Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Next generation of gastrointestinal electrophysiology devices

This Comment reviews the evolution from early electrophysiological studies to advanced diagnostic tools, highlighting the challenges and innovations shaping the future of gastrointestinal diagnostics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the integration and representative data processing framework for GIE medical devices.

References

  1. Alvarez, W. C. Action currents in stomach and intestine. Am. J. Physiol. 58, 476–493 (1922).

    Article  CAS  Google Scholar 

  2. Sebaratnam, G. et al. Standardized system and app for continuous patient symptom logging in gastroduodenal disorders: design, implementation, and validation. Neurogastroenterol. Motil. 34, e14331 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gharibans, A. A. et al. Gastric dysfunction in patients with chronic nausea and vomiting syndromes defined by a noninvasive gastric mapping device. Sci. Transl. Med. 14, eabq3544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu, M. et al. Minimally invasive power sources for implantable electronics. Exploration 4, 20220106 (2024).

    Article  PubMed  Google Scholar 

  5. Yang, S.-Y. et al. Powering implantable and ingestible electronics. Adv. Funct. Mater. 31, 2009289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nan, K. et al. Mucosa-interfacing electronics. Nat. Rev. Mater. 7, 908–925 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abdigazy, A. et al. End-to-end design of ingestible electronics. Nat. Electron. 7, 102–118 (2024).

    Article  Google Scholar 

  8. Tremain, P. et al. Endoscopic mapping of bioelectric slow waves in the gastric antrum. Device 2, 100292 (2024).

    Article  Google Scholar 

  9. Rodriguez de Santiago, E. et al. Reducing the environmental footprint of gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology and Endoscopy Nurses and Associates (ESGENA) position statement. Endoscopy 54, 797–826 (2022).

    Article  PubMed  Google Scholar 

  10. You, S. S. et al. An ingestible device for gastric electrophysiology. Nat. Electron. https://doi.org/10.1038/s41928-024-01160-w (2024).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Hu or Yunlong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., You, S.S., Gao, Z. et al. Next generation of gastrointestinal electrophysiology devices. Nat Rev Gastroenterol Hepatol 21, 457–458 (2024). https://doi.org/10.1038/s41575-024-00952-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-024-00952-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing