Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

π-HuB: the proteomic navigator of the human body

An Author Correction to this article was published on 23 December 2024

This article has been updated

Abstract

The human body contains trillions of cells, classified into specific cell types, with diverse morphologies and functions. In addition, cells of the same type can assume different states within an individual’s body during their lifetime. Understanding the complexities of the proteome in the context of a human organism and its many potential states is a necessary requirement to understanding human biology, but these complexities can neither be predicted from the genome, nor have they been systematically measurable with available technologies. Recent advances in proteomic technology and computational sciences now provide opportunities to investigate the intricate biology of the human body at unprecedented resolution and scale. Here we introduce a big-science endeavour called π-HuB (proteomic navigator of the human body). The aim of the π-HuB project is to (1) generate and harness multimodality proteomic datasets to enhance our understanding of human biology; (2) facilitate disease risk assessment and diagnosis; (3) uncover new drug targets; (4) optimize appropriate therapeutic strategies; and (5) enable intelligent healthcare, thereby ushering in a new era of proteomics-driven phronesis medicine. This ambitious mission will be implemented by an international collaborative force of multidisciplinary research teams worldwide across academic, industrial and government sectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overall goals of the π-HuB project.
Fig. 2: Key pillars for implementation of the π-HuB project.
Fig. 3: Basic modules of the π-HuB navigator.

Similar content being viewed by others

Change history

References

  1. Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Abbott, A. And now for the proteome. Nature 409, 747 (2001).

    Article  ADS  PubMed  CAS  Google Scholar 

  5. Fields, S. Proteomics. Proteomics in genomeland. Science 291, 1221–1224 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. The proteome isn’t genome II. Nature 410, 725 (2001).

  7. Adhikari, S. et al. A high-stringency blueprint of the human proteome. Nat. Commun. 11, 5301 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Omenn, G. S. et al. The 2022 Report on the Human Proteome from the HUPO Human Proteome Project. J. Proteome Res. 22, 1024–1042 (2023).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Kusebauch, U. et al. Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166, 766–778 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cyranoski, D. China takes centre stage for liver proteome. Nature 425, 441 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Jia, H. & Louet, S. China pushes liver proteomics. Nat. Biotechnol. 22, 136 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. He, F. Human liver proteome project: plan, progress, and perspectives. Mol. Cell. Proteomics 4, 1841–1848 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Wang, J. et al. Toward an understanding of the protein interaction network of the human liver. Mol. Syst. Biol. 7, 536 (2011).

    Article  Google Scholar 

  14. Wang, Q. et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327, 1004–1007 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sharma, K. et al. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18, 1819–1831 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Ni, X. et al. A region-resolved mucosa proteome of the human stomach. Nat. Commun. 10, 39 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Dyring-Andersen, B. et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 11, 5587 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  20. Rieckmann, J. C. et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 18, 583–593 (2017).

    Article  PubMed  CAS  Google Scholar 

  21. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582–587 (2014). This paper, together with Kim et al. (2014), shows the initial version of the tissue/organ-centric human proteome by applying mass spectrometry-based approaches.

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Kim, M. S. et al. A draft map of the human proteome. Nature 509, 575–581 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cyranoski, D. China pushes for the proteome. Nature 467, 380 (2010).

    Article  PubMed  CAS  Google Scholar 

  24. Rodriguez, H., Zenklusen, J. C., Staudt, L. M., Doroshow, J. H. & Lowy, D. R. The next horizon in precision oncology: proteogenomics to inform cancer diagnosis and treatment. Cell 184, 1661–1670 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Irmisch, A. et al. The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support. Cancer Cell 39, 288–293 (2021).

    Article  PubMed  CAS  Google Scholar 

  26. Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteomics. 4, 1920–1932 (2005).

    Article  PubMed  Google Scholar 

  27. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  28. Tully, B. et al. Addressing the challenges of high-throughput cancer tissue proteomics for clinical application: ProCan. Proteomics 19, e1900109 (2019).

    Article  PubMed  Google Scholar 

  29. Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu, Y. et al. An atlas of genetic scores to predict multi-omic traits. Nature 616, 123–131 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jiang, Y. et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature 567, 257–261 (2019). This study showcases the concept of proteomics-driven precision medicine.

    Article  ADS  PubMed  CAS  Google Scholar 

  33. Kelly, R. T. Single-cell proteomics: progress and prospects. Mol. Cell. Proteomics 19, 1739–1748 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mund, A., Brunner, A. D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022). A review summarizing state-of-the-art spatial proteomics for human samples.

    Article  PubMed  CAS  Google Scholar 

  35. Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  ADS  Google Scholar 

  36. Elmentaite, R., Dominguez Conde, C., Yang, L. & Teichmann, S. A. Single-cell atlases: shared and tissue-specific cell types across human organs. Nat. Rev. Genet. 23, 395–410 (2022).

    Article  PubMed  CAS  Google Scholar 

  37. Rozenblatt-Rosen, O. et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell 181, 236–249 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rajewsky, N. et al. LifeTime and improving European healthcare through cell-based interceptive medicine. Nature 587, 377–386 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mann, M., Kumar, C., Zeng, W. F. & Strauss, M. T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 12, 759–770 (2021).

    Article  PubMed  CAS  Google Scholar 

  40. Perkel, J. M. Single-cell proteomics takes centre stage. Nature 597, 580–582 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  41. Guzman, U. H. et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02099-7 (2024).

  42. MacCoss, M. J. et al. Sampling the proteome by emerging single-molecule and mass spectrometry methods. Nat. Methods 20, 339–346 (2023). A review summarizing next-generation proteomics technologies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  44. Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  45. Thirunavukarasu, A. J. et al. Large language models in medicine. Nat. Med. 29, 1930–1940 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Kang, M., Ko, E. & Mersha, T. B. A roadmap for multi-omics data integration using deep learning. Brief. Bioinform. 23, bbab454 (2022).

    Article  PubMed  Google Scholar 

  47. Chen, T. et al. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res. 50, D1522–D1527 (2022).

    Article  PubMed  CAS  Google Scholar 

  48. Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2023).

    Article  PubMed  Google Scholar 

  49. Fierro-Monti, I., Wright, J. C., Choudhary, J. S. & Vizcaino, J. A. Identifying individuals using proteomics: are we there yet? Front. Mol. Biosci. 9, 1062031 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bandeira, N., Deutsch, E. W., Kohlbacher, O., Martens, L. & Vizcaino, J. A. Data management of sensitive human proteomics data: current practices, recommendations, and perspectives for the future. Mol. Cell. Proteomics 20, 100071 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Deutsch, E. W. et al. Proteomics standards initiative at twenty years: current activities and future work. J. Proteome Res. 22, 287–301 (2023). A perspective paper summarizing the 20-year-long community effort for the proteomics community with respect to data formats, quality control and annotation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sharifi-Noghabi, H., Harjandi, P. A., Zolotareva, O., Collins, C. C. & Ester, M. Out-of-distribution generalization from labelled and unlabelled gene expression data for drug response prediction. Nat. Mach. Intell. 3, 962–972 (2021).

    Article  Google Scholar 

  53. Olivella, R. et al. QCloud2: an improved cloud-based quality-control system for mass-spectrometry-based proteomics laboratories. J. Proteome Res. 20, 2010–2013 (2021).

    Article  PubMed  CAS  Google Scholar 

  54. Chawade, A., Alexandersson, E. & Levander, F. Normalyzer: a tool for rapid evaluation of normalization methods for omics data sets. J. Proteome Res. 13, 3114–3120 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. James, F. Monte Carlo theory and practice. Rep. Prog. Phys. 43, 1145 (1980).

  56. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14, 618–630 (2013).

    Article  PubMed  CAS  Google Scholar 

  57. Goncalves, E. et al. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 40, 835–849 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18, 194–202 (2021).

    Article  PubMed  CAS  Google Scholar 

  59. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 41, 367–377 (2023).

    Article  PubMed  CAS  Google Scholar 

  60. Liu, Z. et al. Bioorthogonal photocatalytic proximity labeling in primary living samples. Nat. Commun. 15, 2712 (2024).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhang, Z. et al. Progress, challenges and opportunities of NMR and XL-MS for cellular structural biology. JACS Au 4, 369–383 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Scarmeas, N., Anastasiou, C. A. & Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 17, 1006–1015 (2018).

    Article  PubMed  Google Scholar 

  63. Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    Article  Google Scholar 

  64. Harel, M. et al. Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell 179, 236–250 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Xu, J. Y. et al. Integrative proteomic characterization of human lung adenocarcinoma. Cell 182, 245–261 (2020).

    Article  PubMed  CAS  Google Scholar 

  66. Shi, Y. et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131–135 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  67. Eckert, M. A. et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature 569, 723–728 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shen, B. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 182, 59–72 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nie, X. et al. Multi-organ proteomic landscape of COVID-19 autopsies. Cell 184, 775–791 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Niu, L. et al. Noninvasive proteomic biomarkers for alcohol-related liver disease. Nat. Med. 28, 1277–1287 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Virreira Winter, S. et al. Urinary proteome profiling for stratifying patients with familial Parkinson’s disease. EMBO Mol. Med. 13, e13257 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wigger, L. et al. Multi-omics profiling of living human pancreatic islet donors reveals heterogeneous beta cell trajectories towards type 2 diabetes. Nat. Metab. 3, 1017–1031 (2021).

    Article  PubMed  CAS  Google Scholar 

  73. Johnson, E. C. B. et al. Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat. Neurosci. 25, 213–225 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zhu, Y. et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10-100 mammalian cells. Nat. Commun. 9, 882 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  75. Petelski, A. A. et al. Multiplexed single-cell proteomics using SCoPE2. Nat. Protoc. 16, 5398–5425 (2021).

    Article  PubMed  CAS  Google Scholar 

  76. Su, P. et al. Single cell analysis of proteoforms. J. Proteome Res. 24, 1883–1893 (2024).

    Article  Google Scholar 

  77. Chen, W. et al. Simple and integrated spintip-based technology applied for deep proteome profiling. Anal. Chem. 88, 4864–4871 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Mund, A. et al. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Geyer, P. E. et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2, 185–195 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Deutsch, E. W. et al. Advances and utility of the human plasma proteome. J. Proteome Res. 20, 5241–5263 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Buljan, M. et al. A computational framework for the inference of protein complex remodeling from whole-proteome measurements. Nat. Methods 20, 1523–1529 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Mackmull, M. T. et al. Global, in situ analysis of the structural proteome in individuals with Parkinson’s disease to identify a new class of biomarker. Nat. Struct. Mol. Biol. 29, 978–989 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Tsamardinos, I. et al. Just Add Data: automated predictive modeling for knowledge discovery and feature selection. NPJ Precis. Oncol. 6, 38 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bai, Y. et al. AutoDC: an automatic machine learning framework for disease classification. Bioinformatics 38, 3415–3421 (2022).

    Article  PubMed  CAS  Google Scholar 

  85. Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598, 348–352 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of the People’s Republic of China (grant no. 2020YFE0202200), the National Natural Science Foundation of China (no. 32088101), National Institutes of Health grants P30ES017885-11-S1 and U24CA271037 (G.S.O.) and the Big-Science Infrastructure of Phronesis Medicine, of which the pilot phase is funded by Guangzhou Development District.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

F.H. conceived the concept of π-HuB and designed its scientific goals, and contributed ideas for phronesis medicine with L.X., F.H., R.A., M.S.B., X.W.B., X.C.B., D.W.C., C.C., L.C., X.C., H.C., F.C., W.E., J.F., P.F., D.F., G.F.G., W.G., Z.-H.G., K.G., W.W.B.G., D.G., C.G., T.G., A.J.R.H., H.H., T.H., N.G.I., Y.J., C.R.J., L.J., N.L.K., M.L., Y.L., Q.L., C.H.L., F.L., G.-H.L., Y.S.L., Z.L., T.Y.L., B.L., M.M., A.M., R.L.M., E.N., G.N., G.S.O., G.P., Y.P., C.P., T.C.W.P., A.P., J.Q., R.R., P.J.R., P.R., C.S., J.S., E.S., S.S., A.S., S.K.S., C.T., L.T., R.T., J.V.E., J.A.V., C.W., X.W.W., X.X.W., Y.W., T.W., M.W., R.W., B.W., L.W., L.X., W.X., Tao Xu, L.Y., J.Y., X.Y., J.R.Y., Q.W.Z., L.H.Z., L.Q.Z., Y.K.Z., Q.Z. and Y.P.Z. contributed ideas and suggestions for the conception and design of this project. T.G., L.T. and Y.W. contributed coordination of the π-HuB Consortium. J.Y. wrote the first draft of the manuscript, and created the figures with F.H., T.G., Y.L. and L.X. F.H., R.A., M.S.B., F.C., P.F., D.F., Z.-H.G., K.G., W.W.B.G., T.G., H.H., T.H., N.G.I., C.R.J., L.J., M.L., Q.L., F.L., Y.S.L., T.Y.L., R.L.M., G.S.O., T.C.W.P., A.P., R.R., P.J.R., C.S., S.K.S., J.A.V., T.W., R.W., B.W., L.W., J.Y., J.R.Y. and Q.Z. provided important edits to the manuscript. All authors contributed to review and editing of the manuscript. The π-HuB Consortium contributed to the discussion of strategic π-HuB research plans.

Corresponding authors

Correspondence to Fuchu He or Ruedi Aebersold.

Ethics declarations

Competing interests

 R.A. holds shares of Biognosys AG, which operates in the field covered by the article. D.F. is co-founder of MedBiome Inc., a precision nutrition company. K.G. is a shareholder of CYBO, LucasLand, and FlyWorks. T.G. is the founder of Westlake Omics Inc. M.M. is an indirect investor in EvoSep. R.T. is a founder of BayOmics. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Tamar Geiger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, F., Aebersold, R., Baker, M.S. et al. π-HuB: the proteomic navigator of the human body. Nature 636, 322–331 (2024). https://doi.org/10.1038/s41586-024-08280-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08280-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research