Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origin and function of beneficial bacterial symbioses in insects

Abstract

Beneficial bacterial symbionts are widespread in insects and affect the fitness of their hosts by contributing to nutrition, digestion, detoxification, communication or protection from abiotic stressors or natural enemies. Decades of research have formed our understanding of the identity, localization and functional benefits of insect symbionts, and the increasing availability of genome sequences spanning a diversity of pathogens and beneficial bacteria now enables comparative approaches of their metabolic features and their phylogenetic affiliations, shedding new light on the origin and function of beneficial symbioses in insects. In this Review, we explore the symbionts’ metabolic traits that can provide benefits to insect hosts and discuss the evolutionary paths to the formation of host-beneficial symbiotic associations. Phylogenetic analyses and molecular studies reveal that extracellular symbioses colonizing cuticular organs or the digestive tract evolved from a broad diversity of bacterial partners, whereas intracellular beneficial symbionts appear to be restricted to a limited number of lineages within the Gram-negative bacteria and probably originated from parasitic ancestors. To unravel the general principles underlying host–symbiont interactions and recapitulate the early evolutionary steps leading towards beneficial symbioses, future efforts should aim to establish more symbiotic systems that are amenable to genetic manipulation and experimental evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of known beneficial bacterial symbioses across insect orders.
Fig. 2: Functional diversity of insect symbionts.
Fig. 3: Functional genomic comparison of exemplary obligate and co-obligate beneficial symbionts in insects.
Fig. 4: Evolution of beneficial symbioses in insects.
Fig. 5: Phylogenetic affiliation of insect-associated intracellular symbionts within the bacterial tree of life.
Fig. 6: Impact of symbiont acquisition and transmission route on ecological niche space and evolutionary diversification of the insect host.

Similar content being viewed by others

References

  1. Drew, G. C., Stevens, E. J. & King, K. C. Microbial evolution and transitions along the parasite–mutualist continuum. Nat. Rev. Microbiol. 19, 623–638 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buchner, P. Endosymbiosis of Animals with Plant Microorganisms (Interscience, 1965).

  4. Douglas, A. E. Insects and Their Beneficial Microbes (Princeton Univ. Press, 2022).

  5. Wheeler, W. C., Whiting, M., Wheeler, Q. D. & Carpenter, J. M. The phylogeny of the extant hexapod orders. Cladistics 17, 113–169 (2001).

    Article  PubMed  Google Scholar 

  6. Cornwallis, C. K. et al. Symbioses shape feeding niches and diversification across insects. Nat. Ecol. Evol. 7, 1022–1044 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Husnik, F. & McCutcheon, J. P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 16, 67–79 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Behmer, S. T. in Encyclopedia of Entomology (ed. Capinera, J. L.) 2646–2654 (Springer Netherlands, 2008).

  10. Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).

    Article  Google Scholar 

  12. Paludo, C. R. et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. https://doi.org/10.1038/s41598-018-19583-9 (2018).

  13. Douglas, A. E. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57, 747–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Salem, H. & Kaltenpoth, M. Beetle–bacterial symbioses: endless forms most functional. Annu. Rev. Entomol. 67, 201–219 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl Acad. Sci. USA 114, E8382–E8391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zientz, E., Beyaert, N., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl. Environ. Microbiol. 72, 6027–6033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duplais, C. et al. Gut bacteria are essential for normal cuticle development in herbivorous turtle ants. Nat. Commun. 12, 676 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, R. A. H. E. L. et al. Convergent evolution of a labile nutritional symbiosis in ants. ISME J. 16, 2114–2122 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anbutsu, H. & Fukatsu, T. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 201–215 (CRC, 2021).

  24. Kanyile, S. N., Engl, T., Heddi, A. & Kaltenpoth, M. Endosymbiosis allows Sitophilus oryzae to persist in dry conditions. Front. Microbiol. 14, 1199370 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kanyile, S. N., Engl, T. & Kaltenpoth, M. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J. Exp. Biol. 225, jeb243593 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).

    Article  PubMed  Google Scholar 

  27. Hansen, A. K., Pers, D. & Russell, J. A. in Mechanisms Underlying Microbial Symbiosis (eds Oliver, K. M. & Russell, J. A.) 161–205 (Academic–Elsevier Science, 2020).

  28. Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl Acad. Sci. USA 106, 19521–19526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flórez, L. V., Biedermann, P. H. W., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).

    Article  PubMed  Google Scholar 

  30. Engl, T. & Kaltenpoth, M. Influence of microbial symbionts on insect pheromones. Nat. Prod. Rep. 35, 386–397 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Van Arnam, E. B., Currie, C. R. & Clardy, J. Defense contracts: molecular protection in insect–microbe symbioses. Chem. Soc. Rev. 47, 1638–1651 (2018).

    Article  PubMed  Google Scholar 

  32. Dillon, R. J., Vennard, C. T. & Charnley, A. K. Exploitation of gut bacteria in the locust. Nature 403, 851 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Ren, L., Ma, Y., Xie, M., Lu, Y. & Cheng, D. Rectal bacteria produce sex pheromones in the male oriental fruit fly. Curr. Biol. 31, 2220–2226.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Wada-Katsumata, A. et al. Gut bacteria mediate aggregation in the German cockroach. Proc. Natl Acad. Sci. USA 112, 15678–15683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marshall, D. G. et al. Morganella morganii bacteria produces phenol as the sex pheromone of the New Zealand grass grub from tyrosine in the colleterial gland. Sci. Nat. 103, 59 (2016).

    Article  CAS  Google Scholar 

  36. Engl, T. Sex pheromones: made with a little help from my (bacterial) friends. Curr. Biol. 31, R474–R476 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Heath, J. J., Cipollini, D. F. & Stireman, J. O. The role of carotenoids and their derivatives in mediating interactions between insects and their environment. Arthropod Plant. Interact. 7, 1–20 (2013).

    Article  Google Scholar 

  38. Sloan, D. B. & Moran, N. A. Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol. Biol. Evol. 29, 3781–3792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moran, N. A. & Jarvik, T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328, 624–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kellner, R. L. L. & Dettner, K. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia 107, 293–300 (1996).

    Article  PubMed  Google Scholar 

  42. Oliver, K. M., Degnan, P. H., Hunter, M. S. & Moran, N. A. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325, 992–994 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ballinger, M. J., Gawryluk, R. M. R. & Perlman, S. J. Toxin and genome evolution in a Drosophila defensive symbiosis. Genome Biol. Evol. 11, 253–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Ballinger, M. J. & Perlman, S. J. Generality of toxins in defensive symbiosis: ribosome-inactivating proteins and defense against parasitic wasps in Drosophila. PLoS Pathog. 13, 19 (2017).

    Article  Google Scholar 

  45. Lindsey, A. R. I., Bhattacharya, T., Newton, I. L. G. & Hardy, R. W. Conflict in the intracellular lives of endosymbionts and viruses: a mechanistic look at Wolbachia-mediated pathogen-blocking. Viruses 10, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Motta, E. V. S., Lariviere, P. J., Jones, K. R., Song, Y. L. & Moran, N. A. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc. Natl Acad. Sci. USA 121, e2414882121 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Kaltenpoth, M., Gottler, W., Herzner, G. & Strohm, E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Flórez, L. V. et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect defensive mutualism. Nat. Commun. 8, 15172 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Flórez, L. V. et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat. Commun. 9, 2478 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kroiss, J. et al. Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6, 261–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kaltenpoth, M. et al. Partner choice and fidelity stabilize co-evolution in a Cretaceous-age defensive symbiosis. Proc. Natl Acad. Sci. USA 111, 6359–6364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Engl, T. et al. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc. Natl Acad. Sci. USA 115, E2020–E2029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. P. Roy. Soc. B-Biol. Sci. 275, 293–299 (2008).

    Google Scholar 

  55. Weldon, S. R., Russell, J. A. & Oliver, K. M. More is not always better: coinfections with defensive symbionts generate highly variable outcomes. Appl. Environ. Microbiol. 86, e02537-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Piel, J., Hofer, I. & Hui, D. Q. Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J. Bacteriol. 186, 1280–1286 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M. & Perlman, S. J. Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329, 212–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Van Sluys, M. A. et al. Comparative genomic analysis of plant-associated bacteria. Annu. Rev. Phytopathol. 40, 169–189 (2002).

    Article  PubMed  Google Scholar 

  59. Ward, O. P. & Mooyoung, M. Enzymatic degradation of cell-wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8, 237–274 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Kirsch, R. et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem. Mol. Biol. 52, 33–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Wybouw, N., Pauchet, Y., Heckel, D. G. & Van Leeuwen, T. Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol. Evol. 8, 1785–1801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Kirsch, R. et al. Symbiosis and horizontal gene transfer promote herbivory in the megadiverse leaf beetles. Curr. Biol. 35, 640–654 (2025).

    Article  CAS  PubMed  Google Scholar 

  64. Kirsch, R. et al. Metabolic novelty originating from horizontal gene transfer is essential for leaf beetle survival. Proc. Natl Acad. Sci. USA 119, 9 (2022).

    Article  Google Scholar 

  65. Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Ceja-Navarro, J. A. et al. Gut anatomical properties and microbial functional assembly promote lignocellulose deconstruction and colony subsistence of a wood-feeding beetle. Nat. Microbiol. 4, 864–875 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl Acad. Sci. USA 109, 11002–11007 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886 (2020).

    Article  CAS  PubMed  Google Scholar 

  70. Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles. Nat. Commun. 11, 2964 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Itoh, H., Tago, K., Hayatsu, M. & Kikuchi, Y. Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat. Prod. Rep. 35, 434–454 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Dearing, M. D., Kaltenpoth, M. & Gershenzon, J. Demonstrating the role of symbionts in mediating detoxification in herbivores. Symbiosis 87, 59–66 (2022).

    PubMed  PubMed Central  Google Scholar 

  73. Motta, E. V. S. et al. Host–microbiome metabolism of a plant toxin in bees. eLife 11, e82595 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dowd, P. F. & Shen, S. K. The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomol. Exp. Appl. 56, 241–248 (1990).

    Article  CAS  Google Scholar 

  75. Sato, Y. et al. Insecticide resistance by a host–symbiont reciprocal detoxification. Nat. Commun. 12, 8 (2021).

    Article  Google Scholar 

  76. Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ceja-Navarro, J. A. et al. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun. 6, 7618 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Berasategui, A. et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol. Ecol. 26, 4099–4110 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Nikoh, N., Hosokawa, T., Oshima, K., Hattori, M. & Fukatsu, T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol. Evol. 3, 702–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Welte, C. U. et al. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ. Microbiol. 18, 1379–1390 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Ben-Yosef, M., Pasternak, Z., Jurkevitch, E. & Yuval, B. Symbiotic bacteria enable olive fly larvae to overcome host defences. R. Soc. Open. Sci. 2, 150170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu, F. H. et al. Symbiotic microbes aid host adaptation by metabolizing a deterrent host pine carbohydrate d-pinitol in a beetle–fungus invasive complex. Sci. Adv. 8, 14 (2022).

    Article  Google Scholar 

  84. Li, H., Young, S. E., Poulsen, M. & Currie, C. R. Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu. Rev. Entomol. 66, 297–316 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Martiarena, M. J. S., Deveau, A., Montoya, Q. V., Flórez, L. V. & Rodrigues, A. The hyphosphere of leaf-cutting ant cultivars is enriched with helper bacteria. Microb. Ecol. 86, 1773–1788 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).

    Article  PubMed  Google Scholar 

  87. Anderson, K. E., Sheehan, T. H., Eckholm, B. J., Mott, B. M. & DeGrandi-Hoffman, G. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc. 58, 431–444 (2011).

    Article  Google Scholar 

  88. Grubbs, K. J. et al. Cycloheximide-producing Streptomyces associated with Xyleborinus saxesenii and Xyleborus affinis fungus-farming ambrosia beetles. Front. Microbiol. 11, 562140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pessotti, Rd. C. et al. Multiple lineages of Streptomyces produce antimicrobials within passalid beetle galleries across eastern North America. eLife 10, e65091 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl Acad. Sci. USA 115, 11274–11279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Douglas, A. E. Housing microbial symbionts: evolutionary origins and diversification of symbiotic organs in animals. Philos. Trans. R. Soc. B 375, 20190603 (2020).

    Article  Google Scholar 

  92. Chomicki, G., Werner, G. D. A., West, S. A. & Kiers, E. T. Compartmentalization drives the evolution of symbiotic cooperation. Philos. Trans. R. Soc. B 375, 20190602 (2020).

    Article  CAS  Google Scholar 

  93. Hong, S., Sun, Y., Sun, D. & Wang, C. Microbiome assembly on Drosophila body surfaces benefits the flies to combat fungal infections. iScience 25, 104408 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J. & Billen, J. Coevolved crypts and exocrine glands. Science 311, 81–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Goettler, W., Kaltenpoth, M., McDonald, S. & Strohm, E. Comparative morphology of the symbiont cultivation glands in the antennae of female digger wasps of the genus Philanthus (Hymenoptera: Crabronidae). Front. Physiol. 13, 815494 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Janke, R. S. et al. Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. ISME J. 16, 2691–2701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Worsley, S. F. et al. Competition-based screening helps to secure the evolutionary stability of a defensive microbiome. BMC Biol 19, 205 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Engel, P. & Moran, N. A. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc. Natl Acad. Sci. USA 78, 4601–4605 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Salem, H. et al. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. P. Roy. Soc. B-Biol. Sci. 281, 20141838 (2014).

    Google Scholar 

  101. Koch, H. & Schmid-Hempel, P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc. Natl Acad. Sci. USA 108, 19288–19292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Onchuru, T. O., Martinez, A. J. & Kaltenpoth, M. The cotton stainer’s gut microbiota suppresses infection of a co-transmitted trypanosomatid parasite. Mol. Ecol. 27, 3408–3419 (2018).

    Article  CAS  Google Scholar 

  103. Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl Acad. Sci. USA 114, 9641–9646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hammer, T. J., Sanders, J. G. & Fierer, N. Not all animals need a microbiome. FEMS Microbiol. Lett. 366, fnz117 (2019).

    Article  CAS  PubMed  Google Scholar 

  105. Girard, M., Luis, P., Moro, C. V. & Minard, G. Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol. 31, 181–196 (2022).

    Article  PubMed  Google Scholar 

  106. Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. P. Roy. Soc. B-Biol. Sci. 282, 20142957 (2015).

    Google Scholar 

  108. Onchuru, T. O., Javier Martinez, A., Ingham, C. S. & Kaltenpoth, M. Transmission of mutualistic bacteria in social and gregarious insects. Curr. Opin. Insect Sci. 28, 50–58 (2018).

    Article  PubMed  Google Scholar 

  109. Moran, N. A., Ochman, H. & Hammer, T. J. Evolutionary and ecological consequences of gut microbial communities. Annu. Rev. Ecol. Evol. Syst. 50, 451–475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schmidt, K. & Engel, P. Mechanisms underlying gut microbiota–host interactions in insects. J. Exp. Biol. 224, jeb207696 (2021).

    Article  PubMed  Google Scholar 

  111. Ganesan, R., Wierz, J., Kaltenpoth, M. & Flórez, L. V. How it all begins: bacterial factors mediating the colonization of invertebrate hosts by beneficial symbionts. Microbiol. Mol. Biol. Rev. 86, e0012621 (2022).

    Article  PubMed  Google Scholar 

  112. Chen, J. Z., Kwong, Z., Gerardo, N. M. & Vega, N. M. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol. 22, 25 (2024).

    Article  Google Scholar 

  113. Itoh, H. et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc. Natl Acad. Sci. USA 116, 22673–22682 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Johnston, P. R., Paris, V. & Rolff, J. Immune gene regulation in the gut during metamorphosis in a holo- versus a hemimetabolous insect. Philos. Trans. R. Soc. B 374, 20190073 (2019).

    Article  CAS  Google Scholar 

  116. Ohbayashi, T. et al. Insect’s intestinal organ for symbiont sorting. Proc. Natl Acad. Sci. USA 112, E5179–E5188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lanan, M. C., Rodrigues, P. A. P., Agellon, A., Jansma, P. & Wheeler, D. E. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 10, 1866–1876 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fukumori, K. et al. Evolutionary dynamics of host organs for microbial symbiosis in tortoise leaf beetles (Coleoptera: Chrysomelidae: Cassidinae). mBio 13, e0369121 (2022).

    Article  PubMed  Google Scholar 

  119. Matsuura, Y. et al. Evolution of symbiotic organs and endosymbionts in lygaeid stinkbugs. ISME J. 6, 397–409 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).

    Article  Google Scholar 

  121. Kikuchi, Y., Ohbayashi, T., Jang, S. & Mergaert, P. Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME J. 14, 1627–1638 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dale, C., Young, S. A., Haydon, D. T. & Welburn, S. C. The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc. Natl Acad. Sci. USA 98, 1883–1888 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maire, J. et al. Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proc. Natl Acad. Sci. USA 117, 19347–19358 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wilkes, T. E. et al. The draft genome sequence of Arsenophonus nasoniae, son-killer bacterium of Nasonia vitripennis, reveals genes associated with virulence and symbiosis. Insect Mol. Biol. 19, 59–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Wierz, J. C. et al. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. ISME J. 18, 13 (2024).

    Article  Google Scholar 

  126. Schepers, M. J., Yelland, J. N., Moran, N. A. & Taylor, D. W. Isolation of the Buchnera aphidicola flagellum basal body complexes from the Buchnera membrane. PLoS ONE 16, 10 (2021).

    Article  Google Scholar 

  127. Richter, D. J. & Levin, T. C. The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Curr. Opin. Genet. Dev. 58–59, 111–122 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Krakauer, T. Inflammasomes, autophagy, and cell death: the trinity of innate host defense against intracellular bacteria. Mediators Inflamm. 2019, 2471215 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tam, J. C. H. & Jacques, D. A. Intracellular immunity: finding the enemy within—how cells recognize and respond to intracellular pathogens. J. Leukoc. Biol. 96, 233–244 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jo, Y. H. et al. Autophagy in Tenebrio molitor immunity: conserved antimicrobial functions in insect defenses. Front. Immunol. 12, 667664 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Steinert, S. & Levashina, E. A. Intracellular immune responses of dipteran insects. Immunol. Rev. 240, 129–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Brenner, A. E., Muñoz-Leal, S., Sachan, M., Labruna, M. B. & Raghavan, R. Coxiella burnetii and related tick endosymbionts evolved from pathogenic ancestors. Genome Biol. Evol. 13, evab108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dharamshi, J. E. et al. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat. Microbiol. 8, 40–54 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stelzner, K., Vollmuth, N. & Rudel, T. Intracellular lifestyle of Chlamydia trachomatis and host–pathogen interactions. Nat. Rev. Microbiol. 21, 448–462 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Van Schaik, E. J., Chen, C., Mertens, K., Weber, M. M. & Samuel, J. E. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11, 561–573 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Voss, O. H. & Rahman, M. S. Rickettsia–host interaction: strategies of intracytosolic host colonization. Pathog. Dis. 79, ftab015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Feng, H. et al. Trading amino acids at the aphid–Buchnera symbiotic interface. Proc. Natl Acad. Sci. USA 116, 16003–16011 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Costa, H. S., Westcot, D. M., Ullman, D. E. & Johnson, M. W. Ultrastructure of the endosymbionts of the whitefly, Bemisia tabaci and Trialeurodes vaporariorum. Protoplasma 176, 106–115 (1993).

    Article  Google Scholar 

  139. Wang, Y.-B. et al. Autophagy regulates whitefly–symbiont metabolic interactions. Appl. Environ. Microbiol. 88, e02089–02021 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Deehan, M., Lin, W., Blum, B., Emili, A. & Frydman, H. Intracellular density of Wolbachia is mediated by host autophagy and the bacterial cytoplasmic incompatibility gene cifB in a cell type-dependent manner in Drosophila melanogaster. mBio 12, e02205-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Aguilar, C., Mano, M. & Eulalio, A. microRNAs at the host–bacteria interface: host defense or bacterial offense. Trends Microbiol. 27, 206–218 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Martyn, J. E., Gomez-Valero, L. & Buchrieser, C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol. Rev. 46, fuac012 (2022).

    Article  PubMed  Google Scholar 

  143. LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hussain, M., Frentiu, F. D., Moreira, L. A., O’Neill, S. L. & Asgari, S. Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 9250–9255 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bublitz, D. A. C. et al. Peptidoglycan production by an insect–bacterial mosaic. Cell 179, 703–712.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sun, X. et al. A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within Bemisia tabaci whiteflies. Mol. Ecol. 31, 2611–2624 (2022).

    Article  CAS  PubMed  Google Scholar 

  148. Dale, C., Plague, G. R., Wang, B., Ochman, H. & Moran, N. A. Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc. Natl Acad. Sci. USA 99, 12397–12402 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chomicki, G., Kiers, E. T. & Renner, S. S. The evolution of mutualistic dependence. Annu. Rev. Ecol. Evol. Syst. 51, 409–432 (2020).

    Article  Google Scholar 

  150. Frank, S. A. Models of symbiosis. Am. Nat. 150, S80–S99 (1997).

    Article  PubMed  Google Scholar 

  151. Su, Y. et al. Rational engineering of a synthetic insect–bacterial mutualism. Curr. Biol. 32, 3925–3938.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koga, R. et al. Single mutation makes Escherichia coli an insect mutualist. Nat. Microbiol. 7, 1141–1150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Durvasula, R. V., Sundaram, R. K., Cordon-Rosales, C., Pennington, P. & Beard, C. B. in Insect Symbiosis (eds Bourtzis, K. & Miller, T. A.) 83–96 (CRC, 2003).

  154. Currie, C. R., Scott, J. A., Summerbell, R. C. & Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398, 701–704 (1999).

    Article  CAS  Google Scholar 

  155. Evans, J. D. & Lopez, D. L. Bacterial probiotics induce an immune response in the honeybee (Hymenoptera: Apidae). J. Econ. Entomol. 97, 752–756 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Consuegra, J. et al. Metabolic cooperation among commensal bacteria supports Drosophila juvenile growth under nutritional stress. Iscience 23, 41 (2020).

    Article  Google Scholar 

  157. Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C. & Moran, N. A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl Acad. Sci. USA 114, 4775–4780 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Shao, Y. et al. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem. Biol. 24, 66–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Berasategui, A. et al. Symbiont genomic features and localization in the bean beetle Callosobruchus maculatus. Appl. Environ. Microbiol. 87, e0021221 (2021).

    Article  PubMed  Google Scholar 

  160. Miller, D. L., Smith, E. A. & Newton, I. L. G. A bacterial symbiont protects honey bees from fungal disease. mBio 12, e0050321 (2021).

    Article  Google Scholar 

  161. Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2020).

    Article  CAS  PubMed  Google Scholar 

  162. Sudakaran, S., Retz, F., Kikuchi, Y., Kost, C. & Kaltenpoth, M. Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME J. 9, 2587–2604 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Piel, J. A polyketide synthase–peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl Acad. Sci. USA 99, 14002–14007 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mukherjee, K. et al. Galleria mellonella as a model system for studying Listeria pathogenesis. Appl. Environ. Microbiol. 76, 310–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl Acad. Sci. USA 115, E5970–E5979 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Everett, K. D. E., Thao, M. L., Horn, M., Dyszynski, G. E. & Baumann, P. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55, 1581–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Nechitaylo, T. Y. et al. Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proc. Natl Acad. Sci. USA 118, e2023047118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Itoh, H. et al. Infection dynamics of insecticide-degrading symbionts from soil to insects in response to insecticide spraying. ISME J. 12, 909–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hosokawa, T. et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat. Microbiol. 1, 15011 (2016).

    Article  CAS  PubMed  Google Scholar 

  171. McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Heckel, D. G. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch. Insect Biochem. Physiol. 104, 12 (2020).

    Article  Google Scholar 

  173. Nielsen-LeRoux, C., Gaudriault, S., Ramarao, N., Lereclus, D. & Givaudan, A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr. Opin. Microbiol. 15, 220–231 (2012).

    Article  PubMed  Google Scholar 

  174. de Bekker, C., Beckerson, W. C. & Elya, C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio 12, 15 (2021).

    Article  Google Scholar 

  175. Laukaitis, H. J. & Macaluso, K. R. Unpacking the intricacies of Rickettsia–vector interactions. Trends Parasitol. 37, 734–746 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Trivellone, V. & Dietrich, C. H. Evolutionary diversification in insect vector–Phytoplasma–plant associations. Ann. Entomol. Soc. Am. 114, 137–150 (2020).

    Article  Google Scholar 

  177. Manzano-Marín, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).

    Article  Google Scholar 

  178. Landmann, F. The Wolbachia endosymbionts. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.bai-0018-2019 (2019).

  179. Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl Acad. Sci. USA 107, 769–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Moriyama, M., Nikoh, N., Hosokawa, T. & Fukatsu, T. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6, e01732-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Dobson, S. L., Marsland, E. J. & Rattanadechakul, W. Mutualistic Wolbacbia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160, 1087–1094 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zug, R. & Hammerstein, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol. Rev. 90, 89–111 (2015).

    Article  PubMed  Google Scholar 

  183. Egan, A. J. F., Errington, J. & Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 18, 446–460 (2020).

    Article  CAS  PubMed  Google Scholar 

  184. Wang, X. L., Zhang, Y. Q., Zhang, R. & Zhang, J. H. The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Curr. Opin. Insect Sci. 33, 105–110 (2019).

    Article  PubMed  Google Scholar 

  185. Kim, S. J., Chang, J. & Singh, M. Peptidoglycan architecture of Gram-positive bacteria by solid-state NMR. Biochim. Biophys. Acta 1848, 350–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome 6, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Liegeois, S. & Ferrandon, D. Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 74, 35–62 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Vorburger, C. Defensive symbionts and the evolution of parasitoid host specialization. Annu. Rev. Entomol. 67, 329–346 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Zhang, Z.-Q. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3703, 17–26 (2013).

    Article  Google Scholar 

  191. Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Janson, E. M., Stireman, J. O., Singer, M. S. & Abbot, P. Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62, 997–1012 (2008).

    Article  PubMed  Google Scholar 

  193. Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl Acad. Sci. USA 104, 8627–8633 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bright, M. & Bulgheresi, S. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8, 218–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Perreau, J. & Moran, N. A. Genetic innovations in animal–microbe symbioses. Nat. Rev. Genet. 23, 23–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Moran, N. A. & Degnan, P. H. Functional genomics of Buchnera and the ecology of aphid hosts. Mol. Ecol. 15, 1251–1261 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Tamas, I. et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Wierz, J. C., Gimmel, M. L., Huthmacher, S., Engl, T. & Kaltenpoth, M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. ISME J. 18, 16 (2024).

    Article  Google Scholar 

  199. Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Max Planck Society and the European Research Council through a Consolidator Grant to M.K. (ERC CoG 819585 ‘SYMBeetle’) and from the Novo Nordisk Foundation through a postdoctoral research grant to L.V.F. (NNF20OC0064385).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Martin Kaltenpoth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Nancy Moran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaltenpoth, M., Flórez, L.V., Vigneron, A. et al. Origin and function of beneficial bacterial symbioses in insects. Nat Rev Microbiol (2025). https://doi.org/10.1038/s41579-025-01164-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-025-01164-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology