Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

LifeTime and improving European healthcare through cell-based interceptive medicine

A Publisher Correction to this article was published on 17 March 2021

This article has been updated

Abstract

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early disease detection and interception by understanding and targeting cellular trajectories through time.
Fig. 2: Hallmarks of the LifeTime approach to disease interception and treatment.
Fig. 3: Exploiting the LifeTime dimension to empower disease targeting.
Fig. 4: Blueprint of the LifeTime Initiative.

Similar content being viewed by others

Change history

References

  1. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).

    Article  PubMed  CAS  Google Scholar 

  5. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. The LifeTime Initiative. LifeTime Strategic Research Agenda. https://lifetime-initiative.eu/wp-content/uploads/2020/08/LifeTime-Strategic-Research-Agenda.pdf (2020).

  8. Yofe, I., Dahan, R. & Amit, I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat. Med. 26, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ledergor, G. et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 24, 1867–1876 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e718 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624.e1624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Galen, P. et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity. Cell 176, 1265–1281.e1224 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22, 2087–2097 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, L. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat. Med. 26, 333–340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rooijers, K. et al. Simultaneous quantification of protein–DNA contacts and transcriptomes in single cells. Nat. Biotechnol. 37, 766–772 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991.e19 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Giladi, A. et al. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat. Biotechnol. 38, 629–637 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. Nitzan, M., Karaiskos, N., Friedman, N. & Rajewsky, N. Gene expression cartography. Nature 576, 132–137 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cardozo Gizzi, A. M. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell. 74, 212–222.e215 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Keren, L. et al. A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 1373–1387.e1319 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364, 89–93 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Baron, C. S. & van Oudenaarden, A. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol. 20, 753–765 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, C. et al. Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell 173, 879–893.e813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rambow, F. et al. Toward minimal residual disease-directed therapy in melanoma. Cell 174, 843–855.e819 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Corcoran, R. B. & Chabner, B. A. Application of cell-free DNA analysis to cancer treatment. N. Engl. J. Med. 379, 1754–1765 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Argelaguet, R. et al. Multi-Omics Factor Analysis—a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 14, e8124 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Efremova, M. & Teichmann, S. A. Computational methods for single-cell omics across modalities. Nat. Methods 17, 14–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Pearl, J. & Mackenzie, D. The Book of Why: The New Science of Cause and Effect (Penguin, 2019).

  53. Amin, N. D. & Paşca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Knoblich, J. A. Lab-built brains. Sci. Am. 316, 26–31 (2016).

    Article  ADS  PubMed  Google Scholar 

  55. Bleijs, M., van de Wetering, M., Clevers, H. & Drost, J. Xenograft and organoid model systems in cancer research. EMBO J. 38, e101654 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Espuny-Camacho, I. et al. Hallmarks of Alzheimer’s disease in stem-cell-derived human neurons transplanted into mouse brain. Neuron 93, 1066–1081.e1068 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Hasselmann, J. et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 103, 1016–1033.e1010 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mancuso, R. et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat. Neurosci. 22, 2111–2116 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schultze, J. L.The SYSCID Consortium & Rosenstiel, P. Systems medicine in chronic inflammatory diseases. Immunity 48, 608–613 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Life Science RI European Life Science Research Infrastructures https://lifescience-ri.eu/home.html (2020).

  63. Sugarman, J. & Bredenoord, A. L. Real-time ethics engagement in biomedical research: ethics from bench to bedside. EMBO Rep. 21, e49919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Torres-Padilla, M. E. et al. Thinking ‘ethical’ when designing a new biomedical research consortium. EMBO J. 39, e105725 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. European Commission. People in the EU: who are we and how do we live? https://ec.europa.eu/eurostat/documents/3217494/7089681/KS-04-15-567-EN-N.pdf/8b2459fe-0e4e-4bb7-bca7-7522999c3bfd (Eurostat, 2015).

  66. What happened to personalized medicine? Nat. Biotechnol. 30, 1 (2012).

Download references

Acknowledgements

We acknowledge all participants that have attended and contributed to LifeTime meetings and workshops through many presentations and discussions. We thank J. Richers for artwork and A. Sonsala, A. Tschernycheff and C. Lozach for administrative support. LifeTime has received funding from the European Union’s Horizon 2020 research and innovation framework programme under grant agreement 820431.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the writing of the article and provided comments and feedback. They all approved submission of the article for publication. The individuals listed at the end of the paper are members of Working Groups that contributed to the writing of the LifeTime Strategic Research Agenda (listed in full in the Supplementary Information). Please note that the complete LifeTime Community is much broader and includes many associates and supporters that are actively contributing to and advocating for LifeTime (further information can be found at https://lifetime-initiative.eu).

Corresponding authors

Correspondence to Nikolaus Rajewsky, Geneviève Almouzni or Stanislaw A. Gorski.

Ethics declarations

Competing interests

C.B. is an inventor on several patent applications in genome technology and cofounder of Aelian Biotechnology, a single-cell CRISPR screening company. H.C. is a non-executive board member of Roche Holding, Basel. A.P. holds European and US patents on ‘Genome Architecture Mapping’ (EP 3230465 B1, US 10526639 B2). W.R. is a consultant and shareholder of Cambridge Epigenetix. T.V. is co-inventor on licensed patents WO/2011/157846 (methods for haplotyping single cells), WO/2014/053664 (high-throughput genotyping by sequencing low amounts of genetic material), WO/2015/028576 (haplotyping and copy number typing using polymorphic variant allelic frequencies). All other authors declare no competing interests.

Additional information

Peer review information Nature thanks Michael Snyder, Ali Torkamani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Author and affiliation list for members of the LifeTime Working Groups.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajewsky, N., Almouzni, G., Gorski, S.A. et al. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature 587, 377–386 (2020). https://doi.org/10.1038/s41586-020-2715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2715-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research