Extended Data Fig. 4: Regulation of YBX1 phosphorylation dynamics in JAK2VF cells. | Nature

Extended Data Fig. 4: Regulation of YBX1 phosphorylation dynamics in JAK2VF cells.

From: Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms

Extended Data Fig. 4

a, Profile plot showing significantly regulated individual phosphorylated residues of YBX1 in JAK2WT and JAK2VF. Each data point is the averaged median of biological quadruplicate and significance was tested using two-sample test. b, Profile plot showing individual phosphorylated residues of YBX1 that are significantly regulated in JAK2WT when unstimulated (control) or stimulated with erythropoietin or erythropoietin + JAK inhibitor. c, Profile plot showing significantly regulated individual phosphorylated residues of YBX1 in JAK2VF when unstimulated or stimulated with EPO or EPO + JAK inhibitor. b, c, Each data point is the averaged median of biological quadruplicate, z-scored (log2 phosphosite intensity), and significance was tested using multiple sample test. d, Experimental design for phosphoproteome analysis of short-term JAK2 downstream effector kinase inhibitor treatment in JAK2VF cells. n = 4 per group, phosphopeptides were enriched using EasyPhos workflow and analysed in single-run LC-MS/MS. e, Dot plot showing the successful inhibition of respective targets of the corresponding kinase inhibitor used in this study (ANOVA test with permutation-based FDR < 0.01). f, Dot plot showing changes in quantified YBX1 phosphosites after various kinase inhibitor treatment (ANOVA test, permutation-based FDR < 0.01). The highlighted YBX1 pS30 phosphosite is the only site highly significantly downregulated upon MEK/ERK inhibitor treatment compared to controls. e, f, Size and colour of the dots are proportional to the phosphosite intensity, z-scored (log2 intensity). g, Amino acid sequence alignment of YBX1 across different species shows that mouse YBX1 Ser30 and Ser34 are conserved.

Source data

Back to article page