Extended Data Fig. 4: Regulation of YBX1 phosphorylation dynamics in JAK2VF cells.
From: Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms

a, Profile plot showing significantly regulated individual phosphorylated residues of YBX1 in JAK2WT and JAK2VF. Each data point is the averaged median of biological quadruplicate and significance was tested using two-sample test. b, Profile plot showing individual phosphorylated residues of YBX1 that are significantly regulated in JAK2WT when unstimulated (control) or stimulated with erythropoietin or erythropoietin + JAK inhibitor. c, Profile plot showing significantly regulated individual phosphorylated residues of YBX1 in JAK2VF when unstimulated or stimulated with EPO or EPO + JAK inhibitor. b, c, Each data point is the averaged median of biological quadruplicate, z-scored (log2 phosphosite intensity), and significance was tested using multiple sample test. d, Experimental design for phosphoproteome analysis of short-term JAK2 downstream effector kinase inhibitor treatment in JAK2VF cells. n = 4 per group, phosphopeptides were enriched using EasyPhos workflow and analysed in single-run LC-MS/MS. e, Dot plot showing the successful inhibition of respective targets of the corresponding kinase inhibitor used in this study (ANOVA test with permutation-based FDR < 0.01). f, Dot plot showing changes in quantified YBX1 phosphosites after various kinase inhibitor treatment (ANOVA test, permutation-based FDR < 0.01). The highlighted YBX1 pS30 phosphosite is the only site highly significantly downregulated upon MEK/ERK inhibitor treatment compared to controls. e, f, Size and colour of the dots are proportional to the phosphosite intensity, z-scored (log2 intensity). g, Amino acid sequence alignment of YBX1 across different species shows that mouse YBX1 Ser30 and Ser34 are conserved.