Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synergistic integration of materials in medical microrobots for advanced imaging and actuation

Abstract

Medical microrobotics capitalizes on smart materials to target specific body sites effectively, precisely and locally, thus holding promise to revolutionize precision medicine in the future. Advances in material science and microfabrication or nanofabrication techniques have facilitated the implementation of a myriad of functionalities into microrobots. Efficient navigation and monitoring of microrobots within the highly dynamic and often inaccessible environment of living mammalian tissues is paramount for their effective in vivo applications and eventual clinical translation. This need calls for the deployment of biomedical imaging modalities with adequate sensitivity, penetration depth and spatiotemporal resolution, as well as for efficient integration of biocompatible contrast materials into microrobots. In this Review, we discuss emerging approaches for multiplexed imaging and actuation of microrobots within complex biological environments, focusing on the synergistic combination of responsive and contrasting materials to achieve desired morphological and functional properties, in vivo visibility and biosafety. The convergence between microrobotics and biomedical imaging paves the way for a new generation of medical microrobots enabling the use of energy for both mechanical actuation and efficient monitoring of their activity in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of typical physical forces acting on medical microrobots.
Fig. 2: Overview of actuation (propulsion) mechanisms, materials and fabrication methods available for MMs.
Fig. 3: Overview of energy forms used for medical microrobot actuation and biomedical imaging.
Fig. 4: Operational characteristics of common biomedical imaging and actuation modalities for visualizing medical microrobots in vivo.
Fig. 5: Multiplexing of medical microrobot biomedical imaging systems with actuation systems.
Fig. 6: Workflow of a MM from laboratory testing to clinical translation.

Similar content being viewed by others

References

  1. Araki, T. The history of optical microscope. Mech. Eng. Rev. 4, 16-00242 (2017).

    Article  Google Scholar 

  2. Röntgen, W. K. A new form of radiation. Science 3, 726–729 (1896).

    Article  PubMed  Google Scholar 

  3. Feynman, R. Electrical Engineering Handbook 3–12 (CRC, 2012).

  4. Lu, W., Yao, J., Zhu, X. & Qi, Y. Nanomedicines: redefining traditional medicine. Biomed. Pharmacother. 134, 111103 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Iacovacci, V., Diller, E., Ahmed, D. & Menciassi, A. Medical microrobots. Annu. Rev. Biomed. Eng. 26, 561–591 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Del Campo Fonseca, A. & Ahmed, D. Ultrasound robotics for precision therapy. Adv. Drug Deliv. Rev. 205, 115164 (2024).

    Article  PubMed  Google Scholar 

  7. Nelson, B. J. & Pané, S. Delivering drugs with microrobots. Science 382, 1120–1122 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Strebhardt, K. & Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Go, G. et al. Human adipose-derived mesenchymal stem cell-based medical microrobot system for knee cartilage regeneration in vivo. Sci. Robot. 5, eaay6626 (2020).

    Article  PubMed  Google Scholar 

  10. Wrede, P. et al. Real-time 3D optoacoustic tracking of cell-sized magnetic microrobots circulating in the mouse brain vasculature. Sci. Adv. 8, eabm9132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Del Campo Fonseca, A. et al. Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nat. Commun. 14, 5889 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gwisai, T. et al. Engineering living immunotherapeutic agents for improved cancer treatment. Adv. Ther. 7, 2300302 (2024).

    Article  CAS  Google Scholar 

  13. Go, G. et al. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. Sci. Adv. 8, eabq8545 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li, N. et al. Human-scale navigation of magnetic microrobots in hepatic arteries. Sci. Robot. 9, eadh8702 (2024).

    Article  PubMed  Google Scholar 

  16. Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).

    Article  Google Scholar 

  17. Soto, F. et al. Smart materials for microrobots. Chem. Rev. 122, 5365–5403 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, J. et al. Advanced materials for micro/nanorobotics. Chem. Soc. Rev. 53, 9190–9253 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A. C. & Sitti, M. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci. Robot. 5, eaba5726 (2020).

    Article  PubMed  Google Scholar 

  21. Bozuyuk, U., Wrede, P., Yildiz, E. & Sitti, M. Roadmap for clinical translation of mobile microrobotics. Adv. Mater. 36, e2311462 (2024).

    Article  PubMed  Google Scholar 

  22. Yasa, I. C., Ceylan, H., Bozuyuk, U., Wild, A.-M. & Sitti, M. Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots. Sci. Robot. 5, eaaz3867 (2020).

    Article  PubMed  Google Scholar 

  23. Olsen Alstrup, A. K. & Winterdahl, M. Imaging techniques in large animals. Scand. J. Lab. Anim. Sci. 36, 55–66 (2014).

    Google Scholar 

  24. Koba, W. et al. Imaging devices for use in small animals. Semin. Nucl. Med. 41, 151–165 (2011).

    Article  PubMed  Google Scholar 

  25. Aziz, A. et al. Nanomaterial-decorated micromotors for enhanced photoacoustic imaging. J. Micro Bio Robot. 19, 37–45 (2023).

    Article  PubMed  Google Scholar 

  26. Nauber, R., Hoppe, J., Robles, D. C. & Medina-Sánchez, M. Photoacoustics-guided real-time closed-loop control of magnetic microrobots through deep learning. In Int. Conf. Manipul. Autom. Robot. Small Scales (MARSS) 1–5 (IEEE, 2024).

