Extended Data Fig. 4: LIFR signalling in PCCs modulates cancer cell differentiation.
From: Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring

a, b, Flow cytometry analysis of the total cell counts (a) and relative frequency (b) of tumour-initiating cell populations in individual tumours. c, Functional evaluation of tumour-initiating cell abundance by in vitro sphere formation. d–i, Heat maps showing differential gene expression comparing the EpCAM+ cancer cells purified from individual tumours of LifrWTKPf/fCL or Lifrf/fKPf/fCL mice. Colours correspond to standardized expression of genes. n = 4 mice per treatment. d, Hierarchical clustering of all the 1,129 differentially expressed genes (FDR <0.05, log2(fold change) >0.8 and FPKM >2 in at least four samples). Heat maps of genes related to tumour-initiating cell markers (e), STAT3 downstream targets (f), and Gem response (g). h, i, GSEA. j, l, Expression of Csf2 (encoding GM-CSF) and Ccl11 in EpCAM+ PCCs (n = 4), PDGFRα+ cancer-associated fibroblasts (CAFs; n = 3) and CD45+ tumour infiltrating lymphocytes (TILs; n = 3), purified by FACS from tumours of KPf/fCL mice, determined by RNA-seq analysis. k, m, n, Multiplex ELISA analysis of GM-CSF and CCL11 levels in normal, caerulein-induced chronic pancreatitis and PDAC tissues of KPf/fCL mice showed that the increase in GM-CSF was induced only when tumours developed (k), whereas the increase in CCL1L level was induced in both chronic pancreatitis and PDAC consistently, both in mouse models (m) and human disease (n), supporting the notion that CCL11 is a cytokine specifically produced by PSCs, whereas GM-CSF is produced specifically by PCCs. o, Cellular localization of Ccl11 mRNA in pancreatic cancer tissues from KPf/fCL mice was examined by multiplex fluorescent RNAscope assays. Ptprc mRNA was co-stained to mark immune cells, and KRT19 was stained by immunofluorescence to mark cancer cells. n = 3 tumours. Scale bars: yellow, 500 µm; white, 100 µm.