Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Actions of thyroid hormones and thyromimetics on the liver

Abstract

Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus–pituitary–thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.

Key points

  • Hypothyroidism is associated with metabolic dysfunction-associated steatohepatitis (MASH).

  • Deiodinase 1 mRNA and protein expression and activity are downregulated as MASH progresses to cause ‘intrahepatic’ hypothyroidism.

  • Increased lipogenesis and decreased fatty acid β-oxidation cause hepatosteatosis and lipotoxicity that lead to inflammation and fibrosis in MASH.

  • Thyroid hormones increase autophagy of lipids (lipophagy), β-oxidation of fatty acids and mitochondrial turnover to reverse inflammation and fibrosis.

  • Thyroid hormones or thyromimetics are effective therapeutic agents for MASH in mouse and human studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A critical developmental window of Dio2 expression governs susceptibility to diet- and alcohol-induced hepatic steatosis in mice.
Fig. 2: Thyroid hormone regulation of hepatic triglycerides and cholesterol metabolism.
Fig. 3: Thyroid hormone regulation of hepatic glucose metabolism.

Similar content being viewed by others

References

  1. Roelfsema, F., Boelen, A., Kalsbeek, A. & Fliers, E. Regulatory aspects of the human hypothalamus-pituitary-thyroid axis. Best. Pract. Res. Clin. Endocrinol. Metab. 31, 487–503 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Refetoff, S. in Endotext (eds Feingold K. R. et al.) (MDText.com, 2000).

  3. Pappa, T., Ferrara, A. M. & Refetoff, S. Inherited defects of thyroxine-binding proteins. Best. Pract. Res. Clin. Endocrinol. Metab. 29, 735–747 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groeneweg, S., van Geest, F. S., Peeters, R. P., Heuer, H. & Visser, W. E. Thyroid hormone transporters. Endocr. Rev. 41, bnz008 (2020).

    Article  PubMed  Google Scholar 

  5. Russo, S. C., Salas-Lucia, F. & Bianco, A. C. Deiodinases and the metabolic code for thyroid hormone action. Endocrinology 162, bqab059 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bianco, A. C. et al. Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. 40, 1000–1047 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 14, 947–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Pihlajamaki, J. et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J. Clin. Endocrinol. Metab. 94, 3521–3529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohba, K. et al. Desensitization and incomplete recovery of hepatic target genes after chronic thyroid hormone treatment and withdrawal in male adult mice. Endocrinology 157, 1660–1672 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. de Assis, L. V. M. et al. Tuning of liver circadian transcriptome rhythms by thyroid hormone state in male mice. Sci. Rep. 14, 640 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anselmo, J. & Chaves, C. M. Physiologic significance of epigenetic regulation of thyroid hormone target gene expression. Eur. Thyroid. J. 9, 114–123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darras, V. M., Houbrechts, A. M. & Van Herck, S. L. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. Biochim. Biophys. Acta 1849, 130–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Rodd, C., Schwartz, H. L., Strait, K. A. & Oppenheimer, J. H. Ontogeny of hepatic nuclear triiodothyronine receptor isoforms in the rat. Endocrinology 131, 2559–2564 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Keijzer, R. et al. Expression of thyroid hormone receptors A and B in developing rat tissues; evidence for extensive posttranscriptional regulation. J. Mol. Endocrinol. 38, 523–535 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Forrest, D. & Vennstrom, B. Functions of thyroid hormone receptors in mice. Thyroid 10, 41–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Feng, X., Jiang, Y., Meltzer, P. & Yen, P. M. Transgenic targeting of a dominant negative corepressor to liver blocks basal repression by thyroid hormone receptor and increases cell proliferation. J. Biol. Chem. 276, 15066–15072 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Astapova, I. & Hollenberg, A. N. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim. Biophys. Acta 1830, 3876–3881 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Yen, P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81, 1097–1142 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Mullur, R., Liu, Y. Y. & Brent, G. A. Thyroid hormone regulation of metabolism. Physiol. Rev. 94, 355–382 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brtko, J. Thyroid hormone and thyroid hormone nuclear receptors: history and present state of art. Endocr. Regul. 55, 103–119 (2021).

    Article  PubMed  Google Scholar 

  21. Bhat, M. K., Parkison, C., McPhie, P., Liang, C. M. & Cheng, S. Y. Conformational changes of human β1 thyroid hormone receptor induced by binding of 3,3′,5-triiodo-L-thyronine. Biochem. Biophys. Res. Commun. 195, 385–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Astapova, I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J. Mol. Endocrinol. 56, 73–97 (2016).

    Article  PubMed  Google Scholar 

  23. Liu, Y., Xia, X., Fondell, J. D. & Yen, P. M. Thyroid hormone-regulated target genes have distinct patterns of coactivator recruitment and histone acetylation. Mol. Endocrinol. 20, 483–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Praestholm, S. M. et al. Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genet. 16, e1008770 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malik, S. et al. Structural and functional organization of TRAP220, the TRAP/mediator subunit that is targeted by nuclear receptors. Mol. Cell Biol. 24, 8244–8254 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandey, P. K. et al. Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol. Cell Biol. 25, 10695–10710 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cordeiro, A., Souza, L. L., Einicker-Lamas, M. & Pazos-Moura, C. C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol. 216, R47–R57 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Davis, P. J., Shih, A., Lin, H. Y., Martino, L. J. & Davis, F. B. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J. Biol. Chem. 275, 38032–38039 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Gionfra, F. et al. The role of thyroid hormones in hepatocyte proliferation and liver cancer. Front. Endocrinol. 10, 532 (2019).

    Article  Google Scholar 

  30. Tang, Q., Zeng, M., Chen, L. & Fu, N. Targeting thyroid hormone/thyroid hormone receptor axis: an attractive therapy strategy in liver diseases. Front. Pharmacol. 13, 871100 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sinha, R. A. & Yen, P. M. Metabolic messengers: thyroid hormones. Nat. Metab. 6, 639–650 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dittrich, R. et al. Thyroid hormone receptors and reproduction. J. Reprod. Immunol. 90, 58–66 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Selva, D. M. & Hammond, G. L. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4α. J. Mol. Endocrinol. 43, 19–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Shen, M. & Shi, H. Sex hormones and their receptors regulate liver energy homeostasis. Int. J. Endocrinol. 2015, 294278 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 78, 1966–1986 (2023).

    Article  PubMed  Google Scholar 

  36. Fonseca, T. L. et al. Perinatal deiodinase 2 expression in hepatocytes defines epigenetic susceptibility to liver steatosis and obesity. Proc. Natl Acad. Sci. USA 112, 14018–14023 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fonseca, T. L. et al. Hepatic inactivation of the type 2 deiodinase confers resistance to alcoholic liver steatosis. Alcohol. Clin. Exp. Res. 43, 1376–1383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Castillo, M. et al. Disruption of thyroid hormone activation in type 2 deiodinase knockout mice causes obesity with glucose intolerance and liver steatosis only at thermoneutrality. Diabetes 60, 1082–1089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fonseca, T. L., Garcia, T., Fernandes, G. W., Nair, T. M. & Bianco, A. C. Neonatal thyroxine activation modifies epigenetic programming of the liver. Nat. Commun. 12, 4446 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hidalgo-Alvarez, J., Salas-Lucia, F., Vera Cruz, D., Fonseca, T. L. & Bianco, A. C. Localized T3 production modifies the transcriptome and promotes the hepatocyte-like lineage in iPSC-derived hepatic organoids. JCI insight 8, e173780 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Compr. Physiol. 8, 1–8 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. Bruinstroop, E. et al. Low-dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD. J. Clin. Endocrinol. Metab. 103, 2698–2706 (2018).

    Article  PubMed  Google Scholar 

  43. Kouidhi, S. & Clerget-Froidevaux, M. S. Integrating thyroid hormone signaling in hypothalamic control of metabolism: crosstalk between nuclear receptors. Int. J. Mol. Sci. 19, 2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. López, M., Alvarez, C. V., Nogueiras, R. & Diéguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    Article  PubMed  Google Scholar 

  45. Ritter, M. J., Amano, I. & Hollenberg, A. N. Thyroid hormone signaling and the liver. Hepatology 72, 742–752 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Sinha, R. A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tseng, Y. H. et al. Chromosome 19 open reading frame 80 is upregulated by thyroid hormone and modulates autophagy and lipid metabolism. Autophagy 10, 20–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Nelson, B. D., Luciakova, K., Li, R. & Betina, S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim. Biophys. Acta 1271, 85–91 (1995).

    Article  PubMed  Google Scholar 

  49. Ramanathan, R., Patwa, S. A., Ali, A. H. & Ibdah, J. A. Thyroid hormone and mitochondrial dysfunction: therapeutic implications for metabolic dysfunction-associated steatotic liver disease (MASLD). Cells 12, 2806 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Weitzel, J. M. & Iwen, K. A. Coordination of mitochondrial biogenesis by thyroid hormone. Mol. Cell. Endocrinol. 342, 1–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Singh, B. K. et al. Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci. Signal. 11, eaam5855 (2018).

    Article  PubMed  Google Scholar 

  52. Thakran, S. et al. Role of sirtuin 1 in the regulation of hepatic gene expression by thyroid hormone. J. Biol. Chem. 288, 807–818 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Sinha, R. A. et al. Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy 11, 1341–1357 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sinha, R. A. & Yen, P. M. Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD. Cell Biosci. 6, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lopez, D., Abisambra Socarras, J. F., Bedi, M. & Ness, G. C. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim. Biophys. Acta 1771, 1216–1225 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Shin, D. J. & Osborne, T. F. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J. Biol. Chem. 278, 34114–34118 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ness, G. C., Pendleton, L. C., Li, Y. C. & Chiang, J. Y. Effect of thyroid hormone on hepatic cholesterol 7α hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun. 172, 1150–1156 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Johansson, L. et al. Selective thyroid receptor modulation by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. Proc. Natl Acad. Sci. USA 102, 10297–10302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bakker, O., Hudig, F., Meijssen, S. & Wiersinga, W. M. Effects of triiodothyronine and amiodarone on the promoter of the human LDL receptor gene. Biochem. Biophys. Res. Commun. 249, 517–521 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Yap, C. S., Sinha, R. A., Ota, S., Katsuki, M. & Yen, P. M. Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochem. Biophys. Res. Commun. 440, 635–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Davidson, N. O., Powell, L. M., Wallis, S. C. & Scott, J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J. Biol. Chem. 263, 13482–13485 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Goldberg, I. J. et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology 153, 5143–5149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lammel Lindemann, J. A., Angajala, A., Engler, D. A., Webb, P. & Ayers, S. D. Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. Mol. Cell Endocrinol. 388, 32–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vatner, D. F. et al. Thyroid hormone receptor-β agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305, E89–E100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nebioglu, S., Wathanaronchai, P., Nebioglu, D., Pruden, E. L. & Gibson, D. M. Mechanisms underlying enhanced glycogenolysis in livers of 3,5,3′-triiodothyronine-treated rats. Am. J. Physiol. 258, E109–E116 (1990).

    CAS  PubMed  Google Scholar 

  67. McCulloch, A. J. et al. Evidence that thyroid hormones regulate gluconeogenesis from glycerol in man. Clin. Endocrinol. 19, 67–76 (1983).

    Article  CAS  Google Scholar 

  68. Sinha, R. A., Singh, B. K. & Yen, P. M. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol. Metab. 25, 538–545 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Park, E. A., Song, S., Vinson, C. & Roesler, W. J. Role of CCAAT enhancer-binding protein β in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. J. Biol. Chem. 274, 211–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Suh, J. H. et al. SIRT1 is a direct coactivator of thyroid hormone receptor β1 with gene-specific actions. PLoS ONE 8, e70097 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, B. K. et al. Hepatic FOXO1 target genes are co-regulated by thyroid hormone via RICTOR protein deacetylation and MTORC2-AKT protein inhibition. J. Biol. Chem. 291, 198–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Singh, B. K. et al. FoxO1 deacetylation regulates thyroid hormone-induced transcription of key hepatic gluconeogenic genes. J. Biol. Chem. 288, 30365–30372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Weinstein, S. P., O’Boyle, E., Fisher, M. & Haber, R. S. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology 135, 649–654 (1994).

