Fig. 3: Correspondence between transcriptomic and morpho-electrical properties of mouse MOp neurons by Patch-seq, and cross-species comparison of L5 ET neurons. | Nature

Fig. 3: Correspondence between transcriptomic and morpho-electrical properties of mouse MOp neurons by Patch-seq, and cross-species comparison of L5 ET neurons.

From: A multimodal cell census and atlas of the mammalian primary motor cortex

Fig. 3

a, t-Distributed stochastic neighbor embedding (t-SNE) of the scRNA-seq 10x v2 dataset with the superimposed Patch-seq neurons71 (black dots). b, c, Examples of GABAergic interneuron (b) and glutamatergic excitatory neuron (c) morphologies and electrophysiological recordings. Letters and symbols refer to cells marked in a. Three voltage traces are shown in each cell: the hyperpolarization trace obtained with the smallest current stimulation, the first depolarization trace that elicited at least one action potential, and the depolarization trace showing maximal firing rate. Stimulation length, 600 ms. d, Example of a phenotypically homogeneous t-type (Pvalb Vipr2_2, chandelier neurons). e, f, Two examples of t-types showing layer-adapting morphologies: Lamp5 Slc35d3, neurogliaform cells (e) and Pvalb Il1rapl2, fast-spiking basket cells (f). g, Example of a transcriptomic subclass (excitatory IT neurons) that shows continuous within-subclass co-variation between distances in transcriptomic space and morphological space, as seen in similar colour ordering in a (right) and gh, UMAP visualization of cross-species integration of snRNA-seq data for glutamatergic neurons isolated from mouse, macaque and human, with colours corresponding to cell subclass. Patch-seq samples mapping to various ET neuron types are denoted by squares, colour-coded by species. i, Dendritic reconstructions of L5 ET neurons. The human and macaque neurons display classical Betz cell features including taproot dendrites (arrows). Note that the human neuron is truncated (asterisk) before reaching the pial surface. j, Voltage response of mouse, macaque and human ET neurons to a 1 s, −300 pA current injection (left) and input resistance (mean ± s.e.m.; macaque n = 4, human n = 4, mouse n = 22) (right). False-discovery rate (FDR)-corrected two-sided Wilcoxon ranked-sum test (human versus mouse W = 12, P = 0.31, d = 2.09; human versus macaque W = 5, P = 0.49, d = 0.08; macaque versus mouse W = 0, P = 0.0004, D = 2.5). k, Example spike trains in response to a 10-s suprathreshold current injection. l, Violin plots of enriched potassium channel gene expression in human, macaque and mouse L5 ET neurons. Data may be viewed at NeMO Analytics.

Back to article page