Extended Data Fig. 1: Spectroscopic and transport study of MoS2 before and after phase change induced by n-butyllithium. | Nature

Extended Data Fig. 1: Spectroscopic and transport study of MoS2 before and after phase change induced by n-butyllithium.

From: Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting

Extended Data Fig. 1

a, Raman spectrum of MoS2 before and after the phase change induced by n-butyllithium. A new Raman peak around 286 cm−1 was observed after the phase change. b, X-ray photoelectron spectroscopy characterization of MoS2 samples (Mo 3d3/2 and Mo 3d5/2 peaks) before and after the 2H-to-1T/1T′ phase change induced by n-butyllithium. The Mo 3d3/2 and Mo 3d5/2 peaks were red-shifted after the phase change. c, IV transfer characteristics of a MoS2 field-effect transistor (FET) on a Si wafer capped with 300 nm SiO2, before and after phase change. The graph shows the drain current as a function of backgate bias for drain voltage Vds = 50 mV, channel length of 830 nm and channel width of 50 μm. The 300-nm-thick SiO2 serves as the backgate dielectric layer. Black line, pristine MoS2 FET; red line, MoS2 FET after phase change through n-butyllithium treatment; blue line, post-phase-change MoS2 FET after baking (180 °C for 3 min). The 1T-phase MoS2 is unstable in air at room temperature, and part of the 1T region is converted into the 1T′ phase. However, the 1T/1T′ mixture MoS2 retains metallic IV characteristics after baking.

Back to article page