Fig. 2: Mechanical behaviour and nanoscale processes during plastic straining of the M-MCA.
From: A mechanically strong and ductile soft magnet with extremely low coercivity

a, Typical engineering stress–strain curves measured at room temperature, together with the average values for ultimate tensile strength (σUTS) and elongation at fracture (εf). b, Strain-hardening rate/true stress–true strain curves. The insets show the macroscopic image (top inset; scale bar, 1 cm) of the tensile sample and the corresponding fracture morphology (bottom inset; scale bar, 5 μm), in which a typical ductile fracture with fine dimples is observed. c, Substructure evolution as a function of global strain observed after interrupted tensile tests: EBSD-KAM maps showing the distributions of deformation-induced misorientations (top images; scale bar, 50 μm), in which εT stands for the global true strain; ECCI analysis (middle images; scale bar, 100 nm) showing the evolution of microbands; the shearing of L12 particles is highlighted by red arrows; schematics (bottom images) illustrating the microband refinement in the M-MCA during plastic straining.