Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetic defects of brain immunity in childhood herpes simplex encephalitis

Abstract

Herpes simplex virus 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in humans. It is life-threatening and has a first peak of incidence in childhood, during primary infection. Children with HSE are not particularly prone to other infections, including HSV-1 infections of tissues other than the brain. About 8–10% of childhood cases are due to monogenic inborn errors of 19 genes, two-thirds of which are recessive, and most of which display incomplete clinical penetrance. Childhood HSE can therefore be sporadic but genetic, enabling new diagnostic and therapeutic approaches. In this Review, we examine essential cellular and molecular mechanisms of cell-intrinsic antiviral immunity in the brain that are disrupted in individuals with HSE. These mechanisms include both known (such as mutations in the TLR3 pathway) and previously unknown (such as the TMEFF1 restriction factor) antiviral pathways, which may be dependent (for example, IFNAR1) or independent (for example, through RIPK3) of type I interferons. They operate in cortical or brainstem neurons, and underlie forebrain and brainstem infections, respectively. Conversely, the most severe inborn errors of leukocytes, including a complete lack of myeloid and/or lymphoid blood cells, do not underlie HSE. Thus congenital defects in intrinsic immunity in brain-resident neurons that underlie HSE broaden natural host defences against HSV-1 from the leukocytes of the immune system to other cells in the organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical structure of the human brain and images of typical forebrain lesions in patients with genetically defined HSE.
Fig. 2: Monogenic IEIs disrupt type I interferon-dependent and -independent cell-intrinsic antiviral mechanisms, conferring a predisposition to childhood HSE.
Fig. 3: IEIs and their autoimmune phenocopies underlie HSE and WNV encephalitis, respectively.

Similar content being viewed by others

References

  1. Gnann, J. W. Jr & Whitley, R. J. Herpes simplex encephalitis: an update. Curr. Infect. Dis. Rep. 19, 13 (2017).

    Article  PubMed  Google Scholar 

  2. Messacar, K., Fischer, M., Dominguez, S. R., Tyler, K. L. & Abzug, M. J. Encephalitis in US children. Infect. Dis. Clin. North. Am. 32, 145–162 (2018).

    Article  PubMed  Google Scholar 

  3. Tyler, K. L. Acute viral encephalitis. N. Engl. J. Med. 379, 557–566 (2018).

    Article  PubMed  Google Scholar 

  4. Smith, M. G., Lennette, E. H. & Reames, H. R. Isolation of the virus of herpes simplex and the demonstration of intranuclear inclusions in a case of acute encephalitis. Am. J. Pathol. 17, 55–68 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wolman, B. & Longson, M. Herpes encephalitis. Acta Paediatr. Scand. 66, 243–246 (1977).

    Article  CAS  PubMed  Google Scholar 

  6. Wertheim, J. O., Smith, M. D., Smith, D. M., Scheffler, K. & Kosakovsky Pond, S. L. Evolutionary origins of human herpes simplex viruses 1 and 2. Mol. Biol. Evol. 31, 2356–2364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rathbun, M. M. & Szpara, M. L. A holistic perspective on herpes simplex virus (HSV) ecology and evolution. Adv. Virus Res. 110, 27–57 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson, T. M. et al. Fatal human alphaherpesvirus 1 infection in free-ranging black-tufted marmosets in anthropized environments, Brazil, 2012–2019. Emerg. Infect. Dis. 28, 802–811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith, G. Herpesvirus transport to the nervous system and back again. Annu. Rev. Microbiol. 66, 153–176 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Swanson, P. A. 2nd & McGavern, D. B. Viral diseases of the central nervous system. Curr. Opin. Virol. 11, 44–54 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Whitley, R. J. Herpes simplex virus infections of the central nervous system. Continuum 21, 1704–1713 (2015).

    PubMed  Google Scholar 

  12. Wang, H., Davido, D. J., Mostafa, H. H. & Morrison, L. A. Efficacy of an HSV-1 neuro-attenuated vaccine in mice is reduced by preventing viral DNA replication. Viruses 14, 869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elion, G. B. The biochemistry and mechanism of action of acyclovir. J. Antimicrob. Chemother. 12, 9–17 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Gnann, J. W. Jr, Barton, N. H. & Whitley, R. J. Acyclovir: mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 3, 275–283 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Campbell, M., Klapper, P. E. & Longson, M. Acyclovir in herpes encephalitis. Lancet 1, 38 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Stahl, J. P. & Mailles, A. Herpes simplex virus encephalitis update. Curr. Opin. Infect. Dis. 32, 239–243 (2019).

    Article  PubMed  Google Scholar 

  17. Whitley, R. J., Gnann J. W. in The Humanherpesviruses (ed. Whitley, R. J., Roizman, B. & Lopez, C.) 69–105 (Raven Press, 1993).

  18. Whitley, R. J. Herpes simplex virus in children. Curr. Treat. Options Neurol. 4, 231–237 (2002).

    Article  PubMed  Google Scholar 

  19. Abel, L. et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J. Pediatr. 157, 623–629 (2010). 629 e621.

    Article  PubMed  Google Scholar 

  20. Whitley, R. J. Herpes simplex encephalitis: adolescents and adults. Antiviral Res. 71, 141–148 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Jubelt, B., Mihai, C., Li, T. M. & Veerapaneni, P. Rhombencephalitis/brainstem encephalitis. Curr. Neurol. Neurosci. Rep. 11, 543–552 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. George, B. P., Schneider, E. B. & Venkatesan, A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000–2010. PLoS ONE 9, e104169 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Hjalmarsson, A., Blomqvist, P. & Skoldenberg, B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin. Infect. Dis. 45, 875–880 (2007).

    Article  PubMed  Google Scholar 

  24. Dagsdottir, H. M. et al. Herpes simplex encephalitis in Iceland 1987–2011. SpringerPlus 3, 524 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Casanova, J. L. From second thoughts on the germ theory to a full-blown host theory. Proc. Natl Acad. Sci. USA 120, e2301186120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Casanova, J. L. & Abel, L. The microbe, the infection enigma, and the host. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-092123-022855 (2024).

  27. Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Tangye, S. G. & Latour, S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135, 644–655 (2020).

    Article  PubMed  Google Scholar 

  29. Beziat, V., Casanova, J. L. & Jouanguy, E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr. Opin. Virol. 51, 9–15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koskiniemi, M. et al. Familial herpes encephalitis. Lancet 346, 1553 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Gazquez, I., Jover, A., Puig, T., Vincente de Vera, C. & Rubio, M. Familial herpes encephalitis. Lancet 347, 910 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, A. C., Melanson, M. & Rossiter, J. P. Familial herpes simplex encephalitis. Ann. Neurol. 51, 406–407 (2002).

    Article  PubMed  Google Scholar 

  33. Lerner, A. M., Levine, D. P. & Reyes, M. P. Two cases of herpes simplex virus encephalitis in the same family. N. Engl. J. Med. 308, 1481 (1983).

    Article  CAS  PubMed  Google Scholar 

  34. Jouanguy, E. et al. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 62, 106–122 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).

    Article  PubMed  Google Scholar 

  37. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003). Autosomal recessive STAT1 deficiency was discovered in children with mycobacterial diseases and severe viral infections, including HSE in one child.

    Article  CAS  PubMed  Google Scholar 

  38. Niehues, T. et al. A NEMO-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J. Allergy Clin. Immunol. 114, 1456–1462 (2004).

    Article  PubMed  Google Scholar 

  39. Jouanguy, E. et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette–Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965.e918 (2018). Biallelic variants of the DBR1 debranching enzyme impairing RNA lariat metabolism and antiviral immunity were discovered in children with HSV-1, IBV or norovirus infections of the brainstem.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lafaille, F. G. et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat. Med. 25, 1873–1884 (2019). Autosomal dominant deficiency of snoRNA31 was found to underlie forebrain HSE, revealing the role of snoRNA in antiviral defence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Le Voyer, T. et al. Genetic, immunological, and clinical features of 32 patients with autosomal recessive STAT1 deficiency. J. Immunol. 207, 133–152 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Puel, A. et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am. J. Hum. Genet. 78, 691–701 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Audry, M. et al. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J. Allergy Clin. Immunol. 128, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006). UNC93B1 was the first human gene identified to confer a predisposition to isolated HSE.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007). Autosomal dominant TLR3 deficiency was identified in unrelated children with HSE, suggesting a role for defects of the UNC93B1-dependent TLR3 signalling pathway.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Ku, C. L. et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet. 44, 16–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    Article  ADS  Google Scholar 

  55. Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Garcia-Garcia, A. et al. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J. Exp. Med. 220, e20220170–2023.

  57. Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim, H. K. et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology 83, 1888–1897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Armangue, T. et al. Neurologic complications in herpes simplex encephalitis: clinical, immunological and genetic studies. Brain 146, 4306–4319 (2023).

    Article  PubMed  Google Scholar 

  60. Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010). Autosomal dominant TRAF3 deficiency was found to impair TLR3 responsiveness in fibroblasts, used as a surrogate cell model, and to underlie HSE.

    Article  CAS  PubMed  Google Scholar 

  61. Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011). Autosomal recessive and autosomal dominant TRIF deficiencies were identified in otherwise healthy children with HSE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012). Autosomal dominant TBK1 deficiency impairs TLR3-mediated type I interferon production in fibroblasts and underlies HSE in unrelated children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andersen, L. L. et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J. Exp. Med. 212, 1371–1379 (2015). Autosomal dominant IRF3 deficiency was identified in an otherwise healthy adolescent with HSE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Yamamoto, M. et al. A novel Toll/IL-1 receptor ___domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Hoebe, K. & Beutler, B. TRAF3: a new component of the TLR-signaling apparatus. Trends Mol. Med. 12, 187–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article  ADS  PubMed  Google Scholar 

  73. Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pomerantz, J. L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article  PubMed  Google Scholar 

  77. Bibert, S. et al. Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase. Nat. Commun. 15, 3969 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lim, H. K. et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Q., Bastard, P., Effort, C. H. G., Cobat, A. & Casanova, J. L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, P. et al. A computational approach for detecting physiological homogeneity in the midst of genetic heterogeneity. Am. J. Hum. Genet. 108, 1012–1025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Piehler, J., Thomas, C., Garcia, K. C. & Schreiber, G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–334 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bastard, P. et al. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J. Clin. Invest. 131, e139980 (2021). Autosomal recessive complete IFNAR1 deficiency was found in a child with HSE, establishing the crucial role of type I interferon immunity in defence against HSV-1 infection of the human brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdeback, M. & Hertzog, P. J. Characterization of the type I interferon locus and identification of novel genes. Genomics 84, 331–345 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Yazdani, R. et al. Candidiasis associated with very early onset inflammatory bowel disease: first IL10RB deficient case from the National Iranian Registry and review of the literature. Clin. Immunol. 205, 35–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Korol, C. B. et al. Fulminant viral hepatitis in two siblings with inherited IL-10RB deficiency. J. Clin. Immunol. 43, 406–420 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Meyts, I. & Casanova, J. L. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur. J. Immunol. 51, 1039–1061 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ogishi, M. et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J. Exp. Med. 219, e20220094 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bucciol, G. et al. Human inherited complete STAT2 deficiency underlies inflammatory viral diseases. J. Clin. Invest. 133, e168321 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garcia-Morato, M. B. et al. Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J. Allergy Clin. Immunol. 144, 309–312.e10.

  95. Hernandez, N. et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bastard, P. et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Liu, H., Qiu, K., He, Q., Lei, Q. & Lu, W. Mechanisms of blood–brain barrier disruption in herpes simplex encephalitis. J. Neuroimmune Pharmacol. 14, 157–172 (2019).

    Article  PubMed  Google Scholar 

  98. Jacquemont, B. & Roizman, B. RNA synthesis in cells infected with herpes simplex virus: analysis of high molecular weight and symmetrical viral transcripts in herpesvirus infected cells. IARC Sci. Publ. 11, 39–48 (1975).

  99. Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 101, 11416–11421 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chiang, J. J. et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19, 53–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Naesens, L. et al. GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141. Sci. Immunol. 7, eabq4531 (2022). Autosomal recessive TFIIIA deficiency impairs RIG-I-mediated type I interferon production during HSV-1 infection, thereby underlying HSE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Casanova, J. L., Abel, L. & Quintana-Murci, l. Immunology taught by human genetics. Cold Spring Harb. Symp. Quant. Biol. 78, 157–172 (2013).

    Article  PubMed  Google Scholar 

  105. Casanova, J. L. & Abel, L. Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med. 202, 197–201 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Casanova, J. L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Casanova, J. L. & Abel, L. The genetic theory of infectious diseases: brief history and selected illustrations. Annu. Rev. Genomics Hum. Genet. 14, 215–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, S. Y. et al. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 25, 19–33 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012). Human TLR3- or UNC93B1-deficient patient-specific induced pluripotent stem cell-derived cortical neurons and oligodendrocytes were much more susceptible to HSV-1 than control cells, suggesting that TLR3–IFNα/β-mediated cortical neuron- and oligodendrocyte-autonomous anti-HSV-1 immunity is crucial for host defence against HSV-1 in the human forebrain.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zimmer, B. et al. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc. Natl Acad. Sci. USA 115, E8775–E8782 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Fan, W., Christian, K. M., Song, H. & Ming, G. L. Applications of brain organoids for infectious diseases. J. Mol. Biol. 434, 167243 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Gao, D. et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Invest. 131, e134529 (2021). This study demonstrated that TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro, through the basal IFNβ immunity-mediated control of early viral infection rather than the virus recognition-triggered amplification of IFNα/β production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, D. et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  117. Bsibsi, M. et al. The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J. Immunol. 184, 6929–6937 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Gollmann-Tepekoylu, C. et al. Toll-like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification. Circulation 147, 1518–1533 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Paludan, S. R. & Mogensen, T. H. Constitutive and latent immune mechanisms exert ‘silent’ control of virus infections in the central nervous system. Curr. Opin. Immunol. 72, 158–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Paludan, S. R., Pradeu, T., Masters, S. L. & Mogensen, T. H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat. Rev. Immunol. 21, 137–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Dorrity, T. J. et al. Long 3′UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci. Immunol. 8, eadg2979 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma, Z., Ni, G. & Damania, B. Innate sensing of DNA virus genomes. Annu. Rev. Virol. 5, 341–362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, Z. et al. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 8, eade2860 (2023). Autosomal recessive RIPK3 deficiency confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons independently of type I interferon immunity, providing proof of the principle that RIPK3-dependent cell death-mediated antiviral immunity is non-redundant.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yu, P. W. et al. Identification of RIP3, a RIP-like kinase that activates apoptosis and NFκB. Curr. Biol. 9, 539–542 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 25, 347–353 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Nogusa, S. et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20, 13–24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jorjani, H. et al. An updated human snoRNAome. Nucleic Acids Res. 44, 5068–5082 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kiss, A. M. Human Box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 11 (2004).

    Article  Google Scholar 

  132. Jenkinson, E. M. et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat. Genet. 48, 1185–1192 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chan, Y. H. et al. SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency. J. Exp. Med. 221, e20231725 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arenas, J. & Hurwitz, J. Purification of a RNA debranching activity from HeLa cells. J. Biol. Chem. 262, 4274–4279 (1987).

    Article  CAS  PubMed  Google Scholar 

  135. Ruskin, B. & Green, M. R. An RNA processing activity that debranches RNA lariats. Science 229, 135–140 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  136. Nam, K., Lee, G., Trambley, J., Devine, S. E. & Boeke, J. D. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol. Cell. Biol. 17, 809–818 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chapman, K. B. & Boeke, J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65, 483–492 (1991).

    Article  CAS  PubMed  Google Scholar 

  138. Nam, K. et al. Yeast lariat debranching enzyme. Substrate and sequence specificity. J. Biol. Chem. 269, 20613–20621 (1994).

    Article  CAS  PubMed  Google Scholar 

  139. Jacquier, A. & Rosbash, M. RNA splicing and intron turnover are greatly diminished by a mutant yeast branch point. Proc. Natl Acad. Sci. USA 83, 5835–5839 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. Shamseldin, H. E. et al. A founder DBR1 variant causes a lethal form of congenital ichthyosis. Hum. Genet. 142, 1491–1498 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Ru, S. et al. Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity. J. Exp. Med. https://doi.org/10.1084/jem.20240010 (2024).

  142. Ooi, S. L., Samarsky, D. A., Fournier, M. J. & Boeke, J. D. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4, 1096–1110 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Murray, J. L., Sheng, J. & Rubin, D. H. A role for H/ACA and C/D small nucleolar RNAs in viral replication. Mol. Biotechnol. 56, 429–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sedger, L. M. microRNA control of interferons and interferon induced anti-viral activity. Mol. Immunol. 56, 781–793 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Han, B. et al. Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development. Oncogene 36, 5382–5391 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ulfendahl, P. J., Kreivi, J. P. & Akusjarvi, G. Role of the branch site/3′-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5′- and 3′-splice site co-operation. Nucleic Acids Res. 17, 925–938 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Plotch, S. J. & Krug, R. M. In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc. Natl Acad. Sci. USA 83, 5444–5448 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Perng, G. C. & Jones, C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip. Perspect. Infect. Dis. https://doi.org/10.1155/2010/262415 (2010).

  149. Galvis, A. E., Fisher, H. E., Fan, H. & Camerini, D. Conformational changes in the 5′ end of the HIV-1 genome dependent on the debranching enzyme DBR1 during early stages of infection. J. Virol. 91, e01377-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chan, Y. H. et al. Human TMEFF1 is a restriction factor for herpes simplex virus in the brain. Nature 632, 390–400 (2024). The characterization of autosomal recessive TMEFF1 deficiency in two children with HSE revealed a new mechanism of HSV-1-specific cell-intrinsic antiviral immunity of the human brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Eib, D. W. & Martens, G. J. A novel transmembrane protein with epidermal growth factor and follistatin domains expressed in the hypothalamo–hypophysial axis of Xenopus laevis. J. Neurochem. 67, 1047–1055 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Morais da Silva, S., Gates, P. B., Eib, D. W., Martens, G. J. & Brockes, J. P. The expression pattern of tomoregulin-1 in urodele limb regeneration and mouse limb development. Mech. Dev. 104, 125–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Eib, D. W. et al. Expression of the follistatin/EGF-containing transmembrane protein M7365 (tomoregulin-1) during mouse development. Mech. Dev. 97, 167–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  154. Dai, Y. et al. TMEFF1 is a neuron-specific restriction factor for herpes simplex virus. Nature 632, 383–389 (2024). Human cell line in vitro and mouse in vivo studies provided further evidence that TMEFF1 is a HSV-1 restriction factor in neurons.

    Article  CAS  PubMed  Google Scholar 

  155. Connolly, S. A., Jackson, J. O., Jardetzky, T. S. & Longnecker, R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9, 369–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Rajbhandari, L. et al. Nectin-1 is an entry mediator for varicella-zoster virus infection of human neurons. J. Virol. 95, e0122721 (2021).

    Article  PubMed  Google Scholar 

  157. Casanova, J. L. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc. Natl Acad. Sci. USA 112, E7128–7137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Puel, A., Bastard, P., Bustamante, J. & Casanova, J. L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gervais, A. et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. J. Exp. Med. 220, e20230661 (2023). Autoantibodies against type I interferons were found to underlie WNV encephalitis in 40% of the patients studied, making WNV encephalitis the best understood infectious disease to date.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gervais, A. et al. Auto-Abs neutraliing type I IFNs underlie severe tick-borne encephalitis in ~10% of patients. J. Exp. Med. 221, e20240637 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Abel, L. & Casanova, J. L. Human determinants of age-dependent patterns of infectious death. Immunity 57, 1457–1465 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Bibert, S. et al. Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog. 15, e1008168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Casanova, J. L. et al. The ouroboros of autoimmunity. Nat. Immunol. 25, 743–754 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Chen, J. et al. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J. Exp. Med. 218, e20211349 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ogunjimi, B. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127, 3543–3556 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Daza-Cajigal, V. et al. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front. Immunol. 13, 888427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Casanova, J. L. & Abel, L. From rare disorders of immunity to common determinants of infection: following the mechanistic thread. Cell 185, 3086–3103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, S. Y. et al. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr. Opin. Immunol. 59, 88–100 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Casanova, J. L. & Abel, L. Mechanisms of viral inflammation and disease in humans. Science 374, 1080–1086 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nathan, C. Rethinking immunology. Science 373, 276–277 (2021).

  173. Gaudet, R. G. et al. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 373, eabf8113 (2021).

  174. Zhang, S. Y., Harschnitz, O., Studer, L. & Casanova, J. L. Neuron-intrinsic immunity to viruses in mice and humans. Curr. Opin. Immunol. 72, 309–317 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Bastard, P. et al. Interferon-β therapy in a patient with incontinentia pigmenti and autoantibodies against type I IFNs infected with SARS-CoV-2. J. Clin. Immunol. 41, 931–933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, N. et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 28, 455–464.e452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Pereda, R. et al. Therapeutic effectiveness of interferon alpha 2b treatment for COVID-19 patient recovery. J. Interferon Cytokine Res. 40, 578–588 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Mancini, M. & Vidal, S. M. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm. Genome 29, 425–445 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, J. P. et al. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J. Virol. 86, 2273–2281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  181. Lopez, C. Genetics of natural resistance to herpesvirus infections in mice. Nature 258, 152–153 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  182. Lopez, C. Resistance to HSV-1 in the mouse is governed by two major, independently segregating, non-H-2 loci. Immunogenetics 11, 87–92 (1980).

    Article  CAS  PubMed  Google Scholar 

  183. Cantin, E., Tanamachi, B., Openshaw, H., Mann, J. & Clarke, K. Gamma interferon (IFN-γ) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-γ ligand null-mutant mice. J. Virol. 73, 5196–5200 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sato, R. et al. Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nat. Immunol. 19, 1071–1082 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Reinert, L. S. et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest. 122, 1368–1376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol. 10, 1747–1756 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12, 334–345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Katzenell, S. & Leib, D. A. Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons. J. Virol. 90, 4706–4719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and their families for their trust and participation in our studies; L. Notarangelo, G. Smith and L. Studer for their collaboration in studies of the cellular basis of HSE; L. Abel, M. Tardieu, P. Lebon and F. Rozenberg, with whom we built and studied the French HSE cohort; past and present HSE team members, in particular E. Jouanguy, S. Plancoulaine, V. Sancho-Shimizu, R. P. de Diego, M. Herman, E. Pauwels, F. G. Lafaille, H. K. Lim, Y.-S. Lee, P. Bastard, D. Gao, Z. Liu and Y. H. Chan for their energy and enthusiasm; all members of both branches of the Laboratory of Human Genetics of Infectious Diseases for helpful discussions and technical assistance; and the administrative teams of both our laboratories, in particular Y. Nemirovskaya and L. Lorenzo, for their invaluable support. Our work on the human genetics of HSE was funded in part by the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Clinical and Translational Science Award (CTSA) Program (UL1TR001866), NIH (R21NS084255, R21AI151663, R01AI088364 and R01NS072381), the Starr Foundation Tri-Institutional Stem Cell Initiative (2021-019), the French National Research Agency (ANR) (ANR-10-IAHU-01, ANR-21-RHUS-08, ANR-14-CE14-0008-01, AAPG2018-SEAeHostFactors, AAPG2019-CNSVIRGEN and ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the Square Foundation, the SCOR Corporate Foundation for Science, William E. Ford, General Atlantic’s Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic’s Co-President, Managing Director and Head of Business in EMEA, and the General Atlantic Foundation, the Battersea and Bowery Advisory Group, the Elizabeth Hall Janeway Award from the Kellen Women’s Entrepreneurship Fund, the Stavros Niarchos Foundation (SNF) as part of its grant to the SNF Institute for Global Infectious Disease Research at The Rockefeller University, the Thrasher Research Fund, the Rockefeller University, the Howard Hughes Medical Institute, Institut National de la Santé et de la Recherche Médicale (INSERM), the Imagine Institute, Paris Cité University and the St Giles Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.Z. and J.-L.C. conceptualized and wrote the manuscript.

Corresponding authors

Correspondence to Shen-Ying Zhang or Jean-Laurent Casanova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Joseph Gleeson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SY., Casanova, JL. Genetic defects of brain immunity in childhood herpes simplex encephalitis. Nature 635, 563–573 (2024). https://doi.org/10.1038/s41586-024-08119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08119-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing