Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Walsh, E. E. et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020).

    CAS  PubMed  Google Scholar 

  109. Dai, L. & Gao, G. F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 21, 73–82 (2021).

    CAS  PubMed  Google Scholar 

  110. Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).

  111. Zhang, P. et al. A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat. Med. 27, 2234–2245 (2021).

    CAS  PubMed  Google Scholar 

  112. Mu, Z. et al. mRNA-encoded HIV-1 Env trimer ferritin nanoparticles induce monoclonal antibodies that neutralize heterologous HIV-1 isolates in mice. Cell Rep. 38, 110514 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hoffmann, M. A. G. et al. ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines. Cell 186, 2380–2391.e9 (2023). This study utilizes mRNA encoding self-assembling enveloped VLPs that generate robust immune responses in a single injection.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Freyn, A. W. et al. An mpox virus mRNA-lipid nanoparticle vaccine confers protection against lethal orthopoxviral challenge. Sci. Transl. Med. 15, eadg3540 (2024).

    Google Scholar 

  115. Arevalo, C. P. et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 378, 899–904 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Martinez, D. R. et al. Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice. Science 373, 991–998 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Stewart-Jones, G. B. E. et al. Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Sci. Transl. Med. 15, eadf4100 (2024). This study demonstrates that mRNA vaccines encoding the N-terminal ___domain linked to the RBD of the SARS-CoV-2 spike protein provide comparable or superior protection to those encoding the full-length spike protein. Additionally, these ___domain-based vaccines exhibit better stability at refrigeration temperatures, making them more suitable for global distribution.

    Google Scholar 

  118. Yassini, P. et al. Interim analysis of a phase 1 randomized clinical trial on the safety and immunogenicity of the mRNA-1283 SARS-CoV-2 vaccine in adults. Hum. Vaccines Immunother. 19, 2190690 (2023).

    Google Scholar 

  119. Vostrosablin, N. et al. mRNAid, an open-source platform for therapeutic mRNA design and optimization strategies. NAR Genom. Bioinform. 6, lqae028 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Li, S. et al. CodonBERT large language models for mRNA design and optimization. Genome Res. 34, 1027–1035 (2024).

    CAS  PubMed  Google Scholar 

  121. Zhang, H. et al. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 621, 396–403 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 13, 1536 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Freyn, A. W. et al. Antigen modifications improve nucleoside-modified mRNA-based influenza virus vaccines in mice. Mol. Ther. Methods Clin. Dev. 22, 84–95 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tam, H. H. et al. Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proc. Natl Acad. Sci. USA 113, E6639–E6648 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Huysmans, H. et al. Expression kinetics and innate immune response after electroporation and LNP-mediated delivery of a self-amplifying mRNA in the skin. Mol. Ther. Nucleic Acids 17, 867–878 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Oda, Y. et al. Immunogenicity and safety of a booster dose of a self-amplifying RNA COVID-19 vaccine (ARCT-154) versus BNT162b2 mRNA COVID-19 vaccine: a double-blind, multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet Infect. Dis. 24, 351–360 (2024).

    CAS  PubMed  Google Scholar 

  127. Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e16 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Aditham, A. et al. Chemically modified mocRNAs for highly efficient protein expression in mammalian cells. ACS Chem. Biol. 17, 3352–3366 (2022).

    CAS  PubMed  Google Scholar 

  130. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

    CAS  PubMed  Google Scholar 

  131. Chen, H. et al. Branched chemically modified poly(A) tails enhance the translation capacity of mRNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02174-7 (2024).

  132. Khobragade, A. et al. Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. Lancet 399, 1313–1321 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kobiyama, K. & Ishii, K. J. Making innate sense of mRNA vaccine adjuvanticity. Nat. Immunol. 23, 474–476 (2022).

    CAS  PubMed  Google Scholar 

  134. Kawasaki, T., Kawai, T. & Akira, S. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol. Rev. 243, 61–73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hornung, V. et al. 5’-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    PubMed  Google Scholar 

  137. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022). This study demonstrates that the ionizable lipid component of mRNA vaccines drives IL-1 pathway activation, TLR signalling and cytokine release, with these effects being more pronounced in human leukocytes than in their murine counterparts.

    CAS  PubMed  Google Scholar 

  139. Dinarello, C. A. Cytokines as endogenous pyrogens. J. Infect. Dis. 179, S294–S304 (1999).

    CAS  PubMed  Google Scholar 

  140. Rathinam, V. A. K., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–342 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chan, A. H. & Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217, e20190314 (2019).

    PubMed Central  Google Scholar 

  142. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    PubMed  Google Scholar 

  143. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    PubMed  Google Scholar 

  144. Oberli, M. A. et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 17, 1326–1335 (2017).

    CAS  PubMed  Google Scholar 

  145. Wang, Z. et al. Reducing cell intrinsic immunity to mRNA vaccine alters adaptive immune responses in mice. Mol. Ther. Nucleic Acids 34, 102045 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gebre, M. S. et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature 601, 410–414 (2022).

    CAS  PubMed  Google Scholar 

  147. Mulroney, T. E. et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature 625, 189–194 (2024).

    CAS  PubMed  Google Scholar 

  148. Klinman, D. M., Yamshchikov, G. & Ishigatsubo, Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J. Immunol. 158, 3635–3639 (1997).

    CAS  PubMed  Google Scholar 

  149. Reyes-Sandoval, A. & Ertl, H. C. J. CpG methylation of a plasmid vector results in extended transgene product expression by circumventing induction of immune responses. Mol. Ther. 9, 249–261 (2004).

    CAS  PubMed  Google Scholar 

  150. Mitsui, M. et al. Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression. J. Gene Med. 11, 435–443 (2009).

    CAS  PubMed  Google Scholar 

  151. Suschak, J. J., Wang, S., Fitzgerald, K. A. & Lu, S. A cGAS-independent STING/IRF7 pathway mediates the immunogenicity of DNA vaccines. J. Immunol. 196, 310–316 (2016).

    CAS  PubMed  Google Scholar 

  152. Suschak, J. J., Wang, S., Fitzgerald, K. A. & Lu, S. Identification of Aim2 as a sensor for DNA vaccines. J. Immunol. 194, 630–636 (2015).

    CAS  PubMed  Google Scholar 

  153. Allen, A. et al. Linear doggybone DNA vaccine induces similar immunological responses to conventional plasmid DNA independently of immune recognition by TLR9 in a pre-clinical model. Cancer Immunol. Immunother. 67, 627–638 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Suschak, J. J. et al. Nanoplasmid vectors co-expressing innate immune agonists enhance DNA vaccines for Venezuelan equine encephalitis virus and Ebola virus. Mol. Ther. Methods Clin. Dev. 17, 810–821 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Didierlaurent, A. M. et al. Enhancement of adaptive immunity by the human vaccine adjuvant AS01 depends on activated dendritic cells. J. Immunol. 193, 1920–1930 (2014).

    CAS  PubMed  Google Scholar 

  156. Calabro, S. et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29, 1812–1823 (2011).

    CAS  PubMed  Google Scholar 

  157. Liang, F. et al. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci. Transl. Med. 9, eaal2094 (2017).

    PubMed  Google Scholar 

  158. Moyer, T. J. et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26, 430–440 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum. Vaccines Immunother. 11, 477–488 (2015).

    Google Scholar 

  160. Moyer, T. J., Zmolek, A. C. & Irvine, D. J. Beyond antigens and adjuvants: formulating future vaccines. J. Clin. Investig. 126, 799–808 (2016).

    PubMed  PubMed Central  Google Scholar 

  161. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat. Med. 19, 1597–1608 (2013).

    CAS  PubMed  Google Scholar 

  162. Pulendran, B., S. Arunachalam, P. & O’Hagan, D. T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 20, 454–475 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Moody, M. A. et al. Toll-like receptor 7/8 (TLR7/8) and TLR9 agonists cooperate to enhance HIV-1 envelope antibody responses in rhesus macaques. J. Virol. 88, 3329–3339 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Cooper, C. & Mackie, D. Hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine: a review of HEPLISAVTM safety and efficacy. Expert Rev. Vaccines 10, 417–427 (2011).

    CAS  PubMed  Google Scholar 

  165. Hou, B. et al. Selective utilization of toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34, 375–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Francica, J. R. et al. Analysis of immunoglobulin transcripts and hypermutation following SHIVAD8 infection and protein-plus-adjuvant immunization. Nat. Commun. 6, 6565 (2015).

    CAS  PubMed  Google Scholar 

  167. Stertman, L. et al. The Matrix-MTM adjuvant: a critical component of vaccines for the 21st century. Hum. Vaccines Immunother. 19, 2189885 (2023).

    Google Scholar 

  168. Counoupas, C. et al. Delta inulin-based adjuvants promote the generation of polyfunctional CD4+ T cell responses and protection against Mycobacterium tuberculosis infection. Sci. Rep. 7, 8582 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Casella, C. R. & Mitchell, T. C. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell. Mol. Life Sci. 65, 3231–3240 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Baay, M., Bollaerts, K. & Verstraeten, T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among older adults. Vaccine 36, 4207–4214 (2018).

    CAS  PubMed  Google Scholar 

  171. Miller, E. et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ 346, f794 (2013).

    PubMed  Google Scholar 

  172. Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Ushach, I. et al. Targeting TLR9 agonists to secondary lymphoid organs induces potent immune responses against HBV infection. Mol. Ther. Nucleic Acids 27, 1103–1115 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Yin, Q. et al. A TLR7-nanoparticle adjuvant promotes a broad immune response against heterologous strains of influenza and SARS-CoV-2. Nat. Mater. 22, 380–390 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mitragotri, S., Burke, P. A. & Langer, R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Trevaskis, N. L., Kaminskas, L. M. & Porter, C. J. H. From sewer to saviour — targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 14, 781–803 (2015).

    CAS  PubMed  Google Scholar 

  177. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    CAS  PubMed  Google Scholar 

  178. Ho, W. et al. Next-generation vaccines: nanoparticle-mediated DNA and mRNA delivery. Adv. Healthc. Mater. 10, 2001812 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Buschmann, M. D. et al. Nanomaterial delivery systems for mRNA vaccines. Vaccines 9, 65 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Smith, D. M., Simon, J. K. & Baker, J. R. Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13, 592–605 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Irvine, D. J., Hanson, M. C., Rakhra, K. & Tokatlian, T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 115, 11109–11146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Tibbitt, M. W., Dahlman, J. E. & Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 138, 704–717 (2016).

    CAS  PubMed  Google Scholar 

  183. Pati, R., Shevtsov, M. & Sonawane, A. Nanoparticle vaccines against infectious diseases. Front. Immunol. 9, 2224 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Gupta, A., Andresen, J. L., Manan, R. S. & Langer, R. Nucleic acid delivery for therapeutic applications. Adv. Drug. Deliv. Rev. 178, 113834 (2021).

    CAS  PubMed  Google Scholar 

  185. Zhong, R. et al. Hydrogels for RNA delivery. Nat. Mater. 22, 818–831 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kirtane, A. R. et al. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 16, 369–384 (2021).

    CAS  PubMed  Google Scholar 

  187. Pauthner, M. et al. Elicitation of robust tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity 46, 1073–1088.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Di, J. et al. Biodistribution and non-linear gene expression of mRNA LNPs affected by delivery route and particle size. Pharm. Res. 39, 105–114 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Hassett, K. J. et al. mRNA vaccine trafficking and resulting protein expression after intramuscular administration. Mol. Ther. Nucleic Acids 35, 102083 (2024).

    CAS  PubMed  Google Scholar 

  190. Liang, F. et al. Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol. Ther. 25, 2635–2647 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hope, M. et al. Lipid nanoparticle formulations. WIPO patent WO-2018081480-A1 (2018).

  193. Lu, X., Li, Z., Song, H. & Ying, B. Quadrivalent mRNA vaccines for influenza viruses. WIPO patent WO2023125889A1 (2023).

  194. Zhang, N.-N. et al. A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283.e16 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Rajappan, K. et al. Property-driven design and development of lipids for efficient delivery of siRNA. J. Med. Chem. 63, 12992–13012 (2020).

    CAS  PubMed  Google Scholar 

  196. Lam, K. et al. Unsaturated, trialkyl ionizable lipids are versatile lipid-nanoparticle components for therapeutic and vaccine applications. Adv. Mater. 35, e2209624 (2023).

    PubMed  Google Scholar 

  197. Gatechompol, S. et al. Safety and immunogenicity of a prefusion non-stabilized spike protein mRNA COVID-19 vaccine: a phase I trial. Nat. Microbiol. 7, 1987–1995 (2022).

    CAS  PubMed  Google Scholar 

  198. Broudic, K. et al. Nonclinical safety evaluation of a novel ionizable lipid for mRNA delivery. Toxicol. Appl. Pharmacol. 451, 116143 (2022).

    CAS  PubMed  Google Scholar 

  199. Kalnin, K. V. et al. Immunogenicity and efficacy of mRNA COVID-19 vaccine MRT5500 in preclinical animal models. NPJ Vaccines 6, 61 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. DeRosa, F., Karve, S. & Heartlein, M. Stereochemically enriched compositions for delivery of nucleic acids. US patent US20190185435A1 (2019).

  201. Koizumi, M., Onishi, Y., Niwa, T., Tamura, M. & Kasuya, Y. Novel lipid. WIPO patent WO2015005253A1 (2015).

  202. Nussbaum, J. et al. Evaluation of a stabilized RSV pre-fusion F mRNA vaccine: preclinical studies and Phase 1 clinical testing in healthy adults. Vaccine 41, 6488–6501 (2023).

    CAS  PubMed  Google Scholar 

  203. Duncan, R., Clancy, E. K., Lewis, J., Justo De Antueno, R. & Nesbitt R.-L. Recombinant polypeptides for membrane fusion and uses thereof. US patent 10,227,386B2 (2019).

  204. Hervé, C., Laupèze, B., Del Giudice, G., Didierlaurent, A. M. & Da Silva, F. T. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 4, 39 (2019).

    PubMed  PubMed Central  Google Scholar 

  205. De Lombaerde, E. Combinatorial screening of biscarbamate ionizable lipids identifies a low reactogenicity lipid for lipid nanoparticle mRNA delivery. Adv. Funct. Mater. 34, 2310623 (2024).

    CAS  Google Scholar 

  206. Lee, B. et al. Disruptions in endocytic traffic contribute to the activation of the NLRP3 inflammasome. Sci. Signal. 16, eabm7134 (2023).

    CAS  PubMed  Google Scholar 

  207. Thurston, T. L. M., Wandel, M. P., von Muhlinen, N., Foeglein, Á. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Holm, C. K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol. 13, 737–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Alameh, M. G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021). This study demonstrates that LNPs can function as adjuvants by stimulating IL-6 production, thereby enhancing antigen-specific follicular T-helper and germinal centre B cell responses and amplifying immune responses when used with protein subunit vaccines.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

    CAS  PubMed  Google Scholar 

  211. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    CAS  PubMed  Google Scholar 

  212. Zhang, Y. et al. STING agonist-derived LNP-mRNA vaccine enhances protective immunity against SARS-CoV-2. Nano Lett. 23, 2593–2600 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    CAS  PubMed  Google Scholar 

  214. Yan, J. et al. Nanomaterials-mediated co-stimulation of toll-like receptors and CD40 for antitumor immunity. Adv. Mater. 34, e2207486 (2022).

    PubMed  PubMed Central  Google Scholar 

  215. Kelly, G., Laczka, O. & Gantier, M. Methods for the treatment of inflammation associated with infection. US Patent US11541030B2 (2023).

  216. Tong, A.-J. et al. Nucleotide modifications enable rational design of TLR7-selective ligands by blocking RNase cleavage. J. Exp. Med. 221, e20230341 (2023).

    PubMed  PubMed Central  Google Scholar 

  217. Lan, T. et al. Stabilized immune modulatory RNA compounds as agonists of Toll-like receptors 7 and 8. Proc. Natl Acad. Sci. USA 104, 13750–13755 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Kandimalla, E. R. et al. Synthesis and immunological activities of novel Toll-like receptor 7 and 8 agonists. Cell. Immunol. 270, 126–134 (2011).

    CAS  PubMed  Google Scholar 

  219. Shirai, S. et al. Lipid nanoparticles potentiate CpG-oligodeoxynucleotide-based vaccine for influenza virus. Front. Immunol. 10, 3018 (2019).

    CAS  PubMed  Google Scholar 

  220. Kastenmüller, W., Kastenmüller, K., Kurts, C. & Seder, R. A. Dendritic cell-targeted vaccines — hope or hype? Nat. Rev. Immunol. 14, 705–711 (2014).

    PubMed  Google Scholar 

  221. Tang, X. et al. Simultaneous dendritic cells targeting and effective endosomal escape enhance sialic acid-modified mRNA vaccine efficacy and reduce side effects. J. Control. Release 364, 529–545 (2023).

    CAS  PubMed  Google Scholar 

  222. Wan, J. et al. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 15, e0177523 (2024).

    PubMed  Google Scholar 

  223. Talukder, P., Chahal, J., Huang, J. & Ruping, K. Carriers for efficient nucleic acid delivery. WIPO patent WO2021207020A1 (2021).

  224. Künzli, M. et al. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci. Immunol. 7, eadd3075 (2022).

    PubMed  PubMed Central  Google Scholar 

  225. Ndeupen, S. et al. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 24, 103479 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Wibowo, D. et al. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 268, 120597 (2021).

    CAS  PubMed  Google Scholar 

  227. Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol. Ther. 26, 446–455 (2018).

    CAS  PubMed  Google Scholar 

  228. Blakney, A. K., Yilmaz, G., McKay, P. F., Becer, C. R. & Shattock, R. J. One size does not fit all: the effect of chain length and charge density of poly(ethylene imine) based copolymers on delivery of pDNA, mRNA, and RepRNA polyplexes. Biomacromolecules 19, 2870–2879 (2018).

    CAS  PubMed  Google Scholar 

  229. Li, M. et al. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways. J. Control. Release 228, 9–19 (2016).

    CAS  PubMed  Google Scholar 

  230. Blakney, A. K. et al. Big is beautiful: enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano 14, 5711–5727 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Chahal, J. S. et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl Acad. Sci. USA 113, E4133–42 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Chahal, J. S. et al. An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci. Rep. 7, 252 (2017).

    PubMed  PubMed Central  Google Scholar 

  233. Zhou, J. et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat. Mater. 11, 82–90 (2012).

    CAS  Google Scholar 

  234. Suberi, A. et al. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci. Transl. Med. 15, eabq0603 (2024).

    Google Scholar 

  235. Amaya, L. et al. Circular RNA vaccine induces potent T cell responses. Proc. Natl Acad. Sci. USA 120, e2302191120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Haabeth, O. A. W. et al. An mRNA SARS-CoV-2 vaccine employing charge-altering releasable transporters with a TLR-9 agonist induces neutralizing antibodies and T cell memory. ACS Cent. Sci. 7, 1191–1204 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Kasturi, S. P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Kasturi, S. P. et al. 3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates. Sci. Immunol. 5, eabb1025 (2020). This study demonstrates that 3M-052 enhances the response to an HIV-1 Env protein vaccine in rhesus macaques, leading to long-lasting antibody responses detectable a year later. This effect is attributed to the ability of 3M-052 to sustain long-lived plasma cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Dhakal, S. et al. Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J. Control. Release 247, 194–205 (2017).

    CAS  PubMed  Google Scholar 

  240. Zhang, Y. et al. Rationally designed self-assembling nanoparticles to overcome mucus and epithelium transport barriers for oral vaccines against Helicobacter pylori. Adv. Funct. Mater. 28, 1802675 (2018).

    Google Scholar 

  241. Lei, H. et al. Cationic nanocarriers as potent adjuvants for recombinant S-RBD vaccine of SARS-CoV-2. Signal Transduct. Target. Ther. 5, 291 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019).

    CAS  PubMed  Google Scholar 

  243. Gray, L. T. et al. Generation of potent cellular and humoral immunity against SARS-CoV-2 antigens via conjugation to a polymeric glyco-adjuvant. Biomaterials 278, 121159 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Liong, C. S. et al. Enhanced humoral immune response by high density TLR agonist presentation on hyperbranched polymers. Adv. Ther. 4, 2000081 (2021).

    CAS  Google Scholar 

  245. Atalis, A. et al. Nanoparticle-delivered TLR4 and RIG-I agonists enhance immune response to SARS-CoV-2 subunit vaccine. J. Control. Release 347, 476–488 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Knight, F. C. et al. Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS Nano 13, 10939–10960 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Deng, Y. et al. Rational development of a polysaccharide–protein-conjugated nanoparticle vaccine against SARS-CoV-2 variants and Streptococcus pneumoniae. Adv. Mater. 34, e2200443 (2022).

    PubMed  Google Scholar 

  248. Veneziano, R. et al. Role of nanoscale antigen organization on B-cell activation probed using DNA origami. Nat. Nanotechnol. 15, 716–723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Kato, Y. et al. Multifaceted effects of antigen valency on B cell response composition and differentiation in vivo. Immunity 53, 548–563.e8 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Martinez-Murillo, P. et al. Particulate array of well-ordered HIV clade C Env trimers elicits neutralizing antibodies that display a unique V2 cap approach. Immunity 46, 804–817.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Fries, L. F., Smith, G. E. & Glenn, G. M. A recombinant viruslike particle influenza A (H7N9) vaccine. N. Engl. J. Med. 369, 2564–2566 (2013).

    CAS  PubMed  Google Scholar 

  252. Liu, Y. V. et al. Recombinant virus-like particles elicit protective immunity against avian influenza A(H7N9) virus infection in ferrets. Vaccine 33, 2152–2158 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Krammer, F. & Palese, P. Advances in the development of influenza virus vaccines. Nat. Rev. Drug Discov. 14, 167–182 (2015).

    CAS  PubMed  Google Scholar 

  254. Ward, B. J. et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 27, 1071–1078 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Huang, W.-C. et al. A malaria vaccine adjuvant based on recombinant antigen binding to liposomes. Nat. Nanotechnol. 13, 1174–1181 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Wang, Z. et al. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding ___domain as an inhalable COVID-19 vaccine. Nat. Biomed. Eng. 6, 791–805 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Popowski, K. D. et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 5, 2960–2974 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Weyant, K. B. et al. A modular vaccine platform enabled by decoration of bacterial outer membrane vesicles with biotinylated antigens. Nat. Commun. 14, 464 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Fazli, S. et al. Contralateral second dose improves antibody responses to a two-dose mRNA vaccination regimen. J. Clin. Investig. 34, e176411 (2024).

    Google Scholar 

  260. Wang, X. et al. Multiplexed CRISPR/CAS9‐mediated engineering of pre‐clinical mouse models bearing native human B cell receptors. EMBO J. 40, e105926 (2020).

    PubMed  PubMed Central  Google Scholar 

  261. Brehm, M. A., Wiles, M. V., Greiner, D. L. & Shultz, L. D. Generation of improved humanized mouse models for human infectious diseases. J. Immunol. Methods 410, 3–17 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Higbee, R. G. et al. An immunologic model for rapid vaccine assessment — a clinical trial in a test tube. Altern. Lab. Anim. 37, 19–27 (2009).

    CAS  PubMed  Google Scholar 

  263. Rainho-Tomko, J. N. et al. Immunogenicity and protective efficacy of RSV G central conserved ___domain vaccine with a prefusion nanoparticle. NPJ Vaccines 7, 74 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Massare, M. J. et al. Combination respiratory vaccine containing recombinant SARS-CoV-2 spike and quadrivalent seasonal influenza hemagglutinin nanoparticles with matrix-M adjuvant. Preprint at bioRxiv https://doi.org/10.1101/2021.05.05.442782 (2021).

  265. Prompetchara, E. et al. Immunogenicity and protective efficacy of SARS-CoV-2 mRNA vaccine encoding secreted non-stabilized spike in female mice. Nat. Commun. 14, 2309 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Song, J. Y. et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: a randomised, placebo-controlled, observer-blinded phase 1/2 trial. EClinicalMedicine 51, 101569 (2022).

    PubMed  PubMed Central  Google Scholar 

  267. Saraf, A. et al. An Omicron-specific, self-amplifying mRNA booster vaccine for COVID-19: a phase 2/3 randomized trial. Nat. Med. 30, 1363–1372 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Tian, J.-H. et al. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat. Commun. 12, 372 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Lee, I. T. et al. Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent, mRNA-based seasonal influenza vaccine (mRNA-1010) in healthy adults: interim analysis. Nat. Commun. 14, 3631 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Ward, B. J., Séguin, A., Couillard, J., Trépanier, S. & Landry, N. Phase III: randomized observer-blind trial to evaluate lot-to-lot consistency of a new plant-derived quadrivalent virus like particle influenza vaccine in adults 18–49 years of age. Vaccine 39, 1528–1533 (2021).

    CAS  PubMed  Google Scholar 

  271. Shinde, V. et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect. Dis. 22, 73–84 (2022).

    CAS  PubMed  Google Scholar 

  272. Treanor, J. et al. A phase 2 study of the bivalent VLP norovirus vaccine candidate in older adults; impact of MPL adjuvant or a second dose. Vaccine 38, 5842–5850 (2020).

    CAS  PubMed  Google Scholar 

  273. Chen, G. L. et al. Effect of a chikungunya virus–like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA 323, 1369–1377 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Bennett, S. R. et al. Safety and immunogenicity of PXVX0317, an aluminium hydroxide-adjuvanted chikungunya virus-like particle vaccine: a randomised, double-blind, parallel-group, phase 2 trial. Lancet Infect. Dis. 22, 1343–1355 (2022).

    CAS  PubMed  Google Scholar 

  275. Datoo, M. S. et al. Efficacy and immunogenicity of R21/Matrix-M vaccine against clinical malaria after 2 years’ follow-up in children in Burkina Faso: a phase 1/2b randomised controlled trial. Lancet Infect. Dis. 22, 1728–1736 (2022).

    CAS  PubMed  Google Scholar 

  276. Lewnard, J. A., Fries, L. F., Cho, I., Chen, J. & Laxminarayan, R. Prevention of antimicrobial prescribing among infants following maternal vaccination against respiratory syncytial virus. Proc. Natl Acad. Sci. USA 119, e2112410119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Falloon, J. et al. An adjuvanted, postfusion F protein–based vaccine did not prevent respiratory syncytial virus illness in older adults. J. Infect. Dis. 216, 1362–1370 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Fly, J. H., Eiland, L. S. & Stultz, J. S. Nirsevimab: expansion of respiratory syncytial virus prevention options in neonates, infants, and at-risk young children. Ann. Pharmacother. https://doi.org/10.1177/10600280241243357 (2024).

  279. Bollman, B. et al. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. NPJ Vaccines 8, 58 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Plotkin, S. A. Updates on immunologic correlates of vaccine-induced protection. Vaccine 38, 2250–2257 (2020).

    CAS  PubMed  Google Scholar 

  281. Boes, M. Role of natural and immune IgM antibodies in immune responses. Mol. Immunol. 37, 1141–1149 (2000).

    CAS  PubMed  Google Scholar 

  282. Burton, D. R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    CAS  PubMed  Google Scholar 

  283. Corthésy, B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol. 4, 185 (2013).

    PubMed  PubMed Central  Google Scholar 

  284. Dogan, I. et al. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10, 1292–1299 (2009).

    CAS  PubMed  Google Scholar 

  285. Heesters, B. A., Myers, R. C. & Carroll, M. C. Follicular dendritic cells: dynamic antigen libraries. Nat. Rev. Immunol. 14, 495–504 (2014).

    CAS  PubMed  Google Scholar 

  286. Crotty, S. T. Follicular helper cell biology: a decade of discovery and diseases. Immunity 50, 1132–1148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Pape, K. A., Catron, D. M., Itano, A. A. & Jenkins, M. K. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26, 491–502 (2007).

    CAS  PubMed  Google Scholar 

  288. De Silva, N. S. & Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15, 137–148 (2015).

    PubMed  PubMed Central  Google Scholar 

  289. Klein, F. et al. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153, 126–138 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Turner, J. S. et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 596, 109–113 (2021). This study demonstrates that mRNA vaccines, such as BNT162b2, induce a strong but transient plasmablast response and a sustained germinal centre B cell response in lymph nodes, contributing to long-lasting humoral immunity. Additionally, cross-reactive B cell clones exhibit higher levels of somatic hypermutation, suggesting a memory B cell origin.

    CAS  PubMed  PubMed Central  Google Scholar 

  291. Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Akkaya, M., Kwak, K. & Pierce, S. K. B cell memory: building two walls of protection against pathogens. Nat. Rev. Immunol. 20, 229–238 (2020).

    CAS  PubMed  Google Scholar 

  293. Batista, F. D. & Harwood, N. E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15–27 (2009).

    CAS  PubMed  Google Scholar 

  294. Akondy, R. S. et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol. 183, 7919–7930 (2009).

    CAS  PubMed  Google Scholar 

  295. Arunachalam, P. S. et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat. Med. 26, 932–940 (2020). This study shows that vaccines inducing a strong antigen-specific CD8+ memory T cell response lower the threshold of neutralizing antibodies to elicit protection against the infection, indicating a potential synergy between TRM cells and antibody responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    CAS  PubMed  Google Scholar 

  297. Eickhoff, S. et al. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Qi, H., Kastenmüller, W. & Germain, R. N. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu. Rev. Cell Dev. Biol. 30, 141–167 (2014).

    CAS  PubMed  Google Scholar 

  299. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  300. Gerlach, C. et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 207, 1235–1246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Stemberger, C. et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 27, 985–997 (2007).

    CAS  PubMed  Google Scholar 

  302. Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10, 524–530 (2009).

    CAS  PubMed  Google Scholar 

  303. Schenkel, J. M. et al. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell differentiation: implications for vaccine development. Nat. Rev. Immunol. 2, 251–262 (2002).

    CAS  PubMed  Google Scholar 

  305. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed  PubMed Central  Google Scholar 

  306. Pizzolla, A. et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci. Immunol. 2, eaam6970 (2017).

    PubMed  Google Scholar 

  307. Zhou, L., Chong, M. M. W. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    CAS  PubMed  Google Scholar 

  308. Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  309. Lee, S. K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  310. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Saper, C. B., Romanovsky, A. A. & Scammell, T. E. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat. Neurosci. 15, 1088–1095 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  312. Talbot, S., Foster, S. L. & Woolf, C. J. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34, 421–447 (2016).

    CAS  PubMed  Google Scholar 

  313. Sobolev, O. et al. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat. Immunol. 17, 204–213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Arvin, A. M. et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584, 353–363 (2020).

    CAS  PubMed  Google Scholar 

  316. Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Houser, K. V. et al. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody. PLoS Pathog. 13, e1006565 (2017).

    PubMed  PubMed Central  Google Scholar 

  318. Chin, J., Magoffin, R. L., Shearer, L. A. N. N., Schieble, J. H. & Lennette, E. H. Field evaluation of a respiratory syncytial virus vaccine and a trivalent parainfluenza virus vaccine in a pediatric population1. Am. J. Epidemiol. 89, 449–463 (1969).

    CAS  PubMed  Google Scholar 

  319. Ruckwardt, T. J., Morabito, K. M. & Graham, B. S. Immunological lessons from respiratory syncytial virus vaccine development. Immunity 51, 429–442 (2019).

    CAS  PubMed  Google Scholar 

  320. Graham, B. S. et al. Priming immunization determines T helper cytokine mRNA expression patterns in lungs of mice challenged with respiratory syncytial virus. J. Immunol. 151, 2032–2040 (1993).

    CAS  PubMed  Google Scholar 

  321. Openshaw, P. J. M., Chiu, C., Culley, F. J. & Johansson, C. Protective and harmful immunity to RSV infection. Annu. Rev. Immunol. 35, 501–532 (2017).

    CAS  PubMed  Google Scholar 

  322. Mabrouk, M. T. et al. Lyophilized, thermostable Spike or RBD immunogenic liposomes induce protective immunity against SARS-CoV-2 in mice. Sci. Adv. 7, eabj1476 (2023).

    Google Scholar 

  323. Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Ai, L. et al. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov. 9, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Ye, T. et al. Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization. Nature 624, 630–638 (2023). This study reports inhaled dry powder vaccine formulation that induces respiratory mucosal immunity, eliminating the need for cold storage and needles.

    CAS  PubMed  Google Scholar 

  326. vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2023).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Sanofi (formerly Translate Bio), the NIH (grant nos. R61 AI161805), and the Marble Center for Cancer Nanomedicine and Cancer Center Support (core) grant P30-CA14051 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

D.G.A. receives research funding from Sanofi/Translate Bio and is a founder of oRNA Tx. For a list of entities with which R.L. is or has recently been involved — compensated or uncompensated — see the Supplementary Information section. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Mansoor Amiji, Yizhou Dong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adjuvants

Vaccine additives that activate pattern recognition receptors to boost cytokine release and recruit immune cells, enhancing the antigen-specific immune response.

Germinal centre

Specialized compartment in lymphoid organs where B cells rapidly proliferate, mutate and mature to produce high-affinity antibodies and memory cells.

Ionizable lipid

A lipid that remains neutral at physiological pH but gets protonated at low pH to facilitate endosomal escape; it is commonly used in lipid nanoparticles for RNA delivery.

Isotype switching

The process by which antigen-experienced B cells switch to produce different classes of antibodies, such as from IgM to IgG, to adapt to various stages of the immune response.

Lipid nanoparticles

(LNPs). Formulations that deliver nucleic acid-based therapeutics into cells, providing stability and protection for efficient delivery and enhanced cytoplasmic release.

MHC-I

The major histocompatibility complex class I (MHC-I) is a protein complex encoded by the HLA-A, HLA-B and HLA-C genes in humans. It consists of β2-microglobulin and an α-chain, and it is expressed on the surface of all nucleated cells. MHC-I plays a crucial role in presenting peptides, which are synthesized intracellularly, to CD8+ T cells.

MHC-II

The major histocompatibility complex class II (MHC-II) is a protein complex encoded by the HLA-DR, HLA-DP and HLA-DQ genes in humans. It consists of an α-chain and a β-chain, and it is expressed on the surface of specialized antigen-presenting cells. MHC-II is responsible for presenting extracellular peptides to CD4+ T cells.

Neutralizing antibody

The antibody that binds to a pathogen to prevent it from entering or damaging the host cells.

Pattern recognition receptors

(PRRs). A group of either membrane-bound or cytoplasmic proteins in innate immune cells that detect (1) specific patterns in microbial components, such as bacterial carbohydrates, nucleic acids, peptides, peptidoglycans and lipoproteins, or (2) molecules released by damaged cells to initiate an immune response. 

Reactogenicity

Adverse reactions, such as pain, fever or swelling, occurring locally or systemically after vaccine administration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Rudra, A., Reed, K. et al. Advanced technologies for the development of infectious disease vaccines. Nat Rev Drug Discov 23, 914–938 (2024). https://doi.org/10.1038/s41573-024-01041-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-024-01041-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research