  27. Nothnagel, N. et al. Steering of magnetic devices with a magnetic particle imaging system. IEEE Trans. Biomed. Eng. 63, 2286–2293 (2016).

    Article  PubMed  Google Scholar 

  28. Park, J., Kim, J.-Y., Pané, S., Nelson, B. J. & Choi, H. Acoustically mediated controlled drug release and targeted therapy with degradable 3D porous magnetic microrobots. Adv. Healthc. Mater. 10, e2001096 (2021).

    Article  PubMed  Google Scholar 

  29. Dogan, N. O. et al. Remotely guided immunobots engaged in anti-tumorigenic phenotypes for targeted cancer immunotherapy. Small 18, e2204016 (2022).

    Article  PubMed  Google Scholar 

  30. Akolpoglu, M. B. et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 8, eabo6163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sridhar, V. et al. Designing covalent organic framework-based light-driven microswimmers toward therapeutic applications. Adv. Mater. 35, e2301126 (2023).

    Article  PubMed  Google Scholar 

  32. Jooss, V. M., Bolten, J. S., Huwyler, J. & Ahmed, D. In vivo acoustic manipulation of microparticles in zebrafish embryos. Sci. Adv. 8, eabm2785 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lo, W.-C., Fan, C.-H., Ho, Y.-J., Lin, C.-W. & Yeh, C.-K. Tornado-inspired acoustic vortex tweezer for trapping and manipulating microbubbles. Proc. Natl Acad. Sci. USA 118, e2023188118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dabbagh, S. R. et al. 3D-printed microrobots from design to translation. Nat. Commun. 13, 5875 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, K., Tang, C., Ma, H., Fang, X. & Yang, R. 3D-printed microrobots for biomedical applications. Biomater. Sci. 12, 4301–4334 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Aziz, A. et al. Medical imaging of microrobots: toward in vivo applications. ACS Nano 14, 10865–10893 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Sitti, M. Physical intelligence as a new paradigm. Extrem. Mech. Lett. 46, 101340 (2021).

    Article  Google Scholar 

  38. Rajabasadi, F., Schwarz, L., Medina-Sánchez, M. & Schmidt, O. G. 3D and 4D lithography of untethered microrobots. Prog. Mater. Sci. 120, 100808 (2021).

    Article  CAS  Google Scholar 

  39. Sonmez, U. M., Coyle, S., Taylor, R. E. & LeDuc, P. R. Polycarbonate heat molding for soft lithography. Small 16, e2000241 (2020).

    Article  PubMed  Google Scholar 

  40. Li, T., Chang, J., Zhu, Y. & Wu, C. 3D printing of bioinspired biomaterials for tissue regeneration. Adv. Healthc. Mater. 9, e2000208 (2020).

    Article  PubMed  Google Scholar 

  41. Hirt, L., Reiser, A., Spolenak, R. & Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29, 1604211 (2017).

    Article  Google Scholar 

  42. Ibrahim, K. et al. Laser‐directed assembly of nanorods of 2D materials. Small 15, e1904415 (2019).

    Article  PubMed  Google Scholar 

  43. Chung, S. Y. et al. All‐solution‐processed flexible thin film piezoelectric nanogenerator. Adv. Mater. 24, 6022–6027 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Hess-Dunning, A. E., Smith, R. L. & Zorman, C. A. Development of polynorbornene as a structural material for microfluidics and flexible BioMEMS. J. Appl. Polym. Sci. 131, 40969 (2014).

    Article  Google Scholar 

  45. Lyu, X. et al. Capillary trapping of various nanomaterials on additively manufactured scaffolds for 3D micro-/nanofabrication. Nat. Commun. 15, 6693 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J. et al. Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Sci. Robot. 6, abf0112 (2021).

    Article  Google Scholar 

  47. Liu, Z. et al. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat. Commun. 13, 2016 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rohtlaid, K. et al. PEDOT:PSS-based micromuscles and microsensors fully integrated in flexible chips. Smart Mater. Struct. 29, 09LT01 (2020).

    Article  CAS  Google Scholar 

  49. Pang, W. et al. A soft microrobot with highly deformable 3D actuators for climbing and transitioning complex surfaces. Proc. Natl Acad. Sci. USA 119, e2215028119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, S., Jing, W. & Jiang, H. A Deployable tensegrity microrobot for minimally invasive interventions. In Int. Mech. Eng. Congr. Expo. Vol. 5 (ASME, 2021).

  51. Ren, Z. et al. Vertical deployment of multilayered metallic microstructures with high area-to-mass ratios by thermal actuation. J. Micro Nanomanuf. 7, 031002 (2019).

    CAS  Google Scholar 

  52. Liu, Y. et al. Responsive magnetic nanocomposites for intelligent shape-morphing microrobots. ACS Nano 17, 8899–8917 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Mohagheghian, E. et al. Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot. Sci. Robot. 8, eadc9800 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dong, M. et al. 3D‐printed soft magnetoelectric microswimmers for delivery and differentiation of neuron‐like cells. Adv. Funct. Mater. 30, 1910323 (2020).

    Article  CAS  Google Scholar 

  55. Noh, S. et al. A biodegradable magnetic microrobot based on gelatin methacrylate for precise delivery of stem cells with mass production capability. Small 18, e2107888 (2022).

    Article  PubMed  Google Scholar 

  56. Nguyen, K. T. et al. A magnetically guided self-rolled microrobot for targeted drug delivery, real-time X-ray imaging, and microrobot retrieval. Adv. Healthc. Mater. 10, e2001681 (2021).

    Article  PubMed  Google Scholar 

  57. Wei, T. et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 16, e1906908 (2020).

    Article  PubMed  Google Scholar 

  58. Go, G. et al. A soft biodegradable chitosan‐based medical microrobot with optimized structural design and X‐ray visibility for targeted vessel chemoembolization. Adv. Funct. Mater. 33, 2305205 (2023).

    Article  CAS  Google Scholar 

  59. Wang, B. et al. Endoscopy-assisted magnetic navigation of biohybrid soft microrobots with rapid endoluminal delivery and imaging. Sci. Robot. 6, eabd2813 (2021).

    Article  PubMed  Google Scholar 

  60. Li, D. et al. Automated in vivo navigation of magnetic-driven microrobots using OCT imaging feedback. IEEE Trans. Biomed. Eng. 67, 2349–2358 (2020).

    Article  PubMed  Google Scholar 

  61. Lee, S. et al. A needle-type microrobot for targeted drug delivery by affixing to a microtissue. Adv. Healthc. Mater. 9, e1901697 (2020).

    Article  PubMed  Google Scholar 

  62. Han, M. et al. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat. Commun. 15, 2013 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bozuyuk, U., Yildiz, E., Han, M., Demir, S. O. & Sitti, M. Size-dependent locomotion ability of surface microrollers on physiologically relevant microtopographical surfaces. Small 19, e2303396 (2023).

    Article  PubMed  Google Scholar 

  64. Abbasi, S. A. et al. Autonomous 3D positional control of a magnetic microrobot using reinforcement learning. Nat. Mach. Intell. 6, 92–105 (2024).

    Article  Google Scholar 

  65. Bozuyuk, U. et al. High‐performance magnetic FePt (L10) surface microrollers towards medical imaging‐guided endovascular delivery applications. Adv. Funct. Mater. 32, 2109741 (2022).

    Article  CAS  Google Scholar 

  66. Giltinan, J., Sridhar, V., Bozuyuk, U., Sheehan, D. & Sitti, M. 3D-microprinting of iron platinum nanoparticle-based magnetic mobile microrobots. Adv. Intell. Syst. 3, 2000204 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ceylan, H. et al. 3D printed personalized magnetic micromachines from patient blood-derived biomaterials. Sci. Adv. 7, eabh0273 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaynak, M. et al. Acoustic actuation of bioinspired microswimmers. Lab Chip 17, 395–400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wrede, P., Aghakhani, A., Bozuyuk, U., Yildiz, E. & Sitti, M. Acoustic trapping and manipulation of hollow microparticles under fluid flow using a single-lens focused ultrasound transducer. ACS Appl. Mater. Interfaces 15, 52224–52236 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Leibacher, I. et al. Acoustophoresis of hollow and core-shell particles in two-dimensional resonance modes. Microfluid. Nanofluid. 16, 513–524 (2014).

    Article  CAS  Google Scholar 

  71. Kim, D. W. et al. Hierarchical nanostructures as acoustically manipulatable multifunctional agents in dynamic fluid flow. Adv. Mater. 36, e2404514 (2024).

    Article  PubMed  Google Scholar 

  72. Gao, Y., Wang, X. & Chen, Y. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects. RSC Adv. 14, 14278–14288 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ye, M. et al. A review of soft microrobots: material, fabrication, and actuation. Adv. Intell. Syst. 5, 2300311 (2023).

    Article  Google Scholar 

  74. Li, D., Liu, C., Yang, Y., Wang, L. & Shen, Y. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci. Appl. 9, 84 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, M., Yu, A., Kim, D., Nelson, B. J. & Ahn, S.-H. Multi‐agent control of laser‐guided shape‐memory alloy microrobots. Adv. Funct. Mater. 33, 2304937 (2023).

    Article  CAS  Google Scholar 

  76. Kim, M.-S., Lee, H.-T. & Ahn, S.-H. Laser controlled 65 micrometer long microrobot made of Ni‐Ti shape memory alloy. Adv. Mater. Technol. 4, 1900583 (2019).

    Article  CAS  Google Scholar 

  77. Lu, A. X. et al. Catalytic propulsion and magnetic steering of soft, patchy microcapsules: ability to pick-up and drop-off microscale cargo. ACS Appl. Mater. Interfaces 8, 15676–15683 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Wrede, P., Medina-Sánchez, M., Fomin, V. M. & Schmidt, O. G. Switching propulsion mechanisms of tubular catalytic micromotors. Small 17, e2006449 (2021).

    Article  PubMed  Google Scholar 

  79. Wilson, D. A., Nolte, R. J. M. & van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Mirkhani, N., Christiansen, M. G., Gwisai, T., Menghini, S. & Schuerle, S. Spatially selective delivery of living magnetic microrobots through torque-focusing. Nat. Commun. 15, 2160 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, F. et al. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci. Robot. 7, eabo4160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Santomauro, G. et al. Incorporation of terbium into a microalga leads to magnetotactic swimmers. Adv. Biosyst. 2, 1800039 (2018).

    Article  Google Scholar 

  84. Sanchis-Gual, R. et al. 3D printed template‐assisted casting of biocompatible polyvinyl alcohol‐based soft microswimmers with tunable stability. Adv. Funct. Mater. 33, 2212952 (2023).

    Article  CAS  Google Scholar 

  85. Chen, S. et al. Biodegradable microrobots for DNA vaccine delivery. Adv. Healthc. Mater. 12, e2202921 (2023).

    Article  PubMed  Google Scholar 

  86. Darmawan, B. A. et al. Magnetically controlled reversible shape-morphing microrobots with real-time X-ray imaging for stomach cancer applications. J. Mater. Chem. B Mater. Biol. Med. 10, 4509–4518 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Villa, K. et al. Enzyme‐photocatalyst tandem microrobot powered by urea for Escherichia coli biofilm eradication. Small 18, e2106612 (2022).

    Article  PubMed  Google Scholar 

  88. Huang, J. et al. Design of light-driven biocompatible and biodegradable microrobots containing Mg-based metallic glass nanowires. ACS Nano 18, 2006–2016 (2024).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, M. et al. MXBOTs: biodegradable Ti3C2 MXene-based microrobots for targeted delivery and synergistic chemo-photothermal therapy. ACS Mater. Lett. 6, 1801–1810 (2024).

    Article  CAS  Google Scholar 

  90. Liu, D., Wang, T. & Lu, Y. Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv. Healthc. Mater. 11, e2102253 (2022).

    Article  PubMed  Google Scholar 

  91. Wang, J. et al. Intelligent micro‐/nanorobots for cancer theragnostic. Adv. Mater. 34, e2201051 (2022).

    Article  PubMed  Google Scholar 

  92. Czeyda-Pommersheim, F., Martin, D. R., Costello, J. R. & Kalb, B. Contrast agents for MR imaging. Magn. Reson. Imaging Clin. N. Am. 25, 705–711 (2017).

    Article  PubMed  Google Scholar 

  93. De La Vega, J. C. et al. Comparison of rhenium and iodine as contrast agents in X-ray imaging. Contrast Media Mol. Imaging 2021, 1250360 (2021).

    PubMed  Google Scholar 

  94. Yang, Y. et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria. Nat. Commun. 14, 3297 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iacovacci, V. et al. High-resolution SPECT imaging of stimuli-responsive soft microrobots. Small 15, e1900709 (2019).

    Article  PubMed  Google Scholar 

  96. Lv, J. et al. High-resolution and high-speed 3D tracking of microrobots using a fluorescent light field microscope. Quant. Imaging Med. Surg. 13, 1426–1439 (2023).

    Article  PubMed  Google Scholar 

  97. Zhou, Q. et al. Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells. Nat. Commun. 15, 3526 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Moolenbroek, G. T., Patiño, T., Llop, J. & Sánchez, S. Engineering intelligent nanosystems for enhanced medical imaging. Adv. Intell. Syst. 2, 2000087 (2020).

    Article  Google Scholar 

  99. Chen, Z. et al. Multimodal optoacoustic imaging: methods and contrast materials. Chem. Soc. Rev. 53, 6068–6099 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Maksimova, E. A. et al. Multilayer polymer shell perfluoropentane nanodroplets for multimodal ultrasound, magnetic resonance, and optoacoustic imaging. Laser Photon. Rev. 17, 2300137 (2023).

    Article  CAS  Google Scholar 

  101. Senthilnathan, N., Oral, C. M., Novobilsky, A. & Pumera, M. Intelligent magnetic microrobots with fluorescent internal memory for monitoring intragastric acidity. Adv. Funct. Mater. 34, 2401463 (2024).

    Article  CAS  Google Scholar 

  102. Li, Z. et al. Self-sensing intelligent microrobots for noninvasive and wireless monitoring systems. Microsyst. Nanoeng. 9, 102 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chen, S. et al. Reversibly photoswitchable protein assemblies with collagen affinity for in vivo photoacoustic imaging of tumors. Sci. Adv. 10, eadn8274 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dubey, D. et al. Engineering responsive ultrasound contrast agents through crosslinked networks on lipid-shelled microbubbles. Small 18, e2107143 (2022).

    Article  PubMed  Google Scholar 

  105. Wang, Q. et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aziz, A. et al. Real‐time IR tracking of single reflective micromotors through scattering tissues. Adv. Funct. Mater. 29, 1905272 (2019).

    Article  CAS  Google Scholar 

  107. Nguyen, V. D. et al. Primary macrophage-based microrobots: an effective tumor therapy in vivo by dual-targeting function and near-infrared-triggered drug release. ACS Nano 15, 8492–8506 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Zhang, Y. et al. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of C. diff toxins. Sci. Adv. 5, eaau9650 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Alapan, Y. et al. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 3, eaar4423 (2018).

    Article  PubMed  Google Scholar 

  110. Wang, Y. & Kohane, D. S. External triggering and triggered targeting strategies for drug delivery. Nat. Rev. Mater. 2, 17020 (2017).

    Article  CAS  Google Scholar 

  111. Tao, Y., Chan, H. F., Shi, B., Li, M. & Leong, K. W. Light: a magical tool for controlled drug delivery. Adv. Funct. Mater. 30, 2005029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ceylan, H. et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS Nano 13, 3353–3362 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu, Z., Lin, X., Zou, X., Sun, J. & He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 7, 250–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Pacheco, M. et al. Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. Appl. Mater. Today 27, 101494 (2022).

    Article  Google Scholar 

  115. Zheng, Z. et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 12, 411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li, H., Go, G., Ko, S. Y., Park, J.-O. & Park, S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater. Struct. 25, 027001 (2016).

    Article  Google Scholar 

  117. Tu, L. et al. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 1, 20210023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jeon, S. et al. Magnetically actuated microrobots as a platform for stem cell transplantation. Sci. Robot. 4, eaav4317 (2019).

    Article  PubMed  Google Scholar 

  119. Dogan, N. O. et al. Immune cell-based microrobots for remote magnetic actuation, antitumor activity, and medical imaging. Adv. Healthc. Mater. 13, e2400711 (2024).

    Article  PubMed  Google Scholar 

  120. Gwisai, T. et al. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 7, eabo0665 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Milosavljevic, V., Kosaristanova, L., Dolezelikova, K., Adam, V. & Pumera, M. Microrobots with antimicrobial peptide nanoarchitectonics for the eradication of antibiotic‐resistant biofilms. Adv. Funct. Mater. 32, 2112935 (2022).

    Article  CAS  Google Scholar 

  122. Mayorga-Martinez, C. C. et al. Swarming magnetic photoactive microrobots for dental implant biofilm eradication. ACS Nano 16, 8694–8703 (2022).

    Article  CAS  PubMed  Google Scholar 

  123. Cao, W. et al. Ultrasound-propelled Janus rod-shaped micromotors for site-specific sonodynamic thrombolysis. ACS Appl. Mater. Interfaces 13, 58411–58421 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Soon, R. H. et al. Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications. Nat. Commun. 14, 3320 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Iványi, G. T. et al. Optically actuated soft microrobot family for single-cell manipulation. Adv. Mater. 36, e2401115 (2024).

    Article  PubMed  Google Scholar 

  126. Ceylan, H., Yasa, I. C., Kilic, U., Hu, W. & Sitti, M. Translational prospects of untethered medical microrobots. Prog. Biomed. Eng. 1, 012002 (2019).

    Article  Google Scholar 

  127. Ju, Y. et al. Impact of anti-PEG antibodies induced by SARS-CoV-2 mRNA vaccines. Nat. Rev. Immunol. 23, 135–136 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Cabanach, P. et al. Zwitterionic 3D-printed non-immunogenic stealth microrobots. Adv. Mater. 32, e2003013 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  130. Fullerton, J. N. & Gilroy, D. W. Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov. 15, 551–567 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Li, Z. et al. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci. Robot. 9, eadl2007 (2024).

    Article  PubMed  Google Scholar 

  132. Zhu, Y.-X. et al. A red blood cell‐derived bionic microrobot capable of hierarchically adapting to five critical stages in systemic drug delivery. Exploration 4, 20230105 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Li, T. et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. Sci. Adv. 9, eadg4501 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Weissleder, R. & Nahrendorf, M. Advancing biomedical imaging. Proc. Natl Acad. Sci. USA 112, 14424–14428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ussia, M. et al. Magnetically driven self-degrading zinc-containing cystine microrobots for treatment of prostate cancer. Small 19, e2208259 (2023).

    Article  PubMed  Google Scholar 

  136. Dekanovsky, L. et al. Fully programmable collective behavior of light‐powered chemical microrobotics: pH‐dependent motion behavior switch and controlled cancer cell destruction. Adv. Funct. Mater. 32, 2205062 (2022).

    Article  CAS  Google Scholar 

  137. Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Aumann, S., Donner, S., Fischer, J. & Müller, F. in High Resolution Imaging in Microscopy and Ophthalmology (ed. Bille, J. F.) 59–85 (Springer, 2019).

  139. Herman, B. Fluorescence Microscopy (Garland Science, 2020).

  140. Paddock, S. W. Confocal Microscopy: Methods and Protocols (Humana, 2013).

  141. König, K. Multiphoton microscopy in life sciences. J. Microsc. 200, 83–104 (2000).

    Article  PubMed  Google Scholar 

  142. Stelzer, E. H. K. et al. Light sheet fluorescence microscopy. Nat. Rev. Methods Primers 1, 1–25 (2021).

    Article  Google Scholar 

  143. Levoy, M., Ng, R., Adams, A., Footer, M. & Horowitz, M. Light field microscopy. ACM Trans. Graph. 25, 924–934 (2006).

    Article  Google Scholar 

  144. Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primers 1, 18 (2021).

    Article  CAS  Google Scholar 

  145. Weiskopf, N., Edwards, L. J., Helms, G., Mohammadi, S. & Kirilina, E. Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nat. Rev. Phys. 3, 570–588 (2021).

    Article  CAS  Google Scholar 

  146. Gleich, B. & Weizenecker, J. Tomographic imaging using the nonlinear response of magnetic particles. Nature 435, 1214–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, F. et al. Flexible Doppler ultrasound device for the monitoring of blood flow velocity. Sci. Adv. 7, eabi9283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cui, X.-W. et al. Ultrasound elastography. Endosc. Ultrasound 11, 252–274 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wells, P. N. T. Ultrasound imaging. Phys. Med. Biol. 51, R83–R98 (2006).

    Article  CAS  PubMed  Google Scholar 

  150. Townsend, D. W., Carney, J. P. J., Yap, J. T. & Hall, N. C. PET/CT today and tomorrow. J. Nucl. Med. 45, 4S–14S (2004).

    PubMed  Google Scholar 

  151. Badr, C. E. & Tannous, B. A. Bioluminescence imaging: progress and applications. Trends Biotechnol. 29, 624–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ebrahimi, N. et al. Magnetic actuation methods in bio/soft robotics. Adv. Funct. Mater. 31, 2005137 (2021).

    Article  CAS  Google Scholar 

  153. Sitti, M. & Wiersma, D. S. Pros and cons: magnetic versus optical microrobots. Adv. Mater. 32, e1906766 (2020).

    Article  PubMed  Google Scholar 

  154. Jamil, M. F., Pokharel, M. & Park, K. Light-controlled microbots in biomedical application: a review. Appl. Sci. 12, 11013 (2022).

    Article  CAS  Google Scholar 

  155. Hou, Y. et al. A review on microrobots driven by optical and magnetic fields. Lab Chip 23, 848–868 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Maragò, O. M., Jones, P. H., Gucciardi, P. G., Volpe, G. & Ferrari, A. C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8, 807–819 (2013).

    Article  PubMed  Google Scholar 

  157. Yang, W., Wang, X., Wang, Z., Liang, W. & Ge, Z. Light-powered microrobots: recent progress and future challenges. Opt. Lasers Eng. 161, 107380 (2023).

    Article  Google Scholar 

  158. Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mahkam, N. et al. Acoustic streaming-induced multimodal locomotion of bubble-based microrobots. Adv. Sci. 10, e2304233 (2023).

    Article  Google Scholar 

  160. Deng, Y., Paskert, A., Zhang, Z., Wittkowski, R. & Ahmed, D. An acoustically controlled helical microrobot. Sci. Adv. 9, eadh5260 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ricotti, L. et al. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2, eaaq0495 (2017).

    Article  PubMed  Google Scholar 

  163. Mestre, R., Patiño, T. & Sánchez, S. Biohybrid robotics: from the nanoscale to the macroscale. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13, e1703 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Alapan, Y. et al. Microrobotics and microorganisms: biohybrid autonomous cellular robots. Annu. Rev. Control Robot. Auton. Syst. 2, 205–230 (2019).

    Article  Google Scholar 

  165. Sridhar, V. et al. Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery. Sci. Robot. 7, eabm1421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Serra-Casablancas, M. et al. Catalase-powered nanobots for overcoming the mucus barrier. ACS Nano 18, 16701–16714 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fraire, J. C. et al. Swarms of enzymatic nanobots for efficient gene delivery. ACS Appl. Mater. Interfaces 16, 47192–47205 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, Z. et al. Inhalable biohybrid microrobots: a non-invasive approach for lung treatment. Nat. Commun. 16, 666 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Andreou, C., Weissleder, R. & Kircher, M. F. Multiplexed imaging in oncology. Nat. Biomed. Eng. 6, 527–540 (2022).

    Article  PubMed  Google Scholar 

  170. Bakenecker, A. C. et al. Actuation and visualization of a magnetically coated swimmer with magnetic particle imaging. J. Magn. Magn. Mater. 473, 495–500 (2019).

    Article  CAS  Google Scholar 

  171. Kósa, G., Jakab, P., Székely, G. & Hata, N. MRI driven magnetic microswimmers. Biomed. Microdevices 14, 165–178 (2012).

    Article  PubMed  Google Scholar 

  172. Vonthron, M., Lalande, V., Bringout, G., Tremblay, C. & Martel, S. A MRI-based integrated platform for the navigation of micro-devices and microrobots. In IEEE/RSJ Int. Conf. Intell. Robots Syst. 1285–1290 (IEEE, 2011).

  173. Belharet, K., Folio, D. & Ferreira, A. MRI-based microrobotic system for the propulsion and navigation of ferromagnetic microcapsules. Minim. Invasive Ther. Allied Technol. 19, 157–169 (2010).

    Article  PubMed  Google Scholar 

  174. Xu, Z. et al. X-ray-powered micromotors. ACS Appl. Mater. Interfaces 11, 15727–15732 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Pane, S., Iacovacci, V., Sinibaldi, E. & Menciassi, A. Real-time imaging and tracking of microrobots in tissues using ultrasound phase analysis. Appl. Phys. Lett. 118, 014102 (2021).

    Article  CAS  Google Scholar 

  176. Dillinger, C., Knipper, J., Nama, N. & Ahmed, D. Steerable acoustically powered starfish-inspired microrobot. Nanoscale 16, 1125–1134 (2024).

    Article  CAS  PubMed  Google Scholar 

  177. Aziz, A., Holthof, J., Meyer, S., Schmidt, O. G. & Medina-Sánchez, M. Dual ultrasound and photoacoustic tracking of magnetically driven micromotors: from in vitro to in vivo. Adv. Healthc. Mater. 10, e2101077 (2021).

    Article  PubMed  Google Scholar 

  178. Sitti, M. Mobile Microrobotics (MIT Press, 2017).

  179. Liu, Y. et al. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nat. Commun. 12, 7238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Arnold, T. C., Freeman, C. W., Litt, B. & Stein, J. M. Low-field MRI: clinical promise and challenges. J. Magn. Reson. Imaging 57, 25–44 (2023).

    Article  PubMed  Google Scholar 

  181. Nelson, B. J. An electromagnetic robot for navigating medical devices. Nat. Rev. Bioeng. 2, 370–371 (2024).

    Article  CAS  Google Scholar 

  182. Gervasoni, S. et al. A human-scale clinically ready electromagnetic navigation system for magnetically responsive biomaterials and medical devices. Adv. Mater. 36, e2310701 (2024).

    Article  PubMed  Google Scholar 

  183. Wang, B. et al. tPA-anchored nanorobots for in vivo arterial recanalization at submillimeter-scale segments. Sci. Adv. 10, eadk8970 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wallyn, J., Anton, N., Akram, S. & Vandamme, T. F. Biomedical imaging: principles, technologies, clinical aspects, contrast agents, limitations and future trends in nanomedicines. Pharm. Res. 36, 78 (2019).

    Article  PubMed  Google Scholar 

  185. Bozuyuk, U., Ozturk, H. & Sitti, M. Microrobotic locomotion in blood vessels: a computational study on the performance of surface microrollers in the cardiovascular system. Adv. Intell. Syst. 5, 2300099 (2023).

    Article  Google Scholar 

  186. Bozuyuk, U. et al. Reduced rotational flows enable the translation of surface-rolling microrobots in confined spaces. Nat. Commun. 13, 6289 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Thangaraju, P. & Varthya, S. B. in Medical Device Guidelines and Regulations Handbook (eds Shanmugam, P. S. T. et al.) 163–187 (Springer, 2022).

  188. Darrow, J. J., Avorn, J. & Kesselheim, A. S. FDA regulation and approval of medical devices: 1976–2020. JAMA 326, 420–432 (2021).

    Article  PubMed  Google Scholar 

  189. Dreyfus, R. et al. Dexterous helical magnetic robot for improved endovascular access. Sci. Robot. 9, eadh0298 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Article  PubMed  Google Scholar 

  191. Lunney, J. K. et al. Importance of the pig as a human biomedical model. Sci. Transl Med. 13, eabd5758 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Chowdhury, A. M. M. B., Abbasi, S. A., Gharamaleki, N. L., Kim, J.-Y. & Choi, H. Virtual reality‐enabled intuitive magnetic manipulation of microrobots and nanoparticles. Adv. Intell. Syst. 6, 2300793 (2024).

    Article  Google Scholar 

  193. Zhang, H. et al. Dual-responsive biohybrid neutrobots for active target delivery. Sci. Robot. 6, eaaz9519 (2021).

    Article  PubMed  Google Scholar 

  194. Marshall, L. J., Bailey, J., Cassotta, M., Herrmann, K. & Pistollato, F. Poor translatability of biomedical research using animals — a narrative review. Altern. Lab. Anim. 51, 102–135 (2023).

    Article  PubMed  Google Scholar 

  195. Van Norman, G. A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci. 4, 845–854 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Younis, M. A., Tawfeek, H. M., Abdellatif, A. A. H., Abdel-Aleem, J. A. & Harashima, H. Clinical translation of nanomedicines: challenges, opportunities, and keys. Adv. Drug Deliv. Rev. 181, 114083 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Medany, M., Mukkavilli, S. K. & Ahmed, D. AI-driven autonomous microrobots for targeted medicine. Nat. Rev. Bioeng. 2, 914–915 (2024).

    Article  CAS  Google Scholar 

  199. Tiryaki, M. E., Demir, S. O. & Sitti, M. Deep learning-based 3D magnetic microrobot tracking using 2D MR images. IEEE Robot. Autom. Lett. 7, 6982–6989 (2022).

    Article  Google Scholar 

  200. Demir, S. O. et al. Task space adaptation via the learning of gait controllers of magnetic soft millirobots. Int. J. Rob. Res. 40, 1331–1351 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Zhou, Y. & Han, Y. Engineered bacteria as drug delivery vehicles: principles and prospects. Eng. Microbiol. 2, 100034 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Liu, L. et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat. Commun. 12, 1–12 (2021).

    Google Scholar 

  203. World Health Organization. Handbook: Good Laboratory Practice (GLP): Quality Practices for Regulated Non-Clinical Research and Development (WHO, 2010).

  204. Hegyi, P., Erőss, B., Izbéki, F., Párniczky, A. & Szentesi, A. Accelerating the translational medicine cycle: the Academia Europaea pilot. Nat. Med. 27, 1317–1319 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Martin, L., Hutchens, M., Hawkins, C. & Radnov, A. How much do clinical trials cost? Nat. Rev. Drug Discov. 16, 381–382 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. McNamee, L. M., Walsh, M. J. & Ledley, F. D. Timelines of translational science: from technology initiation to FDA approval. PLoS ONE 12, e0177371 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Nozdriukhin, D. et al. Multifunctional microflowers for precise optoacoustic localization and intravascular magnetic actuation in vivo. Adv. Healthc. Mater. 14, e2404242 (2025).

    Article  PubMed  Google Scholar 

  208. Law, J. et al. Microrobotic swarms for selective embolization. Sci. Adv. 8, eabm5752 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Renaudin, N. et al. Functional ultrasound localization microscopy reveals brain-wide neurovascular activity on a microscopic scale. Nat. Methods 19, 1004–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhou, Q. et al. Three-dimensional wide-field fluorescence microscopy for transcranial mapping of cortical microcirculation. Nat. Commun. 13, 7969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Deán-Ben, X. L. et al. Deep optoacoustic localization microangiography of ischemic stroke in mice. Nat. Commun. 14, 3584 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Jeong, S. et al. Penetration of an artificial arterial thromboembolism in a live animal using an intravascular therapeutic microrobot system. Med. Eng. Phys. 38, 403–410 (2016).

    Article  PubMed  Google Scholar 

  213. Yan, Y. et al. Programming structural and magnetic anisotropy for tailored interaction and control of soft microrobots. Commun. Eng. 3, 1–11 (2024).

    Article  Google Scholar 

  214. Cui, J. et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019).

    Article  CAS  PubMed  Google Scholar 

  215. Ren, Z. et al. Soft-bodied adaptive multimodal locomotion strategies in fluid-filled confined spaces. Sci. Adv. 7, eabh2022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    Article  CAS  PubMed  Google Scholar 

  217. Guo, Y., Zhang, J., Hu, W., Khan, M. T. A. & Sitti, M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat. Commun. 12, 5936 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhang, J., Guo, Y., Hu, W. & Sitti, M. Wirelessly actuated thermo- and magneto-responsive soft bimorph materials with programmable shape-morphing. Adv. Mater. 33, 2100336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Zhang, J. et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater. 33, e2006191 (2021).

    Article  PubMed  Google Scholar 

  220. Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I. & Sitti, M. Reprogrammable shape morphing of magnetic soft machines. Sci. Adv. 6, eabc6414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Gu, H. et al. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat. Commun. 14, 1263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Jin, Q., Yang, Y., Jackson, J. A., Yoon, C. & Gracias, D. H. Untethered single cell grippers for active biopsy. Nano Lett. 20, 5383–5390 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Yu, Y. et al. Microfluidic lithography of bioinspired helical micromotors. Angew. Chem. Int. Ed. 56, 12127–12131 (2017).

    Article  CAS  Google Scholar 

  224. Wang, J. et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl. Mater. Interfaces 7, 27035–27039 (2015).

    Article  CAS  PubMed  Google Scholar 

  225. Ceylan, H., Yasa, I. C. & Sitti, M. 3D chemical patterning of micromaterials for encoded functionality. Adv. Mater. 29, 1605072 (2017).

    Article  Google Scholar 

  226. Park, J., Jin, C., Lee, S., Kim, J.-Y. & Choi, H. Magnetically actuated degradable microrobots for actively controlled drug release and hyperthermia therapy. Adv. Healthc. Mater. 8, e1900213 (2019).

    Article  PubMed  Google Scholar 

  227. Hu, X. et al. Magnetic soft micromachines made of linked microactuator networks. Sci. Adv. 7, eabe8436 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  PubMed  Google Scholar 

  229. Ahmad, B., Chambon, H., Tissier, P. & Bolopion, A. Laser actuated microgripper using optimized chevron-shaped actuator. Micromachines 12, 1487 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Bakenecker, A. C. et al. Navigation of a magnetic micro-robot through a cerebral aneurysm phantom with magnetic particle imaging. Sci. Rep. 11, 14082 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Sadeghi-Tarakameh, A. et al. In vivo human head MRI at 10.5 T: a radiofrequency safety study and preliminary imaging results. Magn. Reson. Med. 84, 484–496 (2020).

    Article  PubMed  Google Scholar 

  232. Jung, K. O. et al. Whole-body tracking of single cells via positron emission tomography. Nat. Biomed. Eng. 4, 835–844 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Pirmoazen, A. M. et al. Diagnostic performance of 9 quantitative ultrasound parameters for detection and classification of hepatic steatosis in nonalcoholic fatty liver disease. Invest. Radiol. 57, 23–32 (2022).

    Article  CAS  PubMed  Google Scholar 

  234. Ivankovic, I. et al. Multispectral optoacoustic tomography enables in vivo anatomical and functional assessment of human tendons. Adv. Sci. 11, e2308336 (2024).

    Article  Google Scholar 

  235. Levy, J. et al. High-frequency ultrasound in clinical dermatology: a review. Ultrasound J. 13, 24 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Wong, M. D., Spring, S. & Henkelman, R. M. Structural stabilization of tissue for embryo phenotyping using micro-CT with iodine staining. PLoS ONE 8, e84321 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge grant support from the Swiss National Science Foundation (310030_192757), US National Institutes of Health (RF1-NS126102), Innosuisse — Swiss Innovation Agency (51767.1 IP-LS), Swiss Cancer Research (KFS-5234-02-2021), Personalized Health and Related Technologies of the ETH Domain (PHRT-582), EU Joint Programme — Neurodegenerative Disease Research (JPND022-083), European Horizon RIA Digital and Emerging Technologies (101135053), European Horizon MSCA Doctoral Networks (101119924) and European Research Council (ERC) Advanced Grant SoMMoR project (grant no. 834531). P.W. and E.R. thank the Max Planck and ETH Center for Learning Systems (CLS) for financial support. The authors thank V.E. Fulford from Alar Illustration for her scientific illustrations.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Metin Sitti or Daniel Razansky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks Wei Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrede, P., Remlova, E., Chen, Y. et al. Synergistic integration of materials in medical microrobots for advanced imaging and actuation. Nat Rev Mater (2025). https://doi.org/10.1038/s41578-025-00811-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41578-025-00811-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing