Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibrosis: cross-organ biology and pathways to development of innovative drugs

A Publisher Correction to this article was published on 31 March 2025

This article has been updated

Abstract

Fibrosis is a pathophysiological mechanism involved in chronic and progressive diseases that results in excessive tissue scarring. Diseases associated with fibrosis include metabolic dysfunction-associated steatohepatitis (MASH), inflammatory bowel diseases (IBDs), chronic kidney disease (CKD), idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), which are collectively responsible for substantial morbidity and mortality. Although a few drugs with direct antifibrotic activity are approved for pulmonary fibrosis and considerable progress has been made in the understanding of mechanisms of fibrosis, translation of this knowledge into effective therapies continues to be limited and challenging. With the aim of assisting developers of novel antifibrotic drugs, this Review integrates viewpoints of biologists and physician-scientists on core pathways involved in fibrosis across organs, as well as on specific characteristics and approaches to assess therapeutic interventions for fibrotic diseases of the lung, gut, kidney, skin and liver. This discussion is used as a basis to propose strategies to improve the translation of potential antifibrotic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Initiation of fibrosis.
Fig. 2: Myofibroblast activation states and pathways.
Fig. 3: Key mechanisms involved in the development of pulmonary fibrosis.
Fig. 4: Core mechanisms of intestinal fibrogenesis.
Fig. 5: Key pathways of chronic kidney disease and fibrosis.
Fig. 6: Mechanisms of fibrotic tissue remodelling in systemic sclerosis.
Fig. 7: Key pathways of liver fibrosis progression and regression.

Similar content being viewed by others

Change history

References

  1. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szaszi, K. & Amoozadeh, Y. New insights into functions, regulation, and pathological roles of tight junctions in kidney tubular epithelium. Int. Rev. Cell Mol. Biol. 308, 205–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Selman, M. & Pardo, A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal. 66, 109482 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Yamashita, N. & Kramann, R. Mechanisms of kidney fibrosis and routes towards therapy. Trends Endocrinol. Metab. 35, 31–48 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Prunotto, M. et al. From acute injury to chronic disease: pathophysiological hypothesis of an epithelial/mesenchymal crosstalk alteration in CKD. Nephrol. Dial. Transpl. 27, iii43–iii50 (2012).

    Article  Google Scholar 

  8. Hinz, B. & Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 16, 11–31 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68-69, 81–93 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Bonventre, J. V. & Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 121, 4210–4221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Venkatachalam, M. A., Weinberg, J. M., Kriz, W. & Bidani, A. K. Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J. Am. Soc. Nephrol. 26, 1765–1776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang, L., Besschetnova, T. Y., Brooks, C. R., Shah, J. V. & Bonventre, J. V. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat. Med. 16, 535–543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koesters, R. et al. Tubular overexpression of transforming growth factor-beta1 induces autophagy and fibrosis but not mesenchymal transition of renal epithelial cells. Am. J. Pathol. 177, 632–643 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grgic, I. et al. Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int. 82, 172–183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takaori, K. et al. Severity and frequency of proximal tubule injury determines renal prognosis. J. Am. Soc. Nephrol. 27, 2393–2406 (2016).

    Article  PubMed  Google Scholar 

  16. Liu, B. C., Tang, T. T., Lv, L. L. & Lan, H. Y. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 93, 568–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, J. et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy. Transl. Res. 159, 454–463 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Seibold, M. A. et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364, 1503–1512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fingerlin, T. E. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45, 613–620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Noth, I. et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med. 1, 309–317 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen, R. J. et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir. Med. 5, 869–880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dressen, A. et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir. Med. 6, 603–614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garcia, O. et al. Targeted type 2 alveolar cell depletion. a dynamic functional model for lung injury repair. Am. J. Respir. Cell Mol. Biol. 54, 319–330 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maher, T. M. et al. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182, 73–82 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naikawadi, R. P. et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis. JCI Insight 1, e86704 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nureki, S. I. et al. Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis. J. Clin. Invest. 128, 4008–4024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gabele, E. et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun. 376, 271–276 (2008).

    Article  PubMed  Google Scholar 

  28. Watanabe, A. et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 46, 1509–1518 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, Y. et al. Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells. Biomed. Pharmacother. 129, 110413 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Taura, K. et al. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice. Hepatology 51, 1027–1036 (2010).

    Article  PubMed  Google Scholar 

  31. Borthwick, L. A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin. Immunopathol. 38, 517–534 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scarpa, M. et al. The epithelial danger signal IL-1alpha is a potent activator of fibroblasts and reactivator of intestinal inflammation. Am. J. Pathol. 185, 1624–1637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bersudsky, M. et al. Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut 63, 598–609 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Lopetuso, L. R., Scaldaferri, F. & Pizarro, T. T. Emerging role of the interleukin (IL)-33/ST2 axis in gut mucosal wound healing and fibrosis. Fibrogenesis Tissue Repair 5, 18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beltran, C. J. et al. Characterization of the novel ST2/IL-33 system in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 16, 1097–1107 (2010).

    Article  PubMed  Google Scholar 

  36. Kobori, A. et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. J. Gastroenterol. 45, 999–1007 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Flier, S. N. et al. Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J. Biol. Chem. 285, 20202–20212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mostmans, Y. et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: a systematic review. Autoimmun. Rev. 16, 774–786 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Sgonc, R. et al. Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J. Clin. Invest. 98, 785–792 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Distler, J. H. W. et al. Shared and distinct mechanisms of fibrosis. Nat. Rev. Rheumatol. 15, 705–730 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Maurer, B. et al. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Ann. Rheum. Dis. 73, 1880–1887 (2014).

    Article  PubMed  Google Scholar 

  42. Di Benedetto, P. et al. Endothelial-to-mesenchymal transition in systemic sclerosis. Clin. Exp. Immunol. 205, 12–27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dees, C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Distler, J. H. et al. Hypoxia-induced increase in the production of extracellular matrix proteins in systemic sclerosis. Arthritis Rheum. 56, 4203–4215 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Aden, N. et al. Epithelial cells promote fibroblast activation via IL-1alpha in systemic sclerosis. J. Invest. Dermatol. 130, 2191–2200 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Nikitorowicz-Buniak, J., Shiwen, X., Denton, C. P., Abraham, D. & Stratton, R. Abnormally differentiating keratinocytes in the epidermis of systemic sclerosis patients show enhanced secretion of CCN2 and S100A9. J. Invest. Dermatol. 134, 2693–2702 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. McCoy, S. S. et al. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta. Rheumatology 56, 1970–1981 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Distler, J. H. et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum. 52, 856–864 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Russo, B. et al. Dysfunctional keratinocytes increase dermal inflammation in systemic sclerosis: results from studies using tissue-engineered scleroderma epidermis. Arthritis Rheumatol. 73, 1311–1317 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Rognoni, E. et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol. Syst. Biol. 14, e8174 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mascharak, S., desJardins-Park, H. E. & Longaker, M. T. Fibroblast heterogeneity in wound healing: hurdles to clinical translation. Trends Mol. Med. 26, 1101–1106 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Ligresti, G. et al. Mesenchymal cells in the lung: evolving concepts and their role in fibrosis. Gene 859, 147142 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schreibing, F., Anslinger, T. M. & Kramann, R. Fibrosis in pathology of heart and kidney: from deep RNA-sequencing to novel molecular targets. Circ. Res. 132, 1013–1033 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Filliol, A. et al. Opposing roles of hepatic stellate cell subpopulations in hepatocarcinogenesis. Nature 610, 356–365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ushakumary, M. G., Riccetti, M. & Perl, A. T. Resident interstitial lung fibroblasts and their role in alveolar stem cell niche development, homeostasis, injury, and regeneration. Stem Cell Transl. Med. 10, 1021–1032 (2021).

    Article  CAS  Google Scholar 

  58. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kadur Lakshminarasimha Murthy, P. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ascension, A. M., Fuertes-Alvarez, S., Ibanez-Sole, O., Izeta, A. & Arauzo-Bravo, M. J. Human dermal fibroblast subpopulations are conserved across single-cell RNA sequencing studies. J. Invest. Dermatol. 141, 1735–1744 e1735 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yao, L. et al. Temporal control of PDGFRalpha regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 40, 111192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Hortells, L. et al. A specialized population of periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation. Proc. Natl Acad. Sci. USA 117, 21469–21479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Younesi, F. S., Son, D. O., Firmino, J. & Hinz, B. Myofibroblast markers and microscopy detection methods in cell culture and histology. Methods Mol. Biol. 2299, 17–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Scott, R. W., Arostegui, M., Schweitzer, R., Rossi, F. M. V. & Underhill, T. M. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25, 797–813 e799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hagood, J. S. et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am. J. Pathol. 167, 365–379 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fendt, B. M. et al. Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4. Histol. Histopathol. 38, 1391–14001 (2023).

    CAS  PubMed  Google Scholar 

  70. Schuster, R., Rockel, J. S., Kapoor, M. & Hinz, B. The inflammatory speech of fibroblasts. Immunol. Rev. 302, 126–146 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. MacCarthy-Morrogh, L. & Martin, P. The hallmarks of cancer are also the hallmarks of wound healing. Sci. Signal. 13, eaay8690 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz-Villalba, A. et al. Single-cell RNA sequencing analysis reveals a crucial role for CTHRC1 (collagen triple helix repeat containing 1) cardiac fibroblasts after myocardial infarction. Circulation 142, 1831–1847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

    Article  CAS  PubMed  Google Scholar 

  76. Brugger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

    Article  PubMed  Google Scholar 

  77. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  CAS  PubMed  Google Scholar 

  78. de Oliveira Camargo, R., Abual’anaz, B., Rattan, S. G., Filomeno, K. L. & Dixon, I. M. C. Novel factors that activate and deactivate cardiac fibroblasts: a new perspective for treatment of cardiac fibrosis. Wound Repair Regen. 29, 667–677 (2021).

    Article  PubMed  Google Scholar 

  79. Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 79, 552–566 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, J. et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol. Rev. 302, 211–227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074 (2017).

    Article  PubMed  Google Scholar 

  82. Schuster, R., Younesi, F., Ezzo, M. & Hinz, B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15, a041231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Volkmann, E. R. & Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat. Rev. Rheumatol. 15, 208–224 (2019).

    Article  PubMed  Google Scholar 

  84. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Younesi, F. S. & Hinz, B. The myofibroblast fate of therapeutic mesenchymal stromal cells: regeneration, repair, or despair? Int. J. Mol. Sci. 25, 8712 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kojima, Y. et al. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl Acad. Sci. USA 107, 20009–20014 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tschumperlin, D. J. & Lagares, D. Mechano-therapeutics: targeting mechanical signaling in fibrosis and tumor stroma. Pharmacol. Ther. 212, 107575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Venugopal, H., Hanna, A., Humeres, C. & Frangogiannis, N. G. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells 11, 1386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nho, R. S., Ballinger, M. N., Rojas, M. M., Ghadiali, S. N. & Horowitz, J. C. Biomechanical force and cellular stiffness in lung fibrosis. Am. J. Pathol. 192, 750–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen, K. et al. Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting. Sci. Transl. Med. 14, eabj9152 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Ezzo, M. & Hinz, B. Novel approaches to target fibroblast mechanotransduction in fibroproliferative diseases. Pharmacol. Ther. 250, 108528 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, M., Du, H., Winer, D. A., Clemente-Casares, X. & Tsai, S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front. Cell Dev. Biol. 10, 1044729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Noskovicova, N., Hinz, B. & Pakshir, P. Implant fibrosis and the underappreciated role of myofibroblasts in the foreign body reaction. Cells 10, 1794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mao, Y. & Wickstrom, S. A. Mechanical state transitions in the regulation of tissue form and function. Nat. Rev. Mol. Cell Biol. 25, 654–670 (2024).

    Article  CAS  PubMed  Google Scholar 

  95. Levine, D. et al. Expression of the integrin alpha8beta1 during pulmonary and hepatic fibrosis. Am. J. Pathol. 156, 1927–1935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Primac, I. et al. Stromal integrin alpha11 regulates PDGFR-beta signaling and promotes breast cancer progression. J. Clin. Invest. 129, 4609–4628 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nuchel, J. et al. TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy 14, 465–486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Noll, N. A. et al. Loss of talin in cardiac fibroblasts results in augmented ventricular cardiomyocyte hypertrophy in response to pressure overload. Am. J. Physiol. Heart Circ. Physiol 322, H857–H866 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Godbout, E. et al. Kindlin-2 mediates mechanical activation of cardiac myofibroblasts. Cells 9, 2702 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, P. et al. Kindlin-2 acts as a key mediator of lung fibroblast activation and pulmonary fibrosis progression. Am. J. Respir. Cell Mol. Biol. 65, 54–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  101. Razinia, Z. et al. Stiffness-dependent motility and proliferation uncoupled by deletion of CD44. Sci. Rep. 7, 16499 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Guerrot, D. et al. Discoidin ___domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am. J. Pathol. 179, 83–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moll, S. et al. DDR1 role in fibrosis and its pharmacological targeting. Biochim. Biophys. Acta Mol. Cell Res. 1886, 118474 (2019).

    Article  Google Scholar 

  104. Grove, L. M. et al. Translocation of TRPV4-PI3Kgamma complexes to the plasma membrane drives myofibroblast transdifferentiation. Sci. Signal. 12, eaau1533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sharma, S. et al. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am. J. Physiol. Cell Physiol. 312, C562–C572 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fu, Y. et al. Targeting mechanosensitive Piezo1 alleviated renal fibrosis through p38MAPK-YAP pathway. Front. Cell Dev. Biol. 9, 741060 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Emig, R. et al. Piezo1 channels contribute to the regulation of human atrial fibroblast mechanical properties and matrix stiffness sensing. Cells 10, 663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rahaman, S. O. et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 124, 5225–5238 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang, H., Ren, L. & Shivnaraine, R. V. Targeting GPCRs to treat cardiac fibrosis. Front. Cardiovasc. Med. 9, 1011176 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, Y. et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123, 1096–1108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jenkins, R. G. et al. Ligation of protease-activated receptor 1 enhances alpha(v)beta6 integrin-dependent TGF-beta activation and promotes acute lung injury. J. Clin. Invest. 116, 1606–1614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tager, A. M. et al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med. 14, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Haak, A. J. et al. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci. Transl. Med. 11, eaau6296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dooling, L. J. & Discher, D. E. Inhibiting tumor fibrosis and actomyosin through GPCR activation. Trends Cancer 5, 197–199 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Piccolo, S., Panciera, T., Contessotto, P. & Cordenonsi, M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Nat. Cancer 4, 9–26 (2023).

    CAS  PubMed  Google Scholar 

  116. He, X. et al. Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight 7, e146243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kofler, M. et al. Mediated nuclear import and export of TAZ and the underlying molecular requirements. Nat. Commun. 9, 4966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Masszi, A. et al. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J. Cell Biol. 188, 383–399 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yu-Wai-Man, C. et al. Local delivery of novel MRTF/SRF inhibitors prevents scar tissue formation in a preclinical model of fibrosis. Sci. Rep. 7, 518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Leal, A. S., Misek, S. A., Lisabeth, E. M., Neubig, R. R. & Liby, K. T. The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in Kras(G12D); Pdx1-Cre (KC) mice. Sci. Rep. 9, 7072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Johnson, L. A. et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm. Bowel Dis. 20, 154–165 (2014).

    Article  PubMed  Google Scholar 

  122. Link, P. A. et al. Combined control of the fibroblast contractile program by YAP and TAZ. Am. J. Physiol. Lung Cell. Mol. Physiol. 322, L23–L32 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Reggiani, F., Gobbi, G., Ciarrocchi, A. & Sancisi, V. YAP and TAZ are not identical twins. Trends Biochem. Sci. 46, 154–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-beta-smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Piersma, B. et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. Am. J. Pathol. 185, 3326–3337 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Santos, D. M. et al. Screening for YAP inhibitors identifies statins as modulators of fibrosis. Am. J. Respir. Cell Mol. Biol. 62, 479–492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shi, M. et al. Latent TGF-beta structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Buscemi, L. et al. The single-molecule mechanics of the latent TGF-beta1 complex. Curr. Biol. 21, 2046–2054 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Annes, J. P., Chen, Y., Munger, J. S. & Rifkin, D. B. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J. Cell Biol. 165, 723–734 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lodyga, M. & Hinz, B. TGF-beta1 - a truly transforming growth factor in fibrosis and immunity. Semin. Cell Dev. Biol. 101, 123–139 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J. Cell Biol. 207, 283–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Massague, J. & Sheppard, D. TGF-beta signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 7, 288ra279 (2015).

    Article  Google Scholar 

  136. Lancaster, L. H. PLN-74809 shows favorable safety and tolerability and indicates antifibrotic activity in a phase 2a study for the treatment of idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 207, A2777 (2023).

    Google Scholar 

  137. Wirth, M. et al. A multicenter phase 1 study of EMD 525797 (DI17E6), a novel humanized monoclonal antibody targeting alphav integrins, in progressive castration-resistant prostate cancer with bone metastases after chemotherapy. Eur. Urol. 65, 897–904 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Hussain, M. et al. Differential effect on bone lesions of targeting integrins: randomized phase ii trial of abituzumab in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 22, 3192–3200 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Richeldi, L. et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2071–2082 (2014).

    Article  PubMed  Google Scholar 

  141. Sun, Y. W. et al. Pirfenidone prevents radiation-induced intestinal fibrosis in rats by inhibiting fibroblast proliferation and differentiation and suppressing the TGF-beta1/Smad/CTGF signaling pathway. Eur. J. Pharmacol. 822, 199–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. King, T. E. Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).

    Article  PubMed  Google Scholar 

  143. Bhattacharyya, S. et al. Pharmacological inhibition of toll-like receptor-4 signaling by TAK242 prevents and induces regression of experimental organ fibrosis. Front. Immunol. 9, 2434 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schuppan, D., Ashfaq-Khan, M., Yang, A. T. & Kim, Y. O. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol. 68-69, 435–451 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Sato, S., Yanagihara, T. & Kolb, M. R. J. Therapeutic targets and early stage clinical trials for pulmonary fibrosis. Expert Opin. Invest. Drugs 28, 19–28 (2019).

    Article  CAS  Google Scholar 

  146. O’Reilly, S. Interleukin-11 and its eminent role in tissue fibrosis: a possible therapeutic target. Clin. Exp. Immunol. 214, 154–161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Dolivo, D. M., Larson, S. A. & Dominko, T. Fibroblast growth factor 2 as an antifibrotic: antagonism of myofibroblast differentiation and suppression of pro-fibrotic gene expression. Cytokine Growth Factor Rev. 38, 49–58 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ornitz, D. M. & Itoh, N. New developments in the biology of fibroblast growth factors. WIREs Mech. Dis. 14, e1549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Akhmetshina, A. et al. The cannabinoid receptor CB2 exerts antifibrotic effects in experimental dermal fibrosis. Arthritis Rheum. 60, 1129–1136 (2009).

    Article  PubMed  Google Scholar 

  150. Balistreri, E. et al. The cannabinoid WIN55, 212-2 abrogates dermal fibrosis in scleroderma bleomycin model. Ann. Rheum. Dis. 70, 695–699 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Spiera, R. et al. Safety and efficacy of lenabasum in a phase II, randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis Rheumatol. 72, 1350–1360 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Widjaja, A. A. et al. Molecular dissection of pro-fibrotic IL11 signaling in cardiac and pulmonary fibroblasts. Front. Mol. Biosci. 8, 740650 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Corden, B., Adami, E., Sweeney, M., Schafer, S. & Cook, S. A. IL-11 in cardiac and renal fibrosis: late to the party but a central player. Br. J. Pharmacol. 177, 1695–1708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gieseck, R. L. 3rd, Wilson, M. S. & Wynn, T. A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18, 62–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J. Exp. Med. 194, 809–821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gieseck, R. L. 3rd et al. Interleukin-13 activates distinct cellular pathways leading to ductular reaction, steatosis, and fibrosis. Immunity 45, 145–158 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hart, K. M. et al. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-beta. Sci. Transl. Med. 9, eaal3694 (2017).

    Article  PubMed  Google Scholar 

  159. Xue, J. et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat. Commun. 6, 7158 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Adler, M. et al. Principles of cell circuits for tissue repair and fibrosis. iScience 23, 100841 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Article  CAS  PubMed  Google Scholar 

  162. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Minutti, C. M., Knipper, J. A., Allen, J. E. & Zaiss, D. M. Tissue-specific contribution of macrophages to wound healing. Semin. Cell Dev. Biol. 61, 3–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Mirza, R., DiPietro, L. A. & Koh, T. J. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am. J. Pathol. 175, 2454–2462 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. MacLeod, A. S. & Mansbridge, J. N. The innate immune system in acute and chronic wounds. Adv. Wound Care 5, 65–78 (2016).

    Article  Google Scholar 

  168. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Braga, T. T., Agudelo, J. S. & Camara, N. O. Macrophages during the fibrotic process: M2 as friend and foe. Front. Immunol. 6, 602 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Forbes, S. J. & Rosenthal, N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat. Med. 20, 857–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Vannella, K. M. & Wynn, T. A. Mechanisms of organ injury and repair by macrophages. Annu. Rev. Physiol. 79, 593–617 (2017).

    Article  CAS  PubMed  Google Scholar 

  173. Fritz, J. M. et al. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front. Immunol. 5, 587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Duffield, J. S., Lupher, M., Thannickal, V. J. & Wynn, T. A. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8, 241–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bhattacharya, M. & Ramachandran, P. Immunology of human fibrosis. Nat. Immunol. 24, 1423–1433 (2023).

    Article  CAS  PubMed  Google Scholar 

  177. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hoeft, K. et al. Platelet-instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 42, 112131 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta. Sci. Signal. 12, eaao3469 (2019).

    Article  CAS  PubMed  Google Scholar 

  182. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  183. Guillot, A. & Tacke, F. Liver macrophages revisited: the expanding universe of versatile responses in a spatiotemporal context. Hepatol. Commun. 8, e0491 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Long, H. et al. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes account for organ injury, regeneration or atrophy. Front. Immunol. 14, 1194988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e317 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Smolgovsky, S., Theall, B., Wagner, N. & Alcaide, P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am. J. Physiol. Heart Circ. Physiol 326, H303–H316 (2024).

    Article  CAS  PubMed  Google Scholar 

  187. Lopez, B. et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat. Rev. Cardiol. 18, 479–498 (2021).

    Article  PubMed  Google Scholar 

  188. Ravassa, S. et al. Cardiac fibrosis in heart failure: focus on non-invasive diagnosis and emerging therapeutic strategies. Mol. Asp. Med. 93, 101194 (2023).

    Article  CAS  Google Scholar 

  189. Travers, J. G., Tharp, C. A., Rubino, M. & McKinsey, T. A. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J. Clin. Invest. 132, e148554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wijsenbeek, M., Suzuki, A. & Maher, T. M. Interstitial lung diseases. Lancet 400, 769–786 (2022).

    Article  PubMed  Google Scholar 

  191. Kaul, B. et al. Epidemiology of idiopathic pulmonary fibrosis among U.S. Veterans, 2010-2019. Ann. Am. Thorac. Soc. 19, 196–203 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Arimura-Omori, M. et al. Association between telomere-related polymorphisms and the risk of IPF and COPD as a precursor lesion of lung cancer: findings from the fukuoka tobacco-related lung disease (FOLD) registry. Asian Pac. J. Cancer Prev. 21, 667–673 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Korthagen, N. M. et al. Association between variations in cell cycle genes and idiopathic pulmonary fibrosis. PLoS ONE 7, e30442 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Juge, P. A. et al. MUC5B promoter variant and rheumatoid arthritis with interstitial lung disease. N. Engl. J. Med. 379, 2209–2219 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Furusawa, H. et al. Common idiopathic pulmonary fibrosis risk variants are associated with hypersensitivity pneumonitis. Thorax 77, 508–510 (2022).

    Article  PubMed  Google Scholar 

  196. Pauchet, A. et al. Idiopathic pulmonary fibrosis: what do we know about the role of occupational and environmental determinants? A systematic literature review and meta-analysis. J. Toxicol. Env. Health B Crit. Rev. 25, 372–392 (2022).

    Article  CAS  Google Scholar 

  197. Lee, J. S. et al. Molecular markers of telomere dysfunction and senescence are common findings in the usual interstitial pneumonia pattern of lung fibrosis. Histopathology 79, 67–76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Allden, S. J. et al. The transferrin receptor CD71 delineates functionally distinct airway macrophage subsets during idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 200, 209–219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Asano, S. et al. Matrix stiffness regulates migration of human lung fibroblasts. Physiol. Rep. 5, e13281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Valenzi, E. et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front. Immunol. 12, 595811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Khanna, D. et al. Etiology, risk factors, and biomarkers in systemic sclerosis with interstitial lung disease. Am. J. Respir. Crit. Care Med. 201, 650–660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Renzoni, E. A. et al. Interstitial vascularity in fibrosing alveolitis. Am. J. Respir. Crit. Care Med. 167, 438–443 (2003).

    Article  PubMed  Google Scholar 

  203. Yanagihara, T. et al. Vascular-parenchymal cross-talk promotes lung fibrosis through BMPR2 signaling. Am. J. Respir. Crit. Care Med. 207, 1498–1514 (2023).

    Article  CAS  PubMed  Google Scholar 

  204. Fliesser, E. et al. Lung fibrosis is linked to increased endothelial cell activation and dysfunctional vascular barrier integrity. Am. J. Respir. Cell Mol. Biol. 71, 318–331 (2024).

    Article  CAS  PubMed  Google Scholar 

  205. Waxman, A. et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N. Engl. J. Med. 384, 325–334 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Ask, K. et al. Comparison between conventional and “clinical” assessment of experimental lung fibrosis. J. Transl. Med. 6, 16 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Maher, T. M. Interstitial lung disease: a review. JAMA 331, 1655–1665 (2024).

    Article  CAS  PubMed  Google Scholar 

  208. Xu, F. et al. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EBioMedicine 66, 103325 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Raghu, G. et al. Idiopathic pulmonary fibrosis (an Update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 205, e18–e47 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Walsh, S. L. F., Calandriello, L., Silva, M. & Sverzellati, N. Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study. Lancet Respir. Med. 6, 837–845 (2018).

    Article  PubMed  Google Scholar 

  211. Wells, A. U. et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am. J. Respir. Crit Care Med. 167, 962–969 (2003).

    Article  PubMed  Google Scholar 

  212. Zappala, C. J. et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 830–836 (2010).

    Article  CAS  PubMed  Google Scholar 

  213. Karimi-Shah, B. A. & Chowdhury, B. A. Forced vital capacity in idiopathic pulmonary fibrosis-FDA review of pirfenidone and nintedanib. N. Engl. J. Med. 372, 1189–1191 (2015).

    Article  PubMed  Google Scholar 

  214. Raghu, G. et al. Meaningful endpoints for idiopathic pulmonary fibrosis (IPF) clinical trials: emphasis on ‘feels, functions, survives’. Am. J. Respir. Crit. Care Med. 209, 647–669 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Wu, X. et al. Computed tomographic biomarkers in idiopathic pulmonary fibrosis. the future of quantitative analysis. Am. J. Respir. Crit. Care Med. 199, 12–21 (2019).

    Article  PubMed  Google Scholar 

  216. Jenkins, R. G. et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir. Med. 3, 462–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Maher, T. M. et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir. Med. 5, 946–955 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Organ, L. A. et al. Biomarkers of collagen synthesis predict progression in the PROFILE idiopathic pulmonary fibrosis cohort. Respir. Res. 20, 148 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Rosas, I. O. et al. MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med. 5, e93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Prasse, A. et al. Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 717–723 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Maher, T. M. et al. Biomarkers of extracellular matrix turnover in patients with idiopathic pulmonary fibrosis given nintedanib (INMARK study): a randomised, placebo-controlled study. Lancet Respir. Med. 7, 771–779 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Ma, H. Y. et al. Inhibition of MRTF activation as a clinically achievable anti-fibrotic mechanism for pirfenidone. Eur. Respir. J. 61, 2200604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wollin, L. et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1434–1445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Maher, T. M. et al. Phase 2 trial to assess lebrikizumab in patients with idiopathic pulmonary fibrosis. Eur. Respir. J. 57, 1902442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Maher, T. M. et al. Ziritaxestat, a novel autotaxin inhibitor, and lung function in idiopathic pulmonary fibrosis: the ISABELA 1 and 2 randomized clinical trials. JAMA 329, 1567–1578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Richeldi, L. et al. Trial of a preferential phosphodiesterase 4B inhibitor for idiopathic pulmonary fibrosis. N. Engl. J. Med. 386, 2178–2187 (2022).

    Article  CAS  PubMed  Google Scholar 

  227. Lancaster, L. et al. Bexotegrast in patients with idiopathic pulmonary fibrosis: the INTEGRIS-IPF clinical trial. Am. J. Respir. Crit. Care Med. 210, 424–434 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Corte, T. J. et al. Efficacy and safety of admilparant, an LPA(1) antagonist in pulmonary fibrosis: a phase 2 randomized clinical trial. Am. J. Respir. Crit. Care Med. 211, 230–238 (2024).

    Article  Google Scholar 

  229. Herrmann, F. E., Hesslinger, C., Wollin, L. & Nickolaus, P. BI 1015550 is a PDE4B inhibitor and a clinical drug candidate for the oral treatment of idiopathic pulmonary fibrosis. Front. Pharmacol. 13, 838449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kolb, M. et al. The antifibrotic effects of inhaled treprostinil: an emerging option for ILD. Adv. Ther. 39, 3881–3895 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Rieder, F., Mukherjee, P. K., Massey, W. J., Wang, Y. & Fiocchi, C. Fibrosis in IBD: from pathogenesis to therapeutic targets. Gut 73, 854–866 (2024).

    Article  CAS  PubMed  Google Scholar 

  232. Gordon, I. O. et al. Fibrosis in ulcerative colitis is directly linked to severity and chronicity of mucosal inflammation. Aliment. Pharmacol. Ther. 47, 922–939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Jarmakiewicz-Czaja, S., Zielinska, M., Sokal, A. & Filip, R. Genetic and epigenetic etiology of inflammatory bowel disease: an update. Genes 13, 2388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Steiner, C. A. et al. Biomarkers for the prediction and diagnosis of fibrostenosing Crohn’s disease: a systematic review. Clin. Gastroenterol. Hepatol. 20, 817–846.e10 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Adler, J. et al. Computed tomography enterography findings correlate with tissue inflammation, not fibrosis in resected small bowel Crohn’s disease. Inflamm. Bowel Dis. 18, 849–856 (2011).

    Article  PubMed  Google Scholar 

  236. Farmer, R. G., Whelan, G. & Fazio, V. W. Long-term follow-up of patients with Crohn’s disease. Relationship between the clinical pattern and prognosis. Gastroenterology 88, 1818–1825 (1985).

    Article  CAS  PubMed  Google Scholar 

  237. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e722 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Lim, W. W. et al. Transgenic interleukin 11 expression causes cross-tissue fibro-inflammation and an inflammatory bowel phenotype in mice. PLoS ONE 15, e0227505 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Imai, J. et al. Flagellin-mediated activation of IL-33-ST2 signaling by a pathobiont promotes intestinal fibrosis. Mucosal Immunol. 12, 632–643 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Franze, E. et al. Interleukin-34 stimulates gut fibroblasts to produce collagen synthesis. J. Crohns Colitis 14, 1436–1445 (2020).

    Article  PubMed  Google Scholar 

  241. Scheibe, K. et al. Inhibiting interleukin 36 receptor signaling reduces fibrosis in mice with chronic intestinal inflammation. Gastroenterology 156, 1082–1097.e1011 (2019).

    Article  CAS  PubMed  Google Scholar 

  242. Shih, D. Q. et al. Constitutive TL1A (TNFSF15) expression on lymphoid or myeloid cells leads to mild intestinal inflammation and fibrosis. PLoS ONE 6, e16090 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Jacob, N. et al. Inflammation-independent TL1A-mediated intestinal fibrosis is dependent on the gut microbiome. Mucosal Immunol. 11, 1466–1476 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Wang, J. et al. Preventing fibrosis in IBD: update on immune pathways and clinical strategies. Expert Rev. Clin. Immunol. 20, 727–734 (2024).

    Article  CAS  PubMed  Google Scholar 

  245. Zhao, S. et al. Selective deletion of MyD88 signaling in alpha-SMA positive cells ameliorates experimental intestinal fibrosis via post-transcriptional regulation. Mucosal Immunol. 13, 665–678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Mao, R. et al. Activated intestinal muscle cells promote preadipocyte migration: a novel mechanism for creeping fat formation in Crohn’s disease. Gut 71, 55–67 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Mao, R. et al. The mesenteric fat and intestinal muscle interface: creeping fat influencing stricture formation in Crohn’s disease. Inflamm. Bowel Dis. 25, 421–426 (2019).

    Article  PubMed  Google Scholar 

  248. Chen, W. et al. Smooth muscle hyperplasia/hypertrophy is the most prominent histological change in Crohn’s fibrostenosing bowel strictures: a semiquantitative analysis by using a novel histological grading scheme. J. Crohns Colitis 11, 92–104 (2017).

    Article  PubMed  Google Scholar 

  249. Mukherjee, P. K. et al. Stricturing Crohn’s disease single-cell RNA sequencing reveals fibroblast heterogeneity and intercellular interactions. Gastroenterology 165, 1180–1196 (2023).

    Article  CAS  PubMed  Google Scholar 

  250. Rieder, F. et al. Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am. J. Pathol. 179, 2660–2673 (2012).

    Article  Google Scholar 

  251. Yamamoto, T., Fazio, V. W. & Tekkis, P. P. Safety and efficacy of strictureplasty for Crohn’s disease: a systematic review and meta-analysis. Dis. Colon Rectum 50, 1968–1986 (2007).

    Article  PubMed  Google Scholar 

  252. Fazio, V. W. et al. Long-term follow-up of strictureplasty in Crohn’s disease. Dis. Colon Rectum 36, 355–361 (1993).

    Article  CAS  PubMed  Google Scholar 

  253. Maconi, G. et al. Preoperative characteristics and postoperative behavior of bowel wall on risk of recurrence after conservative surgery in Crohn’s disease: a prospective study. Ann. Surg. 233, 345–352 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Bettenworth, D. & Rieder, F. Reversibility of stricturing Crohn’s disease — fact or fiction? Inflamm. Bowel Dis. 22, 241–247 (2016).

    Article  PubMed  Google Scholar 

  255. Rieder, F. et al. An expert consensus to standardise definitions, diagnosis and treatment targets for anti-fibrotic stricture therapies in Crohn’s disease. Aliment. Pharmacol. Ther. 48, 347–357 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Bettenworth, D. et al. Assessment of Crohn’s disease-associated small bowel strictures and fibrosis on cross-sectional imaging: a systematic review. Gut 68, 1115–1126 (2019).

    Article  CAS  PubMed  Google Scholar 

  257. Rieder, F. et al. Reliability of MR enterography features for describing fibrostenosing Crohn disease. Radiology 312, e233039 (2024).

    Article  PubMed  Google Scholar 

  258. Rieder, F. et al. Reliability of CT enterography for describing fibrostenosing Crohn disease. Radiology 312, e233038 (2024).

    Article  PubMed  Google Scholar 

  259. Rimola, J. et al. Characterization of inflammation and fibrosis in Crohn’s disease lesions by magnetic resonance imaging. Am. J. Gastroenterol. 110, 432–440 (2015).

    Article  PubMed  Google Scholar 

  260. Dillman, J. R. et al. US elastography-derived shear wave velocity helps distinguish acutely inflamed from fibrotic bowel in a Crohn disease animal model. Radiology 267, 757–766 (2013).

    Article  PubMed  Google Scholar 

  261. Pazahr, S. et al. Magnetization transfer for the assessment of bowel fibrosis in patients with Crohn’s disease: initial experience. MAGMA 26, 291–301 (2013).

    Article  CAS  PubMed  Google Scholar 

  262. Li, X. H. et al. Characterization of degree of intestinal fibrosis in patients with Crohn disease by using magnetization transfer MR imaging. Radiology 287, 494–503 (2018).

    Article  PubMed  Google Scholar 

  263. Chiorean, M. V. et al. Correlation of CT enteroclysis with surgical pathology in Crohn’s disease. Am. J. Gastroenterol. 102, 2541–2550 (2007).

    Article  PubMed  Google Scholar 

  264. Jensen, M. D., Kjeldsen, J., Rafaelsen, S. R. & Nathan, T. Diagnostic accuracies of MR enterography and CT enterography in symptomatic Crohn’s disease. Scand. J. Gastroenterol. 46, 1449–1457 (2011).

    Article  PubMed  Google Scholar 

  265. Guyatt, G. H., Kirshner, B. & Jaeschke, R. Measuring health status: what are the necessary measurement properties? J. Clin. Epidemiol. 45, 1341–1345 (1992).

    Article  CAS  PubMed  Google Scholar 

  266. Gordon, I. O. et al. Histopathology scoring systems of stenosis associated with small bowel Crohn’s disease: a systematic review. Gastroenterology 158, 137–150.e131 (2020).

    Article  PubMed  Google Scholar 

  267. Li, P. et al. Histopathologic correlates of kidney function: insights from nephrectomy specimens. Am. J. Kidney Dis. 77, 336–345 (2021).

    Article  PubMed  Google Scholar 

  268. Tziastoudi, M. et al. Key genetic components of fibrosis in diabetic nephropathy: an updated systematic review and meta-analysis. Int. J. Mol. Sci. 23, 15331 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Corredor, Z. et al. Genetic variants associated with chronic kidney disease in a Spanish population. Sci. Rep. 10, 144 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Fountoglou, A., Deltas, C., Siomou, E. & Dounousi, E. Genome-wide association studies reconstructing chronic kidney disease. Nephrol. Dial. Transpl. 39, 395–402 (2024).

    Article  CAS  Google Scholar 

  271. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  272. Kida, Y., Ieronimakis, N., Schrimpf, C., Reyes, M. & Duffield, J. S. EphrinB2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J. Am. Soc. Nephrol. 24, 559–572 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Duffield, J. S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 124, 2299–2306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Kramann, R., Tanaka, M. & Humphreys, B. D. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice. J. Am. Soc. Nephrol. 25, 1924–1931 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Kramann, R., Wongboonsin, J., Chang-Panesso, M., Machado, F. G. & Humphreys, B. D. Gli1+ pericyte loss induces capillary rarefaction and proximal tubular injury. J. Am. Soc. Nephrol. 28, 776–784 (2017).

    Article  CAS  PubMed  Google Scholar 

  276. Babickova, J. et al. Regardless of etiology, progressive renal disease causes ultrastructural and functional alterations of peritubular capillaries. Kidney Int. 91, 70–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  277. Fioretto, P., Steffes, M. W., Sutherland, D. E., Goetz, F. C. & Mauer, M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N. Engl. J. Med. 339, 69–75 (1998).

    Article  CAS  PubMed  Google Scholar 

  278. Adamczak, M. et al. Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotally nephrectomized rats. J. Am. Soc. Nephrol. 14, 2833–2842 (2003).

    Article  CAS  PubMed  Google Scholar 

  279. Ferguson, C. M. et al. Renal fibrosis detected by diffusion-weighted magnetic resonance imaging remains unchanged despite treatment in subjects with renovascular disease. Sci. Rep. 10, 16300 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Cho, M. E., Smith, D. C., Branton, M. H., Penzak, S. R. & Kopp, J. B. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  281. Sharma, K. et al. Pirfenidone for diabetic nephropathy. J. Am. Soc. Nephrol. 22, 1144–1151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Vincenti, F. et al. A phase 2, double-blind, placebo-controlled, randomized study of fresolimumab in patients with steroid-resistant primary focal segmental glomerulosclerosis. Kidney Int. Rep. 2, 800–810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Voelker, J. et al. Anti-TGF-beta1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 28, 953–962 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Sun, Q. et al. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci. Transl. Med. 11, eaat4865 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Denton, C. P. & Khanna, D. Systemic sclerosis. Lancet 390, 1685–1699 (2017).

    Article  PubMed  Google Scholar 

  286. Jeschke, M. G. et al. Scars. Nat. Rev. Dis. Primers 9, 64 (2023).

    Article  PubMed  Google Scholar 

  287. Finnerty, C. C. et al. Hypertrophic scarring: the greatest unmet challenge after burn injury. Lancet 388, 1427–1436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).

    Article  PubMed  Google Scholar 

  289. Ishikawa, Y. & Terao, C. Genetics of systemic sclerosis. J. Scleroderma Relat. Disord. 5, 192–201 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Ortiz-Fernandez, L., Martin, J. & Alarcon-Riquelme, M. E. A summary on the genetics of systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and Sjogren’s syndrome. Clin. Rev. Allergy Immunol. 64, 392–411 (2023).

    Article  CAS  PubMed  Google Scholar 

  291. Asano, Y. The pathogenesis of systemic sclerosis: an understanding based on a common pathologic cascade across multiple organs and additional organ-specific pathologies. J. Clin. Med. 9, 2687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Dumoitier, N. et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor beta and activate fibroblasts. Arthritis Rheumatol. 69, 1078–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  293. Berger, M. & Steen, V. D. Role of anti-receptor autoantibodies in pathophysiology of scleroderma. Autoimmun. Rev. 16, 1029–1035 (2017).

    Article  CAS  PubMed  Google Scholar 

  294. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  295. Riemekasten, G. et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis. 70, 530–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  296. Marangoni, R. G. et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67, 1062–1073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bergmann, C. & Distler, J. H. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 9, 463–477 (2017).

    Article  CAS  PubMed  Google Scholar 

  298. Rius Rigau, A., Luber, M. & Distler, J. H. W. Mouse models of skin fibrosis. Methods Mol. Biol. 2299, 371–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. Beyer, C., Schett, G., Distler, O. & Distler, J. H. Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum. 62, 2831–2844 (2010).

    Article  CAS  PubMed  Google Scholar 

  300. Steen, V. D., Medsger, T. A. Jr. & Rodnan, G. P. d-Penicillamine therapy in progressive systemic sclerosis (scleroderma): a retrospective analysis. Ann. Intern. Med. 97, 652–659 (1982).

    Article  CAS  PubMed  Google Scholar 

  301. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Tashkin, D. P. et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 354, 2655–2666 (2006).

    Article  CAS  PubMed  Google Scholar 

  303. Khanna, D. et al. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 8, 963–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  304. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  305. Highland, K. B. et al. Efficacy and safety of nintedanib in patients with systemic sclerosis-associated interstitial lung disease treated with mycophenolate: a subgroup analysis of the SENSCIS trial. Lancet Respir. Med. 9, 96–106 (2021).

    Article  CAS  PubMed  Google Scholar 

  306. Dobrota, R. et al. Circulating collagen neo-epitopes and their role in the prediction of fibrosis in patients with systemic sclerosis: a multicentre cohort study. Lancet Rheumatol. 3, e175–e184 (2021).

    Article  CAS  PubMed  Google Scholar 

  307. Bergmann, C. et al. 68Ga-FAPI-04 PET-CT for molecular assessment of fibroblast activation and risk evaluation in systemic sclerosis-associated interstitial lung disease: a single-centre, pilot study. Lancet Rheumatol. 3, e185–e194 (2021).

    Article  CAS  PubMed  Google Scholar 

  308. Treutlein, C. et al. Assessment of myocardial fibrosis in patients with systemic sclerosis using [68Ga]Ga-FAPI-04-PET-CT. Eur. J. Nucl. Med. Mol. Imaging 50, 1629–1635 (2023).

    Article  CAS  PubMed  Google Scholar 

  309. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).

    Article  PubMed  Google Scholar 

  310. Estes, C. et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 69, 896–904 (2018).

    Article  PubMed  Google Scholar 

  311. Linden, D. & Romeo, S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J. Hepatol. 79, 1056–1064 (2023).

    Article  CAS  PubMed  Google Scholar 

  312. Caon, E. et al. Exploring the impact of the PNPLA3 I148M variant on primary human hepatic stellate cells using 3D extracellular matrix models. J. Hepatol. 80, 941–956 (2024).

    Article  CAS  PubMed  Google Scholar 

  313. Rady, B. et al. PNPLA3 downregulation exacerbates the fibrotic response in human hepatic stellate cells. PLoS ONE 16, e0260721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Dwi Astarini, F., Ratnasari, N. & Wasityastuti, W. Update on non-alcoholic fatty liver disease-associated single nucleotide polymorphisms and their involvement in liver steatosis, inflammation, and fibrosis: a narrative review. Iran. Biomed. J. 26, 252–268 (2022).

    Article  PubMed  Google Scholar 

  315. Wu, X. et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease. Annu. Rev. Pathol. 18, 411–438 (2023).

    Article  CAS  PubMed  Google Scholar 

  316. Iwakiri, Y., Shah, V. & Rockey, D. C. Vascular pathobiology in chronic liver disease and cirrhosis – current status and future directions. J. Hepatol. 61, 912–924 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Torres Rojas, A. M. & Lorente, S. Liver fibrosis emulation: impact of the vascular fibrotic alterations on hemodynamics. Comput. Biol. Med. 166, 107563 (2023).

    Article  CAS  PubMed  Google Scholar 

  318. Lee, Y. S. & Seki, E. In vivo and in vitro models to study liver fibrosis: mechanisms and limitations. Cell Mol. Gastroenterol. Hepatol. 16, 355–367 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Ravichandra, A. & Schwabe, R. F. Mouse models of liver fibrosis. Methods Mol. Biol. 2299, 339–356 (2021).

    Article  CAS  PubMed  Google Scholar 

  320. Creeden, J. F. et al. Hepatic kinome atlas: an in-depth identification of kinase pathways in liver fibrosis of humans and rodents. Hepatology 76, 1376–1388 (2022).

    Article  CAS  PubMed  Google Scholar 

  321. Benegiamo, G. et al. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J. Exp. Med. 220, e20221738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Delire, B., Starkel, P. & Leclercq, I. Animal models for fibrotic liver diseases: what we have, what we need, and what is under development. J. Clin. Transl. Hepatol. 3, 53–66 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Park, J. et al. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J. Hepatol. 78, 45–56 (2023).

    Article  CAS  PubMed  Google Scholar 

  324. Rockey, D. C. & Friedman, S. L. Fibrosis regression after eradication of hepatitis C virus: from bench to bedside. Gastroenterology 160, 1502–1520.e1501 (2021).

    Article  CAS  PubMed  Google Scholar 

  325. Koda, Y., Nakamoto, N. & Kanai, T. Regulation of progression and resolution of liver fibrosis by immune cells. Semin. Liver Dis. 42, 475–488 (2022).

    Article  CAS  PubMed  Google Scholar 

  326. Sanyal, A. J., Castera, L. & Wong, V. W. Noninvasive assessment of liver fibrosis in NAFLD. Clin. Gastroenterol. Hepatol. 21, 2026–2039 (2023).

    Article  CAS  PubMed  Google Scholar 

  327. Natarajan, Y. & Loomba, R. Magnetic resonance elastography for the clinical risk assessment of fibrosis, cirrhosis, and portal hypertension in patients with NAFLD. J. Clin. Exp. Hepatol. 12, 174–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  328. Sanyal, A. J. et al. Cirrhosis regression is associated with improved clinical outcomes in patients with nonalcoholic steatohepatitis. Hepatology 75, 1235–1246 (2022).

    Article  CAS  PubMed  Google Scholar 

  329. Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat. Med. 28, 1277–1287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Loomba, R. et al. Liver stiffness thresholds to predict disease progression and clinical outcomes in bridging fibrosis and cirrhosis. Gut 72, 581–589 (2023).

    Article  CAS  PubMed  Google Scholar 

  331. Harrison, S. A., Loomba, R., Dubourg, J., Ratziu, V. & Noureddin, M. Clinical trial landscape in NASH. Clin. Gastroenterol. Hepatol. 21, 2001–2014 (2023).

    Article  CAS  PubMed  Google Scholar 

  332. Dufour, J. F. et al. Current therapies and new developments in NASH. Gut 71, 2123–2134 (2022).

    Article  CAS  PubMed  Google Scholar 

  333. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  334. Rogliani, P., Calzetta, L., Cavalli, F., Matera, M. G. & Cazzola, M. Pirfenidone, nintedanib and N-acetylcysteine for the treatment of idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Pulm. Pharmacol. Ther. 40, 95–103 (2016).

    Article  CAS  PubMed  Google Scholar 

  335. Naqvi, M. et al. Antifibrotic therapy in progressive pulmonary fibrosis: a review of recent advances. Expert Rev. Respir. Med. 18, 397–407 (2024).

    Article  CAS  PubMed  Google Scholar 

  336. Akasaka, E., Kleiser, S., Sengle, G., Bruckner-Tuderman, L. & Nystrom, A. Diversity of mechanisms underlying latent TGF-beta activation in recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 141, 1450–1460 e1459 (2021).

    Article  CAS  PubMed  Google Scholar 

  337. Leoncini, G. et al. Blood pressure reduction and RAAS inhibition in diabetic kidney disease: therapeutic potentials and limitations. J. Nephrol. 33, 949–963 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. van der Aart-van der Beek, A. B., de Boer, R. A. & Heerspink, H. J. L. Kidney and heart failure outcomes associated with SGLT2 inhibitor use. Nat. Rev. Nephrol. 18, 294–306 (2022).

    Article  PubMed  Google Scholar 

  339. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  340. Ratziu, V. & Friedman, S. L. Why do so many nonalcoholic steatohepatitis trials fail? Gastroenterology 165, 5–10 (2023).

    Article  PubMed  Google Scholar 

  341. Choi, S. E., Fogo, A. B. & Lim, B. J. Histologic evaluation of activity and chronicity of lupus nephritis and its clinical significance. Kidney Res. Clin. Pract. 42, 166–173 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Torok, N. J., Dranoff, J. A., Schuppan, D. & Friedman, S. L. Strategies and endpoints of antifibrotic drug trials: summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 62, 627–634 (2015).

    Article  PubMed  Google Scholar 

  343. Rea, G. et al. Beyond visual interpretation: quantitative analysis and artificial intelligence in interstitial lung disease diagnosis “Expanding Horizons in Radiology”. Diagnostics 13, 2333 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Walker, P. D. et al. Practice guidelines for the renal biopsy. Mod. Pathol. 17, 1555–1563 (2004).

    Article  PubMed  Google Scholar 

  345. Showalter, K. & Gordon, J. K. Skin histology in systemic sclerosis: a relevant clinical biomarker. Curr. Rheumatol. Rep. 23, 3 (2020).

    Article  PubMed  Google Scholar 

  346. Santiago, T. et al. Ultrasound and elastography in the assessment of skin involvement in systemic sclerosis: a systematic literature review focusing on validation and standardization - WSF Skin Ultrasound Group. Semin. Arthritis Rheum. 52, 151954 (2022).

    Article  PubMed  Google Scholar 

  347. Furst, D. E. et al. The modified Rodnan skin score is an accurate reflection of skin biopsy thickness in systemic sclerosis. J. Rheumatol. 25, 84–88 (1998).

    CAS  PubMed  Google Scholar 

  348. Sanyal, A. J. et al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54, 344–353 (2011).

    Article  PubMed  Google Scholar 

  349. Maher, T. M. et al. Rituximab versus intravenous cyclophosphamide in patients with connective tissue disease-associated interstitial lung disease in the UK (RECITAL): a double-blind, double-dummy, randomised, controlled, phase 2b trial. Lancet Respir. Med. 11, 45–54 (2023).

    Article  CAS  PubMed  Google Scholar 

  350. Visca, D. et al. Effect of ambulatory oxygen on quality of life for patients with fibrotic lung disease (AmbOx): a prospective, open-label, mixed-method, crossover randomised controlled trial. Lancet Respir. Med. 6, 759–770 (2018).

    Article  PubMed  Google Scholar 

  351. Meima-van Praag, E. M., Buskens, C. J., Hompes, R. & Bemelman, W. A. Surgical management of Crohn’s disease: a state of the art review. Int. J. Colorectal Dis. 36, 1133–1145 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  352. Yamamoto, H. et al. Guidelines for endoscopic balloon dilation in treating Crohn’s disease-associated small intestinal strictures (supplement to the Clinical Practice Guidelines for Enteroscopy). Dig. Endosc. 34, 1278–1296 (2022).

    Article  PubMed  Google Scholar 

  353. Levine, M. J. Empagliflozin for type 2 diabetes mellitus: an overview of phase 3 clinical trials. Curr. Diabetes Rev. 13, 405–423 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Chertow, G. M. et al. Effects of dapagliflozin in chronic kidney disease, with and without other cardiovascular medications: DAPA-CKD trial. J. Am. Heart Assoc. 12, e028739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Bakris, G. L. et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383, 2219–2229 (2020).

    Article  CAS  PubMed  Google Scholar 

  356. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  357. Heerspink, H. J. L. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402, 2004–2017 (2023).

    Article  CAS  PubMed  Google Scholar 

  358. Heerspink, H. J. L. et al. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial. Lancet 393, 1937–1947 (2019).

    Article  CAS  PubMed  Google Scholar 

  359. Hoyles, R. K. et al. A multicenter, prospective, randomized, double-blind, placebo-controlled trial of corticosteroids and intravenous cyclophosphamide followed by oral azathioprine for the treatment of pulmonary fibrosis in scleroderma. Arthritis Rheum. 54, 3962–3970 (2006).

    Article  CAS  PubMed  Google Scholar 

  360. Macrea, M. et al. Rituximab in patients with systemic sclerosis-associated interstitial lung disease: a systematic review and meta-analysis. Ann. Am. Thorac. Soc. 21, 317–327 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  361. Kuzumi, A. et al. Long-term outcomes after rituximab treatment for patients with systemic sclerosis: follow-up of the DESIRES trial with a focus on serum immunoglobulin levels. JAMA Dermatol. 159, 374–383 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  362. Ebata, S. et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): open-label extension of a double-blind, investigators-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 4, e546–e555 (2022).

    Article  CAS  PubMed  Google Scholar 

  363. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  364. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498 (2014).

    Article  PubMed  Google Scholar 

  365. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR T cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

  366. Muller, F. et al. CD19 CAR T-cell therapy in autoimmune disease - a case series with follow-up. N. Engl. J. Med. 390, 687–700 (2024).

    Article  PubMed  Google Scholar 

  367. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  368. Merkt, W. et al. Third-generation CD19.CAR-T cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheum. Dis. 83, 543–546 (2024).

    Article  PubMed  Google Scholar 

  369. Zhang, C. Y., Liu, S. & Yang, M. Treatment of liver fibrosis: past, current, and future. World J. Hepatol. 15, 755–774 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  370. Cao, J. et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science 361, 1380–1385 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  372. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Eng, C. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Sommerfeld, S. D. et al. Interleukin-36gamma-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 4, eaax4783 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Xu, Y. et al. A transient wave of Bhlhe41+ resident macrophages enables remodeling of the developing infarcted myocardium. Cell Rep. 42, 113174 (2023).

    Article  CAS  PubMed  Google Scholar 

  379. Wu, H., Kirita, Y., Donnelly, E. L. & Humphreys, B. D. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis. J. Am. Soc. Nephrol. 30, 23–32 (2019).

    Article  CAS  PubMed  Google Scholar 

  380. Dudley, J. T. et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci. Transl. Med. 3, 96ra76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Helmsley Charitable Trust for supporting the construction of a pathway to test antifibrotic therapies in IBD. The research of L.E.N. is funded in part by grants from NIH P50AA024333, R01AA027456, U01AA026398 and R01AA030699. B.H.’s research is supported by grants from the Canadian Institutes of Health Research CIHR (#375597, #190081) and joint support from the Canada Foundation for Innovation (CFI) and the Ontario Research Fund (ORF) (#36050, #38861, #36349). T.M.M. is supported by an NIHR Clinician Scientist Fellowship (NIHR Ref: CS-2013-13-017) British Lung Foundation Chair in Respiratory Research (C17-3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to discussion of the content and wrote sections of the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Florian Rieder or Marco Prunotto.

Ethics declarations

Competing interests

F.R. is on the advisory board of or consultant to Adiso, Adnovate, Agomab, Allergan, AbbVie, Arena, AstraZeneca, Bausch & Lomb, Boehringer-Ingelheim, Celgene/BMS, Celltrion, CDISC, Celsius, Cowen, Eugit, Ferring, Galapagos, Galmed, Genentech, Gilead, Gossamer, Granite, Guidepoint, Helmsley, Horizon Therapeutics, Image Analysis Limited, Index Pharma, Landos, Janssen, Koutif, Mestag, Metacrine, Mirum, Mopac, Morphic, Myka Labs, Organovo, Origo, Palisade, Pfizer, Pliant, Prometheus Biosciences, Receptos, RedX, Roche, Samsung, Sanofi, Surmodics, Surrozen, Takeda, Techlab, Teva, Theravance, Thetis, Trix Bio, UCB, Ysios and 89Bio. J.H.W.D. has consultancy relationships with and/or is part of the speaker or advisory board of AbbVie, Active Biotech, Anamar, ARXX, AstraZeneca, Bayer Pharma, Boehringer-Ingelheim, Calliditas Therapeutics, Celgene, Galapagos, Genentech, GSK, Inventiva, Janssen, Novartis, Pfizer, Roche and UCB. J.H.W.D. has received research funding from Anamar, Argenx, ARXX, BMS, Bayer Pharma, Boehringer-Ingelheim, Cantargia, Celgene, CSL Behring, Galapagos, GSK, Inventiva, Kiniksa, Lassen, Sanofi-Aventis, RedX and UCB. J.H.W.D. is CEO of 4D Science and Scientific Lead of FibroCure. R.K. is founder and shareholder of Sequantrix GmbH and has grants from Travere Therapeutics, Galapagos, Chugai, AskBio and Novo Nordisk and is a consultant for Bayer, Roche, Chugai, Pfizer, Novo Nordisk, Hybridize Therapeutics and Gruenenthal. T.M.M., via his institution, has received industry-academic funding from AstraZeneca and GlaxoSmithKline R&D; and consultancy or speaker fees from AstraZeneca, Bayer, Boehringer-Ingelheim, BMS, CSL Behring, Fibrogen, Galapagos, Galecto, GlaxoSmithKline, IQVIA, Merck, Pliant, Pfizer, Qureight, Roche, Sanofi-Aventis, Structure Therapeutics, Trevi and Veracyte. M.P. is an employee of Medicxi Ventures. L.E.N. and B.H. declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Prakash Ramachandran, Frank Tacke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Pliant Therapeutics provides update on BEACON-IPF, a phase 2b/3 trial in patients with idiopathic pulmonary fibrosis: https://ir.pliantrx.com/news-releases/news-release-details/pliant-therapeutics-provides-update-beacon-ipf-phase-2b3-trial-0

ClinicalTrials.gov: https://clinicaltrials.gov

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieder, F., Nagy, L.E., Maher, T.M. et al. Fibrosis: cross-organ biology and pathways to development of innovative drugs. Nat Rev Drug Discov 24, 543–569 (2025). https://doi.org/10.1038/s41573-025-01158-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-025-01158-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research