Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The human and non-human primate developmental GTEx projects

Abstract

Many human diseases are the result of early developmental defects. As most paediatric diseases and disorders are rare, children are critically underrepresented in research. Functional genomics studies primarily rely on adult tissues and lack critical cell states in specific developmental windows. In parallel, little is known about the conservation of developmental programmes across non-human primate (NHP) species, with implications for human evolution. Here we introduce the developmental Genotype-Tissue Expression (dGTEx) projects, which span humans and NHPs and aim to integrate gene expression, regulation and genetics data across development and species. The dGTEx cohort will consist of 74 tissue sites across 120 human donors from birth to adulthood, and developmentally matched NHP age groups, with additional prenatal and adult animals, with 126 rhesus macaques (Macaca mulatta) and 72 common marmosets (Callithrix jacchus). The data will comprise whole-genome sequencing, extensive bulk, single-cell and spatial gene expression profiles, and chromatin accessibility data across tissues and development. Through community engagement and donor diversity, the human dGTEx study seeks to address disparities in genomic research. Thus, dGTEx will provide a reference human and NHP dataset and tissue bank, enabling research into developmental changes in expression and gene regulation, childhood disorders and the effect of genetic variation on development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sampling across development and species.
Fig. 2: Overview of the dGTEx workflow.
Fig. 3: Heart sampling strategy across age ranges and species.

Similar content being viewed by others

References

  1. Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013). This paper outlines the original GTEx project, the predecessor of the dGTEx projects.

    Article  CAS  MATH  Google Scholar 

  2. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  MATH  Google Scholar 

  3. eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. Genet. 49, 1664–1670 (2017).

    Article  MATH  Google Scholar 

  4. Kim-Hellmuth, S. et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 369, eaaz8528 (2020). This paper illustrates the variation of genetic effects on gene regulation between cell types from GTEx data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferraro, N. M. et al. Transcriptomic signatures across human tissues identify functional rare genetic variation. Science 369, eaaz5900 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  6. Oliva, M. et al. The impact of sex on gene expression across human tissues. Science 369, eaba3066 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  7. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017). This paper outlines the conceptual framework for the Human Cell Atlas, a comprehensive reference map of cell types through application of single-cell technologies to dissect cellular functions, interactions and tissue organization, with significant implications for advancing our understanding of human biology.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Emani, P. S. et al. Single-cell genomics and regulatory networks for 388 human brains. Science 384, eadi5199 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahbazi, M. N. Mechanisms of human embryo development: from cell fate to tissue shape and back. Development 147, dev190629 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Taylor, D. M. et al. The Pediatric Cell Atlas: defining the growth phase of human development at single-cell resolution. Dev. Cell 49, 10–29 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  14. Mukhopadhyay, N. et al. Whole genome sequencing of orofacial cleft trios from the Gabriella Miller Kids First Pediatric Research Consortium identifies a new locus on chromosome 21. Hum. Genet. 139, 215–226 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  15. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  16. Priest, J. R. et al. De novo and rare variants at multiple loci support the oligogenic origins of atrioventricular septal heart defects. PLoS Genet. 12, e1005963 (2016).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  17. Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  18. Coorens, T. H. H. & Behjati, S. Tracing and targeting the origins of childhood cancer. Annu. Rev. Cancer Biol. 6, 35–47 (2022).

    Article  MATH  Google Scholar 

  19. Filbin, M. & Monje, M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat. Med. 25, 367–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng, X. et al. Risk of metabolic syndrome in adults exposed to the great Chinese famine during the fetal life and early childhood. Eur. J. Clin. Nutr. 66, 231–236 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  21. Ning, F. et al. Famine exposure in early life and risk of metabolic syndrome in adulthood: Comparisons of different metabolic syndrome definitions. J. Diabetes Res. 2019, 7954856 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grey, K. et al. Severe malnutrition or famine exposure in childhood and cardiometabolic non-communicable disease later in life: a systematic review. BMJ Glob. Health 6, e003161 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  24. Day, F. R. et al. Shared genetic aetiology of puberty timing between sexes and with health-related outcomes. Nat. Commun. 6, 8842 (2015).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  25. The elephant in the room. Nature 444, 790 (2006).

  26. Tardif, S., Carville, A., Elmore, D., Williams, L. E. & Rice, K. in Nonhuman Primates in Biomedical Research Vol. 1 (eds Abee, C. R. et al.) 197–249 (Elsevier, 2012).

  27. Tardif, S. D. & Ross, C. N. in The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 119–132 (Academic Press, 2019).

  28. Lewis, A. D. & Prongay, K. in The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment (eds Bluemel, J. et al.) 87–113 (Academic Press, 2015).

  29. Lemke, A. A. et al. Addressing underrepresentation in genomics research through community engagement. Am. J. Hum. Genet. 109, 1563–1571 (2022). This paper highlights the need to address underrepresented populations within genomic research and how community engagement can aid in confronting this issue.

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  30. Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  31. Burger, A. et al. Towards a clinically-based common coordinate framework for the human gut cell atlas: the gut models. BMC Med. Inform. Decis. Mak. 23, 36 (2023).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  32. Börner, K. et al. Construction and usage of a human body Common Coordinate Framework comprising clinical, semantic, and spatial ontologies. Preprint at https://doi.org/10.48550/arXiv.2007.14474 (2020).

  33. Ardini-Poleske, M. E. et al. LungMAP: the molecular atlas of lung development program. Am. J. Physiol. 313, L733–L740 (2017).

    MATH  Google Scholar 

  34. Reid, W. Height and weight in human beings. Autopsy report. J. Clin. Pathol. 41, 237–237 (1988).

    Article  PubMed Central  MATH  Google Scholar 

  35. Schulz, D. M., Giordano, D. A. & Schulz, D. H. Weights of organs of fetuses and infants. Arch. Pathol. 74, 244–250 (1962).

    CAS  PubMed  MATH  Google Scholar 

  36. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat. Biotechnol. 42, 582–586 (2024).

    Article  PubMed  Google Scholar 

  37. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature 608, 353–359 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grün, D. & van Oudenaarden, A. Design and analysis of single-cell sequencing experiments. Cell 163, 799–810 (2015).

    Article  PubMed  MATH  Google Scholar 

  39. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  41. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  42. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  43. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, C., Preissl, S. & Ren, B. Single-cell multimodal omics: the power of many. Nat. Methods 17, 11–14 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  45. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  46. Wang, S. K. et al. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. Cell Genom. 2, 100164 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  47. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 1355–1367 (2023).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  48. Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nat. Methods 20, 218–228 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  49. Castel, S. E. et al. A vast resource of allelic expression data spanning human tissues. Genome Biol. 21, 234 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  50. Mao, Y. et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell 187, 1547–1562 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  51. He, Y. et al. Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants. Nat. Commun. 10, 4233 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  52. Makova, K. D. et al. The complete sequence and comparative analysis of ape sex chromosomes. Nature 630, 401–411 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  53. Zhang, X. et al. Towards a primate single-cell atlas. Zool. Res. 43, 691–694 (2022).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  54. Han, L. et al. Cell transcriptomic atlas of the non-human primate Macaca fascicularis. Nature 604, 723–731 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  55. Qu, J. et al. A reference single-cell regulomic and transcriptomic map of cynomolgus monkeys. Nat. Commun. 13, 4069 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  56. Luecken, M. D. et al. Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41–50 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563–1577 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  58. Hrovatin, K. et al. Integrating single-cell RNA-seq datasets with substantial batch effects. Preprint at bioRxiv https://doi.org/10.1101/2023.11.03.565463 (2023).

  59. Rosen, Y. et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  60. Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhai, J. et al. Primate gastrulation and early organogenesis at single-cell resolution. Nature 612, 732–738 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  62. Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Wijst, M. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  64. Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature 519, 223–228 (2015).

    Article  ADS  Google Scholar 

  65. Housman, G. & Gilad, Y. Prime time for primate functional genomics. Curr. Opin. Genet. Dev. 62, 1–7 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  66. Pollard, K. S. et al. An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443, 167–172 (2006).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  67. Prabhakar, S. et al. Human-specific gain of function in a developmental enhancer. Science 321, 1346–1350 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  68. Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  69. Werner, J. M., Ballouz, S., Hover, J. & Gillis, J. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev. Cell 57, 1995–2008.e5 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, Q. et al. Unifying cancer and normal RNA sequencing data from different sources. Sci. Data 5, 180061 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rockweiler, N. B. et al. The origins and functional effects of postzygotic mutations throughout the human life span. Science 380, eabn7113 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Roberts, V. H. J. et al. Rhesus macaque fetal and placental growth demographics: A resource for laboratory animal researchers. Am. J. Primatol. 85, e23526 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Human Genome Research Institute (NHGRI), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Mental Health (NIMH) and the Office of Research Infrastructure Programs under awards U24 HD106537, U24 HG012090, U24 HG012108 and U24 HG012483. T.H.H.C. is supported by an EMBO long-term fellowship (ALTF 172-2022). We thank the donors and their families for making this study possible. The views and opinions expressed in this manuscript are those of the authors only and do not necessarily represent the views, official policy or position of the US Department of Health and Human Services or any of its affiliated institutions or agencies.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Tim H. H. Coorens, Thomas Bell, Kristin G. Ardlie, Nenad Sestan or Donald F. Conrad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Rachel Freathy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coorens, T.H.H., Guillaumet-Adkins, A., Kovner, R. et al. The human and non-human primate developmental GTEx projects. Nature 637, 557–564 (2025). https://doi.org/10.1038/s41586-024-08244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08244-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research