    Article  CAS  PubMed  Google Scholar 

  74. Nader, N. S. et al. Relationships between thyroid function and lipid status or insulin resistance in a pediatric population. Thyroid 20, 1333–1339 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Yan, Y. et al. Hepatic thyroid hormone signalling modulates glucose homeostasis through the regulation of GLP-1 production via bile acid-mediated FXR antagonism. Nat. Commun. 13, 6408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sokoloff, L. & Kaufman, S. Effects of thyroxin on amino acid incorporation into protein. Science 129, 569–570 (1959).

    Article  CAS  PubMed  Google Scholar 

  77. Raza, S., Rajak, S., Anjum, B. & Sinha, R. A. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. Hepatoma Res. 5, 42 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Kenessey, A. & Ojamaa, K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J. Biol. Chem. 281, 20666–20672 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Grofte, T. et al. Hepatic amino nitrogen conversion and organ N-contents in hypothyroidism, with thyroxine replacement, and in hyperthyroid rats. J. Hepatol. 26, 409–416 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, X. et al. Thyroid hormone-regulated expression of period2 promotes liver urate production. Front. Cell Dev. Biol. 9, 636802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Araki, O., Ying, H., Zhu, X. G., Willingham, M. C. & Cheng, S. Y. Distinct dysregulation of lipid metabolism by unliganded thyroid hormone receptor isoforms. Mol. Endocrinol. 23, 308–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chaves, C., Bruinstroop, E., Refetoff, S., Yen, P. M. & Anselmo, J. Increased hepatic fat content in patients with resistance to thyroid hormone beta. Thyroid 31, 1127–1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laclaustra, M. et al. Impaired sensitivity to thyroid hormones is associated with diabetes and metabolic syndrome. Diabetes Care 42, 303–310 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Jornayvaz, F. R. et al. Thyroid hormone receptor-α gene knockout mice are protected from diet-induced hepatic insulin resistance. Endocrinology 153, 583–591 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Manka, P. et al. Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells. Liver Int. 44, 125–138 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Kwakkel, J. et al. A novel role for the thyroid hormone-activating enzyme type 2 deiodinase in the inflammatory response of macrophages. Endocrinology 155, 2725–2734 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Fava, G. et al. Thyroid hormone inhibits biliary growth in bile duct-ligated rats by PLC/IP3/Ca2+-dependent downregulation of SRC/ERK1/2. Am. J. Physiol. Cell Physiol. 292, C1467–C1475 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Bruinstroop, E., van der Spek, A. H. & Boelen, A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur. Thyroid. J. 12, e220211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bruinstroop, E. et al. Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression. Mol. Metab. 53, 101266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bohinc, B. N. et al. Repair-related activation of hedgehog signaling in stromal cells promotes intrahepatic hypothyroidism. Endocrinology 155, 4591–4601 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Friesema, E. C. et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J. Biol. Chem. 278, 40128–40135 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Friesema, E. C. et al. Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat. Clin. Pract. Endocrinol. Metab. 2, 512–523 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Muller, J. et al. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 155, 315–325 (2014).

    Article  PubMed  Google Scholar 

  94. van Geest, F. S., Gunhanlar, N., Groeneweg, S. & Visser, W. E. Monocarboxylate transporter 8 deficiency: from pathophysiological understanding to therapy development. Front. Endocrinol. 12, 723750 (2021).

    Article  Google Scholar 

  95. Wirth, E. K., Rijntjes, E., Meyer, F., Kohrle, J. & Schweizer, U. High T3, low T4 serum levels in Mct8 deficiency are not caused by increased hepatic conversion through type I deiodinase. Eur. Thyroid. J. 4, 87–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hones, G. S. et al. Cell-specific transport and thyroid hormone receptor isoform selectivity account for hepatocyte-targeted thyromimetic action of MGL-3196. Int. J. Mol. Sci. 23, 13714 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mahdavi, M. et al. Investigating the prevalence of primary thyroid dysfunction in obese and overweight individuals: Tehran Thyroid Study. BMC Endocr. Disord. 21, 89 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Hutchison, A. L., Tavaglione, F., Romeo, S. & Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): beyond insulin resistance. J. Hepatol. 79, 1524–1541 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Elshinshawy, S. et al. The interrelation between hypothyroidism and non-alcoholic fatty liver disease, a cross-sectional study. J. Clin. Exp. Hepatol. 13, 638–648 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fan, H. et al. Low thyroid function is associated with an increased risk of advanced fibrosis in patients with metabolic dysfunction-associated fatty liver disease. BMC Gastroenterol. 23, 3 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Janota, B., Szczepańska, E., Adamek, B. & Janczewska, E. Hypothyroidism and non-alcoholic fatty liver disease: a coincidence or a causal relationship. World J. Hepatol. 15, 641–648 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xie, J. et al. The associations between modifiable risk factors and nonalcoholic fatty liver disease: a comprehensive Mendelian randomization study. Hepatology 77, 949–964 (2023).

    Article  PubMed  Google Scholar 

  104. Bano, A. et al. Thyroid function and the risk of nonalcoholic fatty liver disease: the Rotterdam study. J. Clin. Endocrinol. Metab. 101, 3204–3211 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Lee, K. W. et al. Impact of hypothyroidism on the development of non-alcoholic fatty liver disease: a 4-year retrospective cohort study. Clin. Mol. Hepatol. 21, 372–378 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mantovani, A. et al. Association between primary hypothyroidism and nonalcoholic fatty liver disease: a systematic review and meta-analysis. Thyroid 28, 1270–1284 (2018).

    Article  PubMed  Google Scholar 

  107. Chung, G. E. et al. Non-alcoholic fatty liver disease across the spectrum of hypothyroidism. J. Hepatol. 57, 150–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Pagadala, M. R. et al. Prevalence of hypothyroidism in nonalcoholic fatty liver disease. Dig. Dis. Sci. 57, 528–534 (2012).

    Article  PubMed  Google Scholar 

  109. Kim, D. et al. Subclinical hypothyroidism and low-normal thyroid function are associated with nonalcoholic steatohepatitis and fibrosis. Clin. Gastroenterol. Hepatol. 16, 123–131.e1 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Xu, L., Ma, H., Miao, M. & Li, Y. Impact of subclinical hypothyroidism on the development of non-alcoholic fatty liver disease: a prospective case-control study. J. Hepatol. 57, 1153–1154 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Kim, D. et al. Low thyroid function in nonalcoholic fatty liver disease is an independent predictor of all-cause and cardiovascular mortality. Am. J. Gastroenterol. 115, 1496–1504 (2020).

    Article  PubMed  Google Scholar 

  112. Wiseman, S. A., Powell, J. T., Humphries, S. E. & Press, M. The magnitude of the hypercholesterolemia of hypothyroidism is associated with variation in the low density lipoprotein receptor gene. J. Clin. Endocrinol. Metab. 77, 108–112 (1993).

    CAS  PubMed  Google Scholar 

  113. Abbas, J. M., Chakraborty, J., Akanji, A. O. & Doi, S. A. Hypothyroidism results in small dense LDL independent of IRS traits and hypertriglyceridemia. Endocr. J. 55, 381–389 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Perra, A. et al. Thyroid hormone (T3) and TRβ agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. FASEB J. 22, 2981–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, J. et al. Thyroid hormone decreases hepatic steatosis, inflammation, and fibrosis in a dietary mouse model of nonalcoholic steatohepatitis. Thyroid 32, 725–738 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Sane, R., Wirth, E. K. & Kohrle, J. 3,5-T2-an endogenous thyroid hormone metabolite as promising lead substance in anti-steatotic drug development? Metabolites 12, 582 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. de Lange, P. et al. Nonthyrotoxic prevention of diet-induced insulin resistance by 3,5-diiodo-l-thyronine in rats. Diabetes 60, 2730–2739 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Iannucci, L. F. et al. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep. 7, 2023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ochani, S., Siddiqui, A. & Adnan, A. Adverse effects of long-term levothyroxine therapy in subclinical hypothyroidism. Ann. Med. Surg. 76, 103503 (2022).

    Article  Google Scholar 

  120. Finan, B. et al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167, 843–857.e14 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, R. et al. Conferring liver selectivity to a thyromimetic using a novel nanoparticle increases therapeutic efficacy in a diet-induced obesity animal model. PNAS Nexus 2, pgad252 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ladenson, P. W. et al. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362, 906–916 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Sjouke, B. et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol. 2, 455–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Lammel Lindemann, J. & Webb, P. Sobetirome: the past, present and questions about the future. Expert. Opin. Ther. Targets 20, 145–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Sinha, R. A., Singh, B. K. & Yen, P. M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol. 14, 259–269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cable, E. E. et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology 49, 407–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Erion, M. D. et al. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl Acad. Sci. USA 104, 15490–15495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Caddeo, A. et al. TG68, a novel thyroid hormone receptor-β agonist for the treatment of NAFLD. Int. J. Mol. Sci. 22, 13105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hu, L. et al. Discovery of highly potent and selective thyroid hormone receptor β agonists for the treatment of nonalcoholic steatohepatitis. J. Med. Chem. 66, 3284–3300 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Kowalik, M. A. et al. TRβ is the critical thyroid hormone receptor isoform in T3-induced proliferation of hepatocytes and pancreatic acinar cells. J. Hepatol. 53, 686–692 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  132. Zhou, J. et al. A liver-specific thyromimetic, VK2809, decreases hepatosteatosis in glycogen storage disease type Ia. Thyroid 29, 1158–1167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Harrison, S. A. et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 394, 2012–2024 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Hovingh, G. K. et al. Resmetirom (MGL-3196) in patients with heterozygous familial hypercholesterolemia. J. Am. Coll. Cardiol. 79, 1220–1222 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Wang, X., Wang, L., Geng, L., Tanaka, N. & Ye, B. Resmetirom ameliorates NASH-model mice by suppressing STAT3 and NF-κB signaling pathways in an RGS5-dependent manner. Int. J. Mol. Sci. 24, 5843 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Alonso-Merino, E. et al. Thyroid hormones inhibit TGF-β signaling and attenuate fibrotic responses. Proc. Natl Acad. Sci. USA 113, E3451–E3460 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu, G. et al. Thyroid hormone inhibits lung fibrosis in mice by improving epithelial mitochondrial function. Nat. Med. 24, 39–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Rosner, W., Aden, D. P. & Khan, M. S. Hormonal influences on the secretion of steroid-binding proteins by a human hepatoma-derived cell line. J. Clin. Endocrinol. Metab. 59, 806–808 (1984).

    Article  CAS  PubMed  Google Scholar 

  139. Jansen, H. I., Bruinstroop, E., Heijboer, A. C. & Boelen, A. Biomarkers indicating tissue thyroid hormone status: ready to be implemented yet? J. Endocrinol. 253, R21–R45 (2022).

    Article  CAS  PubMed  Google Scholar 

  140. Ferrara, S. J., Bourdette, D. & Scanlan, T. S. Hypothalamic-pituitary-thyroid axis perturbations in male mice by CNS-penetrating thyromimetics. Endocrinology 159, 2733–2740 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Harrison, S. A. et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled phase 3 trial. Nat. Med. 29, 2919–2928 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Koulouri, O. & Gurnell, M. How to interpret thyroid function tests. Clin. Med. 13, 282–286 (2013).

    Article  Google Scholar 

  143. Journy, N. M. Y. et al. Hyperthyroidism, hypothyroidism, and cause-specific mortality in a large cohort of women. Thyroid 27, 1001–1010 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Riis, T., Bonnema, S. J., Brix, T. H. & Folkestad, L. Hyperthyroidism and the risk of non-thyroid cancer: a Danish register-based long-term follow-up study. Eur. Thyroid. J. 13, e230181 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sahin, T., Oral, A., Turker, F. & Kocak, E. Can hypothyroidism be a protective factor for hepatocellular carcinoma in cirrhosis? Medicine 99, e19492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pinter, M. et al. The impact of thyroid hormones on patients with hepatocellular carcinoma. PLoS ONE 12, e0181878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mishkin, S., Morris, H. P., Yalovsky, M. A. & Murthy, P. V. Inhibition of the growth of Morris hepatoma No. 44 in rats after induction of hypothyroidism: evidence that Morris hepatomas are thyroid dependent. Gastroenterology 77, 547–555 (1979).

    Article  CAS  PubMed  Google Scholar 

  148. Krashin, E., Piekielko-Witkowska, A., Ellis, M. & Ashur-Fabian, O. Thyroid hormones and cancer: a comprehensive review of preclinical and clinical studies. Front. Endocrinol. 10, 59 (2019).

    Article  Google Scholar 

  149. Hassan, M. M. et al. Association between hypothyroidism and hepatocellular carcinoma: a case-control study in the United States. Hepatology 49, 1563–1570 (2009).

    Article  PubMed  Google Scholar 

  150. Ledda-Columbano, G. M., Perra, A., Loi, R., Shinozuka, H. & Columbano, A. Cell proliferation induced by triiodothyronine in rat liver is associated with nodule regression and reduction of hepatocellular carcinomas. Cancer Res. 60, 603–609 (2000).

    CAS  PubMed  Google Scholar 

  151. Kowalik, M. A. et al. Thyroid hormone inhibits hepatocellular carcinoma progression via induction of differentiation and metabolic reprogramming. J. Hepatol. 72, 1159–1169 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Chan, I. H. & Privalsky, M. L. Thyroid hormone receptor mutants implicated in human hepatocellular carcinoma display an altered target gene repertoire. Oncogene 28, 4162–4174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lin, K. H., Shieh, H. Y., Chen, S. L. & Hsu, H. C. Expression of mutant thyroid hormone nuclear receptors in human hepatocellular carcinoma cells. Mol. Carcinog. 26, 53–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Barlow, C., Meister, B., Lardelli, M., Lendahl, U. & Vennstrom, B. Thyroid abnormalities and hepatocellular carcinoma in mice transgenic for v-erbA. EMBO J. 13, 4241–4250 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yang, F. et al. Metabolic reprogramming and its clinical implication for liver cancer. Hepatology 78, 1602–1624 (2023).

    Article  PubMed  Google Scholar 

  156. Caddeo, A. et al. Potential use of TG68 – a novel thyromimetic – for the treatment of non-alcoholic fatty liver (NAFLD)-associated hepatocarcinogenesis. Front. Oncol. 13, 1127517 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sabatino, L., Iervasi, G., Ferrazzi, P., Francesconi, D. & Chopra, I. J. A study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. Life Sci. 68, 191–202 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Nappi, A., De Stefano, M. A., Dentice, M. & Salvatore, D. Deiodinases and cancer. Endocrinology 162, bqab016 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Refetoff, S., Weiss, R. E. & Usala, S. J. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14, 348–399 (1993).

    CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT04173065 (2024).

  161. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT05500222 (2024).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05415722 (2023).

  163. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT06168383 (2024).

  164. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct2/show/NCT06342947 (2024).

  165. Luong, X. G. et al. Regulation of gene transcription by thyroid hormone receptor β agonists in clinical development for the treatment of non-alcoholic steatohepatitis (NASH). PLoS ONE 15, e0240338 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by Wellcome Trust/DBT India Alliance Fellowship (IA/I/16/2/502691) and SERB (CRG/2022/002149) awarded to R.A.S. and CSASI19may-0002 and NMRC/CIRG/1457/2016 to P.M.Y.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Paul M. Yen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Amedeo Columbano, Simona Rapposelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R.A., Bruinstroop, E. & Yen, P.M. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 22, 9–22 (2025). https://doi.org/10.1038/s41575-024-00991-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-024-00991-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing