Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions

Abstract

Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The global burden of Shigella disease.
Fig. 2: Phylogenetic relationship of Shigella sonnei, Escherichia coli and other Shigella.
Fig. 3: Prevalence of AMR genes in Shigella sonnei.
Fig. 4: Shigella resistance determinants and drivers of AMR.
Fig. 5: Shigella pathogenesis and immune response to infection.

Similar content being viewed by others

References

  1. Kotloff, K. L., Riddle, M. S., Platts-Mills, J. A., Pavlinac, P. & Zaidi, A. K. M. Shigellosis. Lancet 391, 801–812 (2018).

    Article  PubMed  Google Scholar 

  2. Anderson, J. D. et al. Burden of enterotoxigenic Escherichia coli and Shigella non-fatal diarrhoeal infections in 79 low-income and lower middle-income countries: a modelling analysis. Lancet Glob. Health 7, e321–e330 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khalil, I. A. et al. Morbidity and mortality due to Shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baker, K. S. et al. Travel- and community-based transmission of multidrug-resistant Shigella sonnei lineage among international Orthodox Jewish communities. Emerg. Infect. Dis. 22, 1545–1553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baker, S. & The, H. C. Recent insights into Shigella: a major contributor to the global diarrhoeal disease burden. Curr. Opin. Infect. Dis. 31, 449–454 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bardhan, P., Faruque, A. S. G., Naheed, A. & Sack, D. A. Decreasing shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerg. Infect. Dis. 16, 1718–1723 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Muzembo, B. A. et al. Shigellosis in Southeast Asia: a systematic review and meta-analysis. Travel Med. Infect. Dis. 52, 102554 (2023).

    Article  PubMed  Google Scholar 

  8. Ibrahim, A. F. et al. The changing epidemiology of shigellosis in Australia, 2001–2019. PLoS Negl. Trop. Dis. 17, e0010450 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sabour, S. et al. Molecular detection and characterization of Shigella spp. harboring extended-spectrum β-lactamase genes in children with diarrhea in northwest Iran. Mol. Cell. Pediatr. 9, 19 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taneja, N. et al. Antimicrobial resistance in Shigella species: our five years (2015–2019) experience in a tertiary care center in North India. Indian J. Med. Microbiol. 39, 489–494 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Bardsley, M. et al. Persistent transmission of shigellosis in England is associated with a recently emerged multidrug-resistant strain of Shigella sonnei. J. Clin. Microbiol. https://doi.org/10.1128/jcm.01692-19 (2020).

  12. Mandal, J., Emelda, V. G. J., Mahadevan, S. & Parija, S. C. The recent trends of shigellosis: a JIPMER perspective. J. Clin. Diagn. Res. 6, 1474–1477 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. Taneja, N. et al. Antimicrobial resistant Shigella in North India since the turn of the 21st century. Indian J. Med. Microbiol. 40, 113–118 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Anandan, S. et al. Molecular characterization of antimicrobial resistance in clinical Shigella isolates during 2014 and 2015: trends South India. Germs 7, 115–122 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, L. et al. An 11-year study of shigellosis and Shigella species in Taiyuan, China: active surveillance, epidemic characteristics, and molecular serotyping. J. Infect. Public Health 10, 794–798 (2017).

    Article  PubMed  Google Scholar 

  16. Livio, S. et al. Shigella isolates from the global enteric multicenter study inform vaccine development. Clin. Infect. Dis. 59, 933–941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kasumba, I. N. et al. Shigella in Africa: new insights from the Vaccine Impact on Diarrhea in Africa (VIDA) study. Clin. Infect. Dis. 76, S66–S76 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holt, K. E. et al. Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat. Genet. 44, 1056–1059 (2012). One of the first studies that track global spread and evolution of S. sonnei.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holt, K. E. et al. Tracking the establishment of local endemic populations of an emergent enteric pathogen. Proc. Natl Acad. Sci. USA 110, 17522–17527 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson, C. N., Duy, P. T. & Baker, S. The rising dominance of Shigella sonnei: an intercontinental shift in the etiology of bacillary dysentery. PLoS Negl. Trop. Dis. 9, e0003708 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bangtrakulnonth, A. et al. Shigella from humans in Thailand during 1993 to 2006: spatial-time trends in species and serotype distribution. Foodborne Pathog. Dis. 5, 773–784 (2008).

    Article  PubMed  Google Scholar 

  22. Salah Ud-Din, A. et al. Changing trends in the prevalence of Shigella species: emergence of multi-drug resistant Shigella sonnei biotype g in Bangladesh. PLoS ONE 8, e82601 (2013).

    Article  Google Scholar 

  23. Ram, P. K., Crump, J. A., Gupta, S. K., Miller, M. A. & Mintz, E. D. Part II. Analysis of data gaps pertaining to Shigella infections in low and medium human development index countries, 1984–2005. Epidemiol. Infect. 136, 577–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Vinh, H. et al. A changing picture of shigellosis in Southern Vietnam: shifting species dominance, antimicrobial susceptibility and clinical presentation. BMC Infect. Dis. 9, 204 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Baker, K. S. et al. Genomic epidemiology of Shigella in the United Kingdom shows transmission of pathogen sublineages and determinants of antimicrobial resistance. Sci. Rep. 8, 7389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. The, H. C. & Baker, S. Out of Asia: the independent rise and global spread of fluoroquinolone-resistant Shigella. Microb. Genom. 4, e000171 (2018).

    Google Scholar 

  27. Mason, L. C. E. et al. The evolution and international spread of extensively drug resistant Shigella sonnei. Nat. Commun. 14, 1983 (2023). A recent large-scale global study of the spread of resistant S. sonnei in MSM populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Adamker, G. et al. Prediction of shigellosis outcomes in Israel using machine learning classifiers. Epidemiol. Infect. 146, 1445–1451 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Gupta, A., Polyak, C. S., Bishop, R. D., Sobel, J. & Mintz, E. D. Laboratory-confirmed shigellosis in the United States, 1989–2002: epidemiologic trends and patterns. Clin. Infect. Dis. 38, 1372–1377 (2004).

    Article  PubMed  Google Scholar 

  30. Ashbaugh, H. R. et al. A multisite network assessment of the epidemiology and etiology of acquired diarrhea among U.S. military and Western travelers (Global Travelers’ Diarrhea Study): a principal role of norovirus among travelers with gastrointestinal illness. Am. J. Trop. Med. Hyg. 103, 1855–1863 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shah, N., DuPont, H. L. & Ramsey, D. J. Global etiology of travelers’ diarrhea: systematic review from 1973 to the present. Am. J. Trop. Med. Hyg. 80, 609–614 (2009).

    Article  PubMed  Google Scholar 

  32. Trépanier, S. et al. Travel-related shigellosis in Quebec, Canada: an analysis of risk factors. J. Travel Med. 21, 304–309 (2014).

    Article  PubMed  Google Scholar 

  33. Cohen, D. et al. Recent trends in the epidemiology of shigellosis in Israel. Epidemiol. Infect. 142, 2583–2594 (2014).

    Article  CAS  Google Scholar 

  34. Cohen, D. et al. Burden and risk factors of Shigella sonnei shigellosis among children aged 0–59 months in hyperendemic communities in Israel. Int. J. Infect. Dis. 82, 117–123 (2019).

    Article  PubMed  Google Scholar 

  35. Garrett, V. et al. A recurring outbreak of Shigella sonnei among traditionally observant Jewish children in New York City: the risks of daycare and household transmission. Epidemiol. Infect. 134, 1231–1236 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. George, C. M. et al. Shigella infections in household contacts of pediatric shigellosis patients in rural Bangladesh. Emerg. Infect. Dis. 21, 2006–2013 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nygren, B. L. et al. Foodborne outbreaks of shigellosis in the USA, 1998–2008. Epidemiol. Infect. 141, 233–241 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Utsumi, M., Makimoto, K., Quroshi, N. & Ashida, N. Types of infectious outbreaks and their impact in elderly care facilities: a review of the literature. Age Ageing 39, 299–305 (2010).

    Article  PubMed  Google Scholar 

  39. Simms, I. et al. Intensified shigellosis epidemic associated with sexual transmission in men who have sex with men — Shigella flexneri and S. sonnei in England, 2004 to end of February 2015. Eurosurveillance 20, 21097 (2015).

    Article  PubMed  Google Scholar 

  40. Tauxe, R. V., McDonald, R. C., Hargrett-Bean, N. & Blake, P. A. The persistence of Shigella flexneri in the United States: increasing role of adult males. Am. J. Public Health 78, 1432–1435 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingle, D. J. et al. Co-circulation of multidrug-resistant Shigella among men who have sex with men in Australia. Clin. Infect. Dis. 69, 1535–1544 (2019).

    Article  PubMed  Google Scholar 

  42. Charles, H. et al. Outbreak of sexually transmitted, extensively drug-resistant Shigella sonnei in the UK, 2021–22: a descriptive epidemiological study. Lancet Infect. Dis. 22, 1503–1510 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Lefèvre, S. et al. Rapid emergence of extensively drug-resistant Shigella sonnei in France. Nat. Commun. 14, 462 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Connor, T. R. et al. Species-wide whole genome sequencing reveals historical global spread and recent local persistence in Shigella flexneri. eLife 4, e07335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. McVicker, G. & Tang, C. M. Deletion of toxin–antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat. Microbiol. 2, 1–8 (2016).

    Article  Google Scholar 

  46. Cohen, D. et al. Reduction of transmission of shigellosis by control of houseflies (Musca domestica). Lancet 337, 993–997 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Qiu, S. et al. A Shigella sonnei clone with extensive drug resistance associated with waterborne outbreaks in China. Nat. Commun. 13, 7365 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mikhail, A. F. W. et al. Utility of whole-genome sequencing during an investigation of multiple foodborne outbreaks of Shigella sonnei. Epidemiol. Infect. 149, e71 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sack, D. A., Hoque, A. T., Huq, A. & Etheridge, M. Is protection against shigellosis induced by natural infection with Plesiomonas shigelloides? Lancet 343, 1413–1415 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. De Silva, P. M. et al. Escherichia coli killing by epidemiologically successful sublineages of Shigella sonnei is mediated by colicins. eBioMedicine 97, 104822 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allen, H. et al. Evidence for re-infection and persistent carriage of Shigella species in adult males reporting domestically acquired infection in England. Clin. Microbiol. Infect. 27, 126.e7–126.e13 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Behar, A. et al. Microevolution and patterns of transmission of Shigella sonnei within cyclic outbreaks shigellosis, Israel. Emerg. Infect. Dis. 24, 1335–1339 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pupo, G. M., Lan, R. & Reeves, P. R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl Acad. Sci. USA 97, 10567–10572 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang, F. et al. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33, 6445–6458 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lampel, K. A., Formal, S. B. & Maurelli, A. T. A brief history of Shigella. EcoSal Plus https://doi.org/10.1128/ecosalplus.esp-0006-2017 (2018).

  56. Sonne, C. The bacteriology of atoxic dysentery bacilli (paradysentery bacilli). Zent. Bakteriol. Parasitenkd. Infekt. Hyg. 75, 408–456 (1915).

    Google Scholar 

  57. The, H. C. et al. South Asia as a reservoir for the global spread of ciprofloxacin-resistant Shigella sonnei: a cross-sectional study. PLoS Med. 13, e1002055 (2016).

    Article  Google Scholar 

  58. Thanh Duy, P. et al. Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant Shigella sonnei. Nat. Microbiol. 5, 256–264 (2020).

    Article  PubMed  Google Scholar 

  59. Hawkey, J. et al. Global population structure and genotyping framework for genomic surveillance of the major dysentery pathogen, Shigella sonnei. Nat. Commun. 12, 2684 (2021). A global study of the spread of S. sonnei that proposes a new scheme for genotyping and tracking resistance determinants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. The, H. C. et al. Evolutionary histories and antimicrobial resistance in Shigella flexneri and Shigella sonnei in Southeast Asia. Commun. Biol. 4, 1–12 (2021).

    Google Scholar 

  61. Baker, K. S. et al. Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses. Clin. Microbiol. Infect. 23, 845–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ekdahl, K. & Andersson, Y. The epidemiology of travel-associated shigellosis — regional risks, seasonality and serogroups. J. Infect. 51, 222–229 (2005).

    Article  PubMed  Google Scholar 

  63. Gaudreau, C. et al. Clinical and genomic investigation of an International ceftriaxone- and azithromycin-resistant Shigella sonnei cluster among men who have sex with men, Montréal, Canada 2017–2019. Microbiol. Spectr. 10, e02337-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tansarli, G. S. et al. Genomic reconstruction and directed interventions in a multidrug-resistant shigellosis outbreak in Seattle, WA, USA: a genomic surveillance study. Lancet Infect. Dis. 23, 740–750 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. World Health Organization. WHO bacterial priority pathogens list, 2024 (WHO, 2024).

  66. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 (US CDC, 2019).

  67. Williams, P. C. M. & Berkley, J. A. Guidelines for the treatment of dysentery (shigellosis): a systematic review of the evidence. Paediatr. Int. Child Health 38, S50–S65 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. World Health Organization. Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1 (WHO, 2005).

  69. World Health Organization. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book (WHO, 2022).

  70. Baker, K. S. et al. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species. Nat. Commun. 9, 1462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ranjbar, R. & Farahani, A. Shigella: antibiotic-resistance mechanisms and new horizons for treatment. Infect. Drug Resist. 12, 3137–3167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Turner, S. A., Luck, S. N., Sakellaris, H., Rajakumar, K. & Adler, B. Molecular epidemiology of the SRL pathogenicity island. Antimicrob. Agents Chemother. 47, 727–734 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Njamkepo, E. et al. Global phylogeography and evolutionary history of Shigella dysenteriae type 1. Nat. Microbiol. 1, 1–10 (2016).

    Google Scholar 

  74. Shakya, G., Acharya, J., Adhikari, S. & Rijal, N. Shigellosis in Nepal: 13 years review of nationwide surveillance. J. Health Popul. Nutr. 35, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rajpara, N. et al. Molecular analysis of multidrug resistance in clinical isolates of Shigella spp. from 2001–2010 in Kolkata, India: role of integrons, plasmids, and topoisomerase mutations. Infect. Drug Resist. 11, 87–102 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bowen, A. et al. Importation and domestic transmission of Shigella sonnei resistant to ciprofloxacin — United States, May 2014–February 2015. Morb. Mortal. Wkly. Rep. 64, 318–320 (2015).

    Google Scholar 

  77. The, H. C. et al. Dissecting the molecular evolution of fluoroquinolone-resistant Shigella sonnei. Nat. Commun. 10, 4828 (2019).

    Article  Google Scholar 

  78. Boumghar-Bourtchai, L. et al. Macrolide-resistant Shigella sonnei. Emerg. Infect. Dis. 14, 1297–1299 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Darton, T. C. et al. Azithromycin resistance in Shigella spp. in Southeast Asia. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01748-17 (2018).

  80. Locke, R. K., Greig, D. R., Jenkins, C., Dallman, T. J. & Cowley, L. A. Acquisition and loss of CTX-M plasmids in Shigella species associated with MSM transmission in the UK. Microb. Genom. 7, 000644 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Thorley, K. et al. Emergence of extensively drug-resistant and multidrug-resistant Shigella flexneri serotype 2a associated with sexual transmission among gay, bisexual, and other men who have sex with men, in England: a descriptive epidemiological study. Lancet Infect. Dis. 23, 732–739 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. O’Flanagan, H., Siddiq, M., Llewellyn, C. & Richardson, D. Antimicrobial resistance in sexually transmitted Shigella in men who have sex with men: a systematic review. Int. J. STD AIDS https://doi.org/10.1177/09564624231154942 (2023). A study that reviews drug resistance in MSM.

  83. Rowlinson, E., Berzkalns, A., Thibault, C., Golden, M. & Barbee, L. High incidence of antimicrobial use and overuse in cisgender men who have sex with men at risk of bacterial STIs. Sex. Transm. Infect. 97, A48–A49 (2021).

    Google Scholar 

  84. Baker, K. S. et al. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect. Dis. 15, 913–921 (2015). One of the first studies to track global transmission of resistant Shigella.

    Article  PubMed  Google Scholar 

  85. Trivett, H. Increase in extensively drug resistant Shigella sonnei in Europe. Lancet Microb. 3, e481 (2022).

    Article  Google Scholar 

  86. Malaka De Silva, P. et al. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc. R. Soc. B Biol. Sci. 289, 20220581 (2022).

    Article  CAS  Google Scholar 

  87. Schnupf, P. & Sansonetti, P. J. Shigella pathogenesis: new insights through advanced methodologies. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.bai-0023-2019 (2019). A study that provides a comprehensive review on Shigella pathogenesis.

  88. Sansonetti, P. J., Kopecko, D. J. & Formal, S. B. Shigella sonnei plasmids: evidence that a large plasmid is necessary for virulence. Infect. Immun. 34, 75–83 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mahmoud, R. Y. et al. The multivalent adhesion molecule SSO1327 plays a key role in Shigella sonnei pathogenesis. Mol. Microbiol. 99, 658–673 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Watson, J. L. et al. Shigella sonnei O-antigen inhibits internalization, vacuole escape, and inflammasome activation. mBio 10, e02654-19 (2019). A study that identifies differences in host cell interactions between S. sonnei and S. flexneri.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Caboni, M. et al. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei. PLoS Pathog. 11, e1004749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anderson, M. C., Vonaesch, P., Saffarian, A., Marteyn, B. S. & Sansonetti, P. J. Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy. Cell Host Microbe 21, 769–776.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Leung, P. B. et al. Shigella sonnei utilises colicins during inter-bacterial competition. Microbiology 170, 001434 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Henderson, I. R., Czeczulin, J., Eslava, C., Noriega, F. & Nataro, J. P. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67, 5587–5596 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Navarro-Garcia, F. et al. Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 78, 4101–4109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruiz-Perez, F. et al. Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc. Natl Acad. Sci. USA 108, 12881–12886 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Al-Hasani, K., Navarro-Garcia, F., Huerta, J., Sakellaris, H. & Adler, B. The immunogenic SigA enterotoxin of Shigella flexneri 2a binds to HEp-2 cells and induces fodrin redistribution in intoxicated epithelial cells. PLoS ONE 4, e8223 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Benjelloun-Touimi, Z., Sansonetti, P. J. & Parsot, C. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17, 123–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Al-Hasani, K. et al. The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect. Immun. 68, 2457–2463 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gu, B. et al. Existence of virulence genes in clinical Shigella sonnei isolates from Jiangsu Province of China: a multicenter study. Ann. Transl. Med. 7, 305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moosavian, M., Ghaderiyan, G. H., Shahin, M. & Navidifar, T. First investigation of the presence of SPATE genes in Shigella species isolated from children with diarrhea infection in Ahvaz, Southwest Iran. IDR 12, 795–804 (2019).

    Article  CAS  Google Scholar 

  102. Wenzel, H. et al. Improving chances for successful clinical outcomes with better preclinical models. Vaccine 35, 6798–6802 (2017).

    Article  PubMed  Google Scholar 

  103. Alphonse, N. & Odendall, C. Animal models of shigellosis: a historical overview. Curr. Opin. Immunol. 85, 102399 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Willis, A. R. et al. Shigella-induced emergency granulopoiesis protects zebrafish larvae from secondary infection. mBio https://doi.org/10.1128/mbio.00933-18 (2018).

  105. Gomes, M. C., Brokatzky, D., Bielecka, M. K., Wardle, F. C. & Mostowy, S. Shigella induces epigenetic reprogramming of zebrafish neutrophils. Sci. Adv. 9, eadf9706 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Willis, A. R. et al. Injections of predatory bacteria work alongside host immune cells to treat Shigella infection in zebrafish larvae. Curr. Biol. 26, 3343–3351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Torraca, V. et al. Shigella sonnei infection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence. PLoS Pathog. 15, e1008006 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Islam, D. et al. Evaluation of an intragastric challenge model for Shigella dysenteriae 1 in rhesus monkeys (Macaca mulatta) for the pre-clinical assessment of Shigella vaccine formulations. APMIS 122, 463–475 (2014).

    Article  PubMed  Google Scholar 

  109. Kinsey, M. D., Formal, S. B., Dammin, G. J. & Giannella, R. A. Fluid and electrolyte transport in rhesus monkeys challenged intracecally with Shigella flexneri 2a. Infect. Immun. 14, 368–371 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kuehl, C. J., D’Gama, J. D., Warr, A. R. & Waldor, M. K. An oral inoculation infant rabbit model for Shigella infection. mBio https://doi.org/10.1128/mbio.03105-19 (2020).

  111. Mitchell, P. S. et al. NAIP–NLRC4-deficient mice are susceptible to shigellosis. eLife 9, e59022 (2020). A study that focuses on efforts to develop a suitable mouse model of shigellosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rout, W. R., Formal, S. B., Giannella, R. A. & Dammin, G. J. Pathophysiology of Shigella diarrhea in the rhesus monkey: intestinal transport, morphological, and bacteriological studies. Gastroenterology 68, 270–278 (1975).

    Article  CAS  PubMed  Google Scholar 

  113. Shim, D.-H. et al. New animal model of shigellosis in the guinea pig: its usefulness for protective efficacy studies. J. Immunol. 178, 2476–2482 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Skerniskyte, J. et al. Ascorbate deficiency increases progression of shigellosis in guinea pigs and mice infection models. Gut Microbes 15, 2271597 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alphonse, N. et al. A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell 185, 2354–2369.e17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Brunner, K., Samassa, F., Sansonetti, P. J. & Phalipon, A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum. Vaccines Immunother. 15, 1317–1325 (2019).

    Article  Google Scholar 

  117. Shaughnessy, H. J., Olsson, R. C., Bass, K., Friewer, F. & Levinson, S. O. Experimental human bacillary dysentery: polyvalent dysentery vaccine in its prevention. J. Am. Med. Assoc. 132, 362–368 (1946).

    Article  CAS  PubMed  Google Scholar 

  118. Clarkson, K. A. et al. Immune response characterization after controlled infection with lyophilized Shigella sonnei 53G. mSphere 5, e00988-19 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clarkson, K. A. et al. Shigella-specific immune profiles induced after parenteral immunization or oral challenge with either Shigella flexneri 2a or Shigella sonnei. mSphere 6, e00122–21 (2021). An analysis of human challenge studies comparing immune responses to S. sonnei and S. flexneri.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Grassart, A. et al. Bioengineered human organ-on-chip reveals intestinal microenvironment and mechanical forces impacting Shigella infection. Cell Host Microbe 26, 435–444.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  121. Boquet-Pujadas, A. et al. 4D live imaging and computational modeling of a functional gut-on-a-chip evaluate how peristalsis facilitates enteric pathogen invasion. Sci. Adv. 8, eabo5767 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ranganathan, S., Smith, E. M., Foulke-Abel, J. D. & Barry, E. M. Research in a time of enteroids and organoids: how the human gut model has transformed the study of enteric bacterial pathogens. Gut Microbes 12, 1795389 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Perlman, M., Senger, S., Verma, S., Carey, J. & Faherty, C. S. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 15, 2248713 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ranganathan, S. et al. Evaluating Shigella flexneri pathogenesis in the human enteroid model. Infect. Immun. https://doi.org/10.1128/iai.00740-18 (2019).

  125. Chanin, R. B. et al. Shigella flexneri adherence factor expression in in vivo-like conditions. mSphere https://doi.org/10.1128/msphere.00751-19 (2019).

  126. Anderson, M., Sansonetti, P. J. & Marteyn, B. S. Shigella diversity and changing landscape: insights for the twenty-first century. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2016.00045 (2016).

  127. Calcuttawala, F., Hariharan, C., Pazhani, G. P., Ghosh, S. & Ramamurthy, T. Activity spectrum of colicins produced by Shigella sonnei and genetic mechanism of colicin resistance in conspecific S. sonnei strains and Escherichia coli. Antimicrob. Agents Chemother. 59, 152–158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. The, H. C. et al. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes 9, 38–54 (2018).

    Article  PubMed  Google Scholar 

  129. Ndungo, E. et al. Dynamics of the gut microbiome in Shigella-infected children during the first two years of life. mSystems 7, e00442-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Girardin, S. E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Mostowy, S. et al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8, 433–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Li, P. et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551, 378–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. Wandel, M. P. et al. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8. Cell Host Microbe 22, 507–518.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Roncaioli, J. L. et al. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 12, e83639 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rojas-Lopez, M. et al. NLRP11 is a pattern recognition receptor for bacterial lipopolysaccharide in the cytosol of human macrophages. Sci. Immunol. 8, eabo4767 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Sansonetti, P. J., Arondel, J., Huerre, M., Harada, A. & Matsushima, K. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67, 1471–1480 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Weinrauch, Y., Drujan, D., Shapiro, S. D., Weiss, J. & Zychlinsky, A. Neutrophil elastase targets virulence factors of enterobacteria. Nature 417, 91–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Mandic-Mulec, I., Weiss, J. & Zychlinsky, A. Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed. Infect. Immun. 65, 110–115 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. François, M., Le Cabec, V., Dupont, M.-A., Sansonetti, P. J. & Maridonneau-Parini, I. Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect. Immun. 68, 1289–1296 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ciancarella, V. et al. Role of a fluid-phase PRR in fighting an intracellular pathogen: PTX3 in Shigella infection. PLoS Pathog. 14, e1007469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Meron-Sudai, S. et al. Pentraxin 3 and Shigella LPS and IpaB antibodies interplay to defeat shigellosis. J. Clin. Med. 11, 4384 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nothelfer, K. et al. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. J. Exp. Med. 211, 1215–1229 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pinaud, L. et al. Injection of T3SS effectors not resulting in invasion is the main targeting mechanism of Shigella toward human lymphocytes. Proc. Natl Acad. Sci. USA 114, 9954–9959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pinaud, L., Sansonetti, P. J. & Phalipon, A. Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol. 26, 266–283 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Frenck, R. W. et al. Establishment of a controlled human infection model with a lyophilized strain of Shigella sonnei 53G. mSphere 5, e00416–e00420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. MacLennan, C. A., Grow, S., Ma, L. & Steele, A. D. The Shigella vaccines pipeline. Vaccines 10, 1376 (2022). A paper that reviews the current status of vaccines in development against Shigella.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. MacLennan, C. A. & Steele, A. D. Frontiers in Shigella vaccine development. Vaccines 10, 1536 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. DuPont, H. L. et al. Immunity in shigellosis. II. Protection induced by oral live vaccine or primary infection. J. Infect. Dis. 125, 12–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  151. Herrington, D. A. et al. Studies in volunteers to evaluate candidate Shigella vaccines: further experience with a bivalent Salmonella typhiShigella sonnei vaccine and protection conferred by previous Shigella sonnei disease. Vaccine 8, 353–357 (1990).

    Article  CAS  PubMed  Google Scholar 

  152. Formal, S. B. et al. Effect of prior infection with virulent Shigella flexneri 2a on the resistance of monkeys to subsequent infection with Shigella sonnei. J. Infect. Dis. 164, 533–537 (1991).

    Article  CAS  PubMed  Google Scholar 

  153. Cohen, D. et al. Double-blind vaccine-controlled randomised efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet 349, 155–159 (1997). To our knowledge, the first clinical trial of a conjugate Shigella vaccine.

    Article  CAS  PubMed  Google Scholar 

  154. Cohen, D. et al. Serum IgG antibodies to Shigella lipopolysaccharide antigens — a correlate of protection against shigellosis. Hum. Vaccin. Immunother. 15, 1401–1408 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Cohen, D. et al. Threshold protective levels of serum IgG to Shigella lipopolysaccharide: re-analysis of Shigella vaccine trials data. Clin. Microbiol. Infect. 29, 366–371 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Plotkin, S. A. & Gilbert, P. B. Nomenclature for immune correlates of protection after vaccination. Clin. Infect. Dis. 54, 1615–1617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Robbins, J. B., Chu, C. & Schneerson, R. Hypothesis for vaccine development: protective immunity to enteric diseases caused by nontyphoidal salmonellae and shigellae may be conferred by serum IgG antibodies to the O-specific polysaccharide of their lipopolysaccharides. Clin. Infect. Dis. 15, 346–361 (1992).

    Article  CAS  PubMed  Google Scholar 

  158. Robbins, J. B., Schneerson, R. & Szu, S. C. Perspective: hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Dis. 171, 1387–1398 (1995).

    Article  CAS  PubMed  Google Scholar 

  159. Cohen, D. et al. Safety and immunogenicity of a synthetic carbohydrate conjugate vaccine against Shigella flexneri 2a in healthy adult volunteers: a phase 1, dose-escalating, single-blind, randomised, placebo-controlled study. Lancet Infect. Dis. 21, 546–558 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. de Alwis, R. et al. The identification of novel immunogenic antigens as potential Shigella vaccine components. Genome Med. 13, 8 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. McGuire, M. K. et al. Multipathogen analysis of IgA and IgG antigen specificity for selected pathogens in milk produced by women from diverse geographical regions: the INSPIRE study. Front. Immunol. 11, 614372 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Bernshtein, B. et al. Systems approach to define humoral correlates of immunity to Shigella. Cell Rep. 40, 111216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bernshtein, B. et al. Determinants of immune responses predictive of protection against shigellosis in an endemic zone: a systems analysis of antibody profiles and function. Lancet Microbe 5, 100889 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Raso, M. M., Arato, V., Gasperini, G. & Micoli, F. Toward a Shigella vaccine: opportunities and challenges to fight an antimicrobial-resistant pathogen. Int. J. Mol. Sci. 24, 4649 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wellcome Trust, Boston Consulting Group. Vaccines to Tackle Drug Resistant Infections: An Evaluation of R&D Opportunities (BCG, 2021).

  166. World Health Organization. WHO Preferred Product Characteristics for Vaccines Against Shigella (WHO, 2021).

  167. World Health Organization. Full Value of Vaccine Assessment for Shigella Vaccines (WHO, 2020).

  168. Gavi. Vaccine investment strategy 2024. Gavi, The Vaccine Alliance https://www.gavi.org/our-alliance/strategy/vaccine-investment-strategy-2024 (2023).

  169. Gerke, C. et al. Production of a Shigella sonnei vaccine based on generalized modules for membrane antigens (GMMA), 1790GAHB. PLoS ONE 10, e0134478 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Riddle, M. S., Chen, W. H., Kirkwood, C. D. & MacLennan, C. A. Update on vaccines for enteric pathogens. Clin. Microbiol. Infect. 24, 1039–1045 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Talaat, K. R. et al. Consensus report on Shigella controlled human infection model: conduct of studies. Clin. Infect. Dis. 69, S580–S590 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Porter, C. K., Thura, N., Ranallo, R. T. & Riddle, M. S. The Shigella human challenge model. Epidemiol. Infect. 141, 223–232 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Giersing, B. K. et al. How can controlled human infection models accelerate clinical development and policy pathways for vaccines against Shigella? Vaccine 37, 4778–4783 (2019).

    Article  PubMed  Google Scholar 

  174. Frenck, R. W. et al. A phase I trial to evaluate the safety and immunogenicity of WRSs2 and WRSs3; two live oral candidate vaccines against Shigella sonnei. Vaccine 36, 4880–4889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mo, Y. et al. Safety and immunogenicity of a Shigella bivalent conjugate vaccine (ZF0901) in 3-month- to 5-year-old children in China. Vaccines 10, 33 (2022).

    Article  CAS  Google Scholar 

  176. Micoli, F., Nakakana, U. N. & Berlanda Scorza, F. Towards a four-component GMMA-based vaccine against Shigella. Vaccines 10, 328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rossi, O. et al. A next-generation GMMA-based vaccine candidate to fight shigellosis. npj Vaccines 8, 1–10 (2023).

    Article  Google Scholar 

  178. Yang, J. et al. Revisiting the molecular evolutionary history of Shigella spp. J. Mol. Evol. 64, 71–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  179. Sahl, J. W. et al. Defining the phylogenomics of Shigella species: a pathway to diagnostics. J. Clin. Microbiol. 53, 951–960 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Hawkey, J., Monk, J. M., Billman-Jacobe, H., Palsson, B. & Holt, K. E. Impact of insertion sequences on convergent evolution of Shigella species. PLoS Genet. 16, e1008931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Sansonetti, P. J., Arondel, J., Cantey, J. R., Prévost, M. C. & Huerre, M. Infection of rabbit Peyer’s patches by Shigella flexneri: effect of adhesive or invasive bacterial phenotypes on follicle-associated epithelium. Infect. Immun. 64, 2752–2764 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jensen, V. B., Harty, J. T. & Jones, B. D. Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer’s patches. Infect. Immun. 66, 3758–3766 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bennett, K. M. et al. Induction of colonic M cells during intestinal inflammation. Am. J. Pathol. 186, 1166–1179 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Arena, E. T. et al. Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc. Natl Acad. Sci. USA 112, E3282–E3290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Nigro, G. et al. Mapping of Shigella flexneri’s tissue distribution and type III secretion apparatus activity during infection of the large intestine of guinea pigs. Pathog. Dis. 77, ftz054 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ashida, H., Suzuki, T. & Sasakawa, C. Shigella infection and host cell death: a double-edged sword for the host and pathogen survival. Curr. Opin. Microbiol. 59, 1–7 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Lowell, G. H. et al. Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes, and granulocytes are effective against Shigella. J. Immunol. 125, 2778–2784 (1980).

    Article  CAS  PubMed  Google Scholar 

  188. Hosangadi, D., Smith, P. G. & Giersing, B. K. Considerations for using ETEC and Shigella disease burden estimates to guide vaccine development strategy. Vaccine 37, 7372–7380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article  PubMed  Google Scholar 

  190. Liu, J. et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet 388, 1291–1301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.A.S. and K.S.B. researched data for article. T.A.S., K.S.B., C.T., S.M. and J.H. substantially contributed to the discussion of content. T.A.S., K.S.B., C.T., S.M. and H.S. wrote the article. T.A.S., K.S.B., C.T., C.J., S.M., J.H., H.S., K.E.H., N.R.T. and S.B. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Timothy A. Scott or Stephen Baker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Benoit Marteyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, T.A., Baker, K.S., Trotter, C. et al. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 23, 303–317 (2025). https://doi.org/10.1038/s41579-024-01126-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-024-01126-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology