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Quantum twisting microscopy of phonons in 
twisted bilayer graphene

J. Birkbeck1,7, J. Xiao1,7, A. Inbar1,7, T. Taniguchi2, K. Watanabe2, E. Berg1, L. Glazman3, 
F. Guinea4,5, F. von Oppen6 & S. Ilani1 ✉

The coupling between electrons and phonons is one of the fundamental interactions in 
solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity 
and superconductivity. However, direct measurements of this coupling for individual 
phonon modes remain a substantial challenge. In this work, we introduce a new 
technique for mapping phonon dispersions and electron–phonon coupling (EPC)  
in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 
(QTM) to cryogenic temperatures, we demonstrate its capability to map not only 
electronic dispersions through elastic momentum-conserving tunnelling but also 
phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, 
the inelastic tunnelling strength provides a direct and quantitative measure of the 
momentum and mode-resolved EPC. We use this technique to measure the phonon 
spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. 
Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons 
diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose 
coupling increases with decreasing twist angle. We show that this unusual coupling 
arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 
‘phason’ mode of the moiré system. The technique demonstrated here opens the  
way for examining a large variety of other neutral collective modes that couple to 
electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum 
materials.

EPC plays a key role in determining the thermal and electrical prop-
erties of quantum materials. In monolayer graphene, for instance, 
an exceptionally weak EPC5 results in ultrahigh electronic mobility, 
micrometre-scale ballistic transport6 and hydrodynamic behaviour7. By 
contrast, the nature of EPC in moiré systems is much less understood. 
Various theories have attributed superconductivity8 and ‘strange-metal’ 
behaviour9,10 in magic-angle twisted bilayer graphene (MATBG) to a 
strong coupling of electrons to optical11–13 or acoustic12,14–18 phonons. 
Specifically, as well as the phonons of the individual layers, twisted 
interfaces with quasiperiodic structures exhibit unique phononic 
modes involving an antisymmetric motion of atoms in the two layers. 
These modes, dubbed moiré phonons19–21 or phasons21–24, resemble 
acoustic modes and constitute a new set of low-energy excitations. 
Phason modes may induce strong electronic effects because the moiré 
pattern acts as an amplifier16—small shifts on the atomic scale lead 
to notable distortions of the moiré pattern—which, in turn, strongly 
couples to the moiré energy bands.

Existing techniques for examining phonon dispersions and EPC 
rely on inelastic scattering of photons (angle-resolved photoemis-
sion spectroscopy25,26, Raman27–29 and X-ray30,31), electrons (electron 
energy loss spectroscopy32,33), neutrons34 or helium atoms35, as well 
as on indirect measurement through the effect of EPC on electrical 

resistance36. Tunnelling across twistable graphitic interfaces37,38 
revealed sharp conductivity peaks at commensurate angles of 21.8° 
and 32.8° superimposed on a continuous background attributed to 
momentum-resolved phonon absorption. These experiments were 
limited to room temperature, preventing the observation of phonon 
emission processes, key for examining their EPC. Quantitative extrac-
tion of EPC thus remains a challenge, especially for the low-energy 
acoustic modes in vdW devices, which are central to the physics at 
low temperatures.

In this work, we developed a cryogenic QTM and used it to directly 
map the phonon spectrum and mode-resolved EPC in TBG through 
inelastic momentum-resolved spectroscopy. Notably, we identify a 
low-energy mode whose coupling increases with decreasing twist angle, 
providing a clear signature of a layer-antisymmetric phason mode 
coupling directly and strongly to the interlayer tunnelling.

Measuring phonon dispersion with the cryogenic QTM
Our cryogenic QTM (Fig. 1a and Methods) consists of a custom-built 
cryogenic atomic force microscope (AFM) that allows forming a twist-
able two-dimensional interface between two vdW heterostructures, 
one on its tip and one on a flat substrate. The interface is created at 

https://doi.org/10.1038/s41586-025-08881-8

Received: 16 July 2024

Accepted: 11 March 2025

Published online: 23 April 2025

Open access

 Check for updates

1Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel. 2National Institute for Materials Science, Tsukuba, Japan. 3Department of Physics, Yale University, 
New Haven, CT, USA. 4IMDEA Nanoscience, Madrid, Spain. 5Donostia International Physics Center, San Sebastián, Spain. 6Dahlem Center for Complex Quantum Systems, Fachbereich Physik, 
Freie Universität Berlin, Berlin, Germany. 7These authors contributed equally: J. Birkbeck, J. Xiao, A. Inbar. ✉e-mail: shahal.ilani@weizmann.ac.il

https://doi.org/10.1038/s41586-025-08881-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-08881-8&domain=pdf
mailto:shahal.ilani@weizmann.ac.il


346  |  Nature  |  Vol 641  |  8 May 2025

Article

low temperatures, gets self-cleaned in situ and remains in contact 
throughout the experiment.

We begin our experiments with a twisted interface formed between 
two graphite layers, both several tens of nanometres thick (Fig. 1b).  
We set the bias across the interface, Vb, and measure the tunnelling 
current, I, and conductance, G = I

V
d

d b
, versus twist angle, θ. At zero bias, 

G exhibits a pronounced peak at commensurate angles θ = 21.8° and 
38.2° (refs. 37,38) (Fig. 1c) resulting from elastic momentum-resolved 
tunnelling owing to overlapping Fermi surfaces on both sides of the 
interface1,39. At Vb = 50 mV (blue), G increases substantially across all 
twist angles. The bias dependence of G at θ = 30° shows that it increases 
in steps (Fig. 1d), signifying the onset of discrete inelastic tunnelling 
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Fig. 1 | Measuring phonon dispersion with the cryogenic QTM. a, Schematics 
of the cryogenic QTM (inset), allowing us to form a continuously twistable 
interface between two vdW materials at T = 4 K (main panel). We use an inelastic 
momentum-conserving electronic tunnelling process to emit and measure 
phonons at the interface with a well-defined momentum, continuously tunable 
by twisting (black arrow). b, The experiments in this figure are all performed in 
a twisted junction between two graphite flakes (several tens of nanometres 
thick), shown schematically. We apply a bias Vb across the junction and measure 
current, I, and conductance G = I

V
d

d b
. c, Measured G versus twist angle, θ, for 

Vb = 0 mV (black) and 50 mV (blue). d, Measured G versus Vb at θ = 30°, exhibiting 
discrete steps (arrows), indicative of a series of inelastic tunnelling processes. 
e, Two-dimensional measurement of G versus θ and Vb, showing that the steps 
in G appear at all twist angles and that their turn-on bias disperses smoothly 

with θ. f, The second derivative, I

V

d
2

d b
2

, obtained numerically from panel e, 

highlighting the steps in G that now appear as peaks. We see several peaks that 
disperse slowly with θ, exhibiting a mirror symmetry around θ = 30° and 
showing good symmetry between positive and negative bias. Also, we see 

sharply dispersing peaks near θ = 21.8° and 38.2°. The theoretically calculated 
phonon spectrum of graphite (dashed black lines; Methods section ‘Bulk-graphite 
phonon dispersion model’) shows excellent agreement with the slowly 
dispersing peaks. From the measurement, we can identify the acoustic (TA, ZA) 
and optical (LO, TO, ZO) phonon branches. The layer-antisymmetric ZA phonon 
is often also called ZO′. g, The Fermi surfaces in k-space of the top (blue) and 
bottom (red) graphite layers. h, The corresponding energy bands. At a finite 
twist angle, there is a momentum mismatch between these energy bands,  
and momentum-conserving electronic tunnelling between the layers can  
occur only by means of the emission of a phonon that provides the missing 
momentum, qph = 2KDsin(θ/2). This is an inelastic process that turns on when 
the bias voltage equals the phonon energy at this momentum, Vb = ωph(qph).  
By following the turn-on in the θ–Vb plane, we directly map the phonon 
dispersion line (orange). Symmetry around 30° in the experiment is explained 
by phonon emission processes starting from the K or K′ of one layer and ending 
at the same point in the other layer.
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processes. Similar steps, observed in scanning tunnelling microscopy 
experiments of graphene40 and with fixed-angle tunnelling devices41–43, 
were attributed to inelastic electron tunnelling mediated by phonon 
emission.

Given that the QTM is a momentum-resolved tunnelling probe,  
it is natural to ask whether the observed inelastic processes are 
momentum-conserving by investigating their twist angle evolution. 
Figure 1e shows G measured versus θ and Vb, revealing again that  
G increases in steps with bias. This becomes even more apparent in  
the second derivative, I

V

d

d

2

b
2

 (Fig. 1f), which exhibits sharp peaks at the 

turn-on biases of the steps. The measurement reveals a rich spectrum  
of low-energy peaks that slowly disperse with θ, exhibiting a mirror 
symmetry about θ = 30° and between positive and negative biases.

To understand these observations, we turn to momentum space 
(Fig. 1g). At large twist angle between the two graphite flakes, the 
momentum mismatch between their bands is too large to allow elastic 
momentum-conserving tunnelling. However, owing to the shallower 
dispersion of phonons, their emission in an inelastic tunnelling process 
across the interface may provide the missing momentum, qph =  
2KDsin(θ/2) (Fig. 1h; KD is the Dirac point momentum). This process 
turns on when the bias is larger than the phonon energy at this momen-
tum, eVb > ħωph(qph). Thus, the positions of the I

V

d

d

2

b
2

 peaks in the θ–Vb 

plane directly trace the phonon spectrum. Indeed, overlaying the 
theoretically calculated spectrum for bulk graphite (dashed lines; 
Methods section ‘Bulk-graphite phonon dispersion model’) shows 
excellent agreement. Specifically, we identify various acoustic (TA, ZA) 
and optical (LO, TO, ZO) branches and follow their dispersion. However, 
because the graphite flakes have complex band structures, and their 
twisted interface has phonons both in the bulk of the graphite and at 
the interface, to better understand the underlying EPC mechanisms, 
it is instructive to switch to a simpler system.

EPC in TBG
We turn to the main system in this paper—TBG—in which EPC is believed 
to be of the most importance9–24,26,29,44–46. We create a tunable TBG sys-
tem by bringing a hexagonal boron nitride (hBN)-backed monolayer 
graphene, placed on a tip, into contact with another monolayer gra-
phene on a bottom sample that incorporates a buried graphite gate 
(Fig. 2a). When in contact, the Dirac cones of the two graphene layers, 
now at the corners of a mini-Brillouin zone (mini-BZ), hybridize to yield 
the TBG energy bands (colour-coded in Fig. 2c by layer weight). For the 
twist angles in the current experiment, the hybridization is small and 
the bands remain largely similar to the original Dirac cones. For each 
θ, our experiment realizes a different TBG system and examines a spe-
cific zone-boundary phonon mode with a momentum ( )q K= 2 sin θ

M D 2
, 

connecting the two corners of the mini-BZ (Fig. 2b), as well as the back-
folded phonon with ∼ ( )q K= 2 sin θ

M D
60 −

2 . Figure 2d,e plots G and I
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measured versus θ and Vb, showing how the energy of this zone- 
boundary phonon changes with the TBG twist angle. For comparison, 
the dashed lines show the energy of bulk graphite phonons at momenta 
qM (black) and qM

∼  (grey). Extended Data Fig. 3 shows the trajectory of 
qM in the phonon Brillouin zone (BZ).

A key feature of our momentum-resolved inelastic tunnelling tech-
nique is that it allows us to directly determine the mode-dependent 
and momentum-dependent EPC. As will be shown below, the height of 
the step in G, or equivalently the area under the peak in I

V

d

d

2

b
2

, is directly 

proportional to the strength of the EPC. Notably, Fig. 2d,e shows that 
the EPC varies greatly between the different phonon branches. Around 
Vb ≈ 160 mV, we observe a pronounced step in G that corresponds to 
the intervalley K-point optical phonons (LO and TO). Indeed, strong 
EPC to optical phonons is expected in monolayer graphene47,48 and is 
believed to be notable in MATBG13,26. More puzzling behaviours are 
observed in the acoustic branches. First, although the peaks corre-
sponding to the out-of-plane and transverse modes (ZA and TA) are 

evident, the longitudinal mode (LA) is conspicuously missing. Second 
is the twist-angle dependence of the peak height (highlighted in colour 
in a detailed view of the TA branches at positive and negative bias, 
Fig. 2f). Instead of decreasing with decreasing momentum, as typically 
anticipated for acoustic modes, the measured EPC actually increases.

To understand these unusual observations, we consider the relevant 
EPC mechanisms in TBG. The simplest EPC occurs within the layer (an 
‘in-layer’ mechanism Fig. 2g; Methods section ‘Theory model for inelas-
tic tunnelling through phonon emission and the two mechanisms of 
EPC’): a phonon modulates the in-layer hopping amplitudes, t∥, scat-
tering the electron within the layer. However, because our measurement 
examines electrons tunnelling between the layers, this EPC appears in 
a second-order process: initially, an electron tunnels to a high-energy 
virtual state with the same momentum in the other layer, with amplitude 

≪α = 1
t

ħν K θ
⊥

f D
, followed by phonon emission through in-layer EPC, or 

vice versa (Fig. 2g). In TBG, there exists another ‘interlayer’ mechanism 
that couples electrons to antisymmetric vibrations of the two layers 
(Fig. 2h), whose acoustic branch is the phason of the TBG19–24. These 
antisymmetric vibrations stretch the interlayer bonds and therefore 
modify the tunnelling amplitudes between the layers, t⟂ (Fig. 2h). This 
leads to an interlayer EPC that already contributes in a first-order pro-
cess (Methods section ‘Theory model for inelastic tunnelling through 
phonon emission and the two mechanisms of EPC’).

The unusual behaviour of the phason’s EPC becomes apparent in the 
limit of qM → 0. The strength of EPC is proportional to the stretching of 
the atomic bonds by a vibration whose amplitude is the zero-point 
motion (ZPM) of the phonon, ξ ħ Mω= /2ZPM M  (ωM is the phonon fre-
quency and M is the carbon atom mass). For in-plane bonds, the stretch-
ing by ξZPM is distributed over many bonds, N ≈ (qMa)−1 (Fig. 2g) and thus, 
in the limit qM → 0, the corresponding in-layer EPC tends to zero, as 
expected for an acoustic mode. Notably, when the layers vibrate 
antisymmetrically, the interlayer bond stretching is directly given by 
ξZPM, independent of qM (Fig. 2h). For a linearly dispersing phason 
ξ ≈ qZPM

1

M
, this predicts that its interlayer EPC should increase as 

q
1

M
 

in the limit qM → 0.
To study this quantitatively, we determine all key experimental 

parameters in situ. The inelastic conductance step is directly related 
to the interlayer, ginterlayer, and in-layer, gin-layer, EPCs through (Methods 
sections ‘Theory model for inelastic tunnelling through phonon emis-
sion and the two mechanisms of EPC’ and ‘Extracting EPC from the 
measured inelastic conductance steps’):

G βν ν A g α N gΔ = ( + ) (1)T B tip interlayer
2 2

layer in−layer
2∣ ∣ ∣ ∣

in which β N N= πe
ħ

a
f b

2 3
2

2 2
, Nf = 4 is the flavour degeneracy (spin/valley), 

Nb = 3 is the number of Bragg scattering processes, Nlayer = 2 is the num-
ber of layers, a = 0.246 nm is the lattice constant of graphene and α is as 
defined above. The experiment-specific parameters in equation (1) are 
the tip contact area (Atip) and the density of states (DOS) of the bottom 
and top layers (νB and νT), all of which we can tune and measure in situ.

To determine the dependence on tip contact area, we use unique 
QTM capabilities to both modify and image the tip area in situ. The 
imaging is achieved by spatially scanning the tip along fixed atomic 
defects (on an adjacent area with defects in a WSe2 layer; see Methods 
section ‘Imaging the tip contact area in situ and determining the pres-
sure in the experiment’). The measured current in such a spatial scan 
(Fig. 3b,c) reveals several replicas of the tip shape, each produced when 
the tip overlaps a single atomic defect. Imaging after using mechanical 
manipulation to change the tip size shows a tip area that is enhanced 
approximately twofold (Fig. 3b, tip 1). Figure 3a shows the G versus 
Vb traces measured for the two tip areas, featuring conductance 
steps resulting from the ZA and TA phonon modes. When plotting G 
normalized by the measured area, the curves collapse on each other 
(Fig. 3a inset), demonstrating that we capture the area dependence  
quantitatively.
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To investigate the dependence on the DOS, we plot G and I

V

d

d

2

b
2

 meas-

ured versus back-gate voltage, Vbg, and Vb (Fig. 3d,e) exhibiting steps 
in G. Visibly, the steps amplitude scale linearly with Vbg (Fig. 3f,g, details 
in caption). An electrostatic model (Methods section ‘Electrostatic 
model for the QTM junction’) shows that, to a good approximation, 
both nB and nT vary linearly with Vbg and thus the product of their Dirac 
DOS follows ν ν n n≈T B T B , which aligns well with the observed linear 

dependence (Fig. 3g) and the flipping of its slope on carrier polarity 

change (Methods section ‘Further data from different samples and 
QTM tips’). Combining data from other twist angles (Methods section 
‘Further data: G as a function of Vb and Vbg measured at two more twist 
angles, θ = 22.7° and 9.4°’), Fig. 3g highlights the distinct behaviour: 
ΔGTA increases with decreasing θ, showing that the coupling to the TA 
mode becomes stronger as qM decreases.
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Fig. 2 | Measured phonon spectrum and EPC in TBG. a, A tunable TBG is formed 
by bringing into contact a monolayer graphene on the tip (blue) with a monolayer 
graphene on a flat sample (red), both backed by hBN and with a global graphite 
back gate. b, TBG’s mini-BZ, with Dirac points of the top and bottom layers at its 
corners (labelled KT and KB). The measured inelastic tunnelling processes involve 
an electron tunnelling between the layers while emitting a mini-BZ phonon that 
provides the missing momentum (qM, orange). c, The corresponding TBG band 
structure along the KT–KB line, colour-coded by layer weight. d, Measured 
conductance, G, versus bias voltage, Vb, and twist angle, θ, exhibiting steps in  

G that disperse with θ. e, The second derivative, I

V

d
2

d b
2

, obtained numerically from 

panel d, overlaid with the theoretically calculated phonon spectrum of graphite 
(dashed lines, various modes labelled; Methods section ‘Bulk-graphite phonon 
dispersion model’). Phonon lines measured at q = qM are marked in black and 
phonon lines measured at q q= M

∼  (see text) are marked in grey. f, Zoom-ins on the 
TA phonon peaks in panel e, at positive and negative bias, but with a colour map 

that reveals the variation of I

V

d
2

d b
2

 peak amplitude with θ. g, In-layer EPC mechanism, 

originating from the phonon modifying the in-layer hopping amplitude, t|| (top 
illustration). EPC strength is proportional to the stretching of the bonds by a 
single phonon, namely, with ZPM amplitude (marked). In the limit q → 0, the 
ZPM stretching is distributed over many bonds and the EPC tends to zero. 
Moreover, because our experiments measure only electrons that tunnel 
between the layers, the in-layer EPC appears in them only as a second-order 
process—a virtual tunnelling between the layers (right brackets) followed  
by phonon emission (left square). h, Interlayer EPC mechanism: here an 
antisymmetric motion of atoms in the two layers (a phason of the moiré lattice) 
directly modifies the tunnelling amplitude t⟂ between them (top illustration). 
In this case, the maximal bond stretching is independent of qM and is equal to 
the full ZPM. Because the latter increases with decreasing qM, counter-intuitively, 
this EPC should intensify with decreasing qM. Moreover, because here the 
phonon couples directly to the interlayer tunnelling, this process appears in 
the first order in our experiment (box). i, The experiment examines phasons 
with momentum q = qM (illustrated).
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We can now determine the EPC from our experiments. For the opti-
cal phonons, we extract the inelastic conductance step near Vb = 160 mV 
from Fig. 2d (intervalley, K-point optical phonons), divide by 2 to obtain 
the average of the LO and TO modes (dominated by the TO mode; Meth-
ods section ‘Theory model for inelastic tunnelling through phonon 
emission and the two mechanisms of EPC’), normalize by the measured 
prefactors in equation  (1) and plot the resulting quantity, 
ΔGoptical/2βνTνBAtip, versus θ in the inset of Fig. 4a (dots). This is compared 
with the theoretically predicted in-layer (α2Nlayer|gin-layer|2) and interlayer 
(|ginterlayer|2) contributions, calculated49 using existing models (Methods 
section ‘Theory model for inelastic tunnelling through phonon emis-
sion and the two mechanisms of EPC’). The theory reveals that, for 
optical phonons, the interlayer EPC is negligible and thus we can 
directly extract the average optical coupling g g g= ( + )/2optical TO

2
LO

2  
by identifying the measurement with the in-layer term. Plotted as a 
function of θ (main panel), we see that goptical is weakly dependent on θ 
and amounts to 300–350 meV, approximately two times larger than 
that determined by angle-resolved photoemission spectroscopy25,26 
and in good agreement with Raman27,47.

Figure 4c analyses the EPC of the gauge (TA) acoustic phonon,  
comparing its measured and normalized conductance step (ΔGTA/ 
βνTνBAtip, plotted versus θ in the inset (dots)) with theoretically calcu-
lated in-layer and interlayer terms (lines). Notably, the in-layer coupling 
contributes negligibly (Methods section ‘Theory model for inelastic 
tunnelling through phonon emission and the two mechanisms of EPC’) 
and the interlayer coupling, which exists only for a layer-antisymmetric 

mode (phason mode) is dominant. Identifying the measured ΔGTA with 
this mechanism provides the gauge phason EPC, gphason, plotted versus 
θ in the main panel. Notably, we see that gphason increases with decreas-
ing twist angle as 

q
1

M
 (dashed line). The importance of this coupling 

becomes evident when it is compared with the measured mode energy, 
ħωqM

, which diminishes linearly with qM (Fig. 4d). We note that the 
theory also explains the absence of the LA mode in our experiment 
(Methods section ‘Theory model for inelastic tunnelling through pho-
non emission and the two mechanisms of EPC’), resulting from an 
orthogonality between its momentum and polarization.

We can estimate the dimensionless coupling, λ = θ
W

g

ħω
2 q

q

2
M

2

M
, from the 

EPC we measure at qM ( gqM
) by assuming that gq follows q  for acoustic 

phonons (independent of q for optical phonons) and integrating it 
over the mini-BZ (Methods section ‘Implications for superconductiv-
ity in TBG’; W is the flat-band width). Our inelastic tunnelling measure-
ments extend down to θ = 6° (limited by ohmic conductance background 
at smaller angles), but if we crudely extrapolate our results to lower 
angles, assuming that the observed dependence of the phason EPC on 
qM persists to the magic angle, we get that λgauge_phason = 1.1/W (meV).  
We note that, close to the magic angle, several assumptions of our 
model break down owing to strong renormalization of the energy 
bands, atomic reconstruction and phonon–phonon interactions (more 
details in ref. 49 and Methods section ‘Implications for superconduc-
tivity in TBG’). Also, our measurements show that each optical mode 
contributes λoptical = 0.45/W (meV). Recalling that there are four 
intervalley-coupling optical modes (LO/TO, top/bottom layers), we 
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Fig. 3 | Area and DOS dependence of EPC-induced inelastic tunnelling. a, Tip 
area dependence of the inelastic tunnelling steps: measured G versus Vb for 
TBG with θ = 16.8° and Vbg = 4 V for two tip contact areas, Atip. The height of the 
inelastic steps corresponding to the ZA and TA phonon modes are marked 
(ΔGZA, ΔGTA). Inset, same traces but normalized by the measured Atip. b,c, To image 
the tip area in situ, we scan it along fixed atomic defects located in a WSe2 layer 
placed on top of the bottom graphene on the side of the main experiment. The 
panels show the imaged current in a spatial scan, exhibiting several copies of 
the tip shape, each produced by a different single defect. Scale bars, 100 nm.  
d, DOS dependence of the inelastic tunnelling steps: measured G versus Vb and 
Vbg for TBG with θ = 16.8°. The gate voltage modifies the carrier density in the 
two layers and, consequently, their DOS. Dashed lines are the charge neutrality 
of the top (blue) and bottom (red) graphene layers, calculated from an 

electrostatic model of the junction (Methods section ‘Electrostatic model for 
the QTM junction’). Inelastic tunnelling steps in G are visible as horizontal 
lines (corresponding phonon modes are marked). e, The second derivative, 

I

V

d
2

d b
2 , obtained numerically from panel d, exhibiting horizontal lines that 

correspond to the various phonon modes. We also see superimposed Fabry–
Pérot oscillations owing to the finite size of the tip. f, Measured linecuts of G 
versus Vb taken from panel d at Vbg = 2 V and 8 V (vertical dashed lines in panel d). 
g, Amplitude of the conductance step of the TA mode, ΔGTA versus Vbg extracted 
from panel d (θ = 16.8°) and from two similar measurements in Extended  
Data Fig. 9 carried out at θ = 9.4° and 22.7°. Dashed lines plot the theoretical 
model that predicts a linear dependence of ΔGTA on Vbg, agreeing closely  
with the experiment. Notably, the overall ΔGTA amplitude (and therefore the 
corresponding EPC) increases with decreasing θ.
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see that the phason and optical modes have comparable and possibly 
important contributions to superconducting pairing. Optical phonons, 
on the other hand, have too high energy to contribute to the observed 
linear-in-T resistivity (strange-metal) behaviour, and here the coupling 
to the phason is the main source of scattering24.

In summary, using the first realization of a cryogenic QTM, we dem-
onstrate a new technique for measuring phonon dispersions as well as 
mode-resolved and momentum-resolved EPC in vdW materials. Our 
findings reveal that the phason coupling is at least as important to the 
physics of TBG as the coupling to optical phonons and that both couple 
rather strongly to the electronic degrees of freedom. More generally, 
the method demonstrated here should be applicable to a broad class 
of vdW materials as well as to mapping the dispersions and couplings 
of other collective modes, including plasmons2, magnons3 or spinons4, 
making it a powerful new tool for studying collective behaviour in 
quantum materials.
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Methods

Cryogenic (T = 4 K) QTM
The cryogenic QTM consists of two nanopositioner towers facing 
each other. One tower is equipped with three translational degrees 
of freedom (XYZ) and carries a flat sample. The opposing tower holds 
an AFM cantilever and has a rotational degree of freedom (θ), as well 
as two lateral degrees of freedom for positioning the AFM tip at the 
centre of rotation. The entire assembly is cooled down in vacuum to 
liquid helium temperatures. In the experiment, we bring into contact 
a vdW heterostructure on the tip with a flat vdW heterostructure on 
the bottom sample, creating a two-dimensional interface, typically 
several hundred nanometres across in both directions. vdW attraction 
between the two heterostructures self-cleans the contact area, lead-
ing to a pristine interface. The tip and sample remain in continuous 
contact throughout the experiment, including during any twisting 
or scanning operation. Self-sensing AFM cantilevers equipped with 
piezoresistive elements are used for monitoring and maintaining a 
constant force, ensuring that the area of the contact interface remains 
constant during the scans. The QTM junctions in this paper do not have 
a tunnelling barrier separating the two conducting sides (apart from 
Fig. 3b,c, in which we used defects in the WSe2 barrier to image the tip 
shape). This means that the resistance of the tunnel junction, especially 
at low twist angles or at high bias, can be comparable with or lower than 
the resistance of the contacts or of the bulk of the two-dimensional 
layers leading from the contact to the junction. We obtain this contact 
resistance from measurement close to 0° twist angle and then directly 
calculate how much bias decreases on the contact resistance and how 
much is decreasing on the junction, Vb, which is the variable we use 
throughout the paper (Methods section ‘Removing contact resistance 
in the two-probe measurement’).

Fabrication of the vdW-devices-on-tip
The fabrication of the vdW-devices-on-tip follows the procedure we 
described previously1. In brief, we use tipless AFM cantilevers that 
have a thin metallic line reaching its end, which we use for electri-
cally connecting to the active vdW layer. We make a custom tip using 
focused-ion-beam-deposited platinum pyramid, with base dimensions 
of 2 × 2 μm and a height of 1–2 μm. The vdW layers are transferred onto 
the pyramid using the polymer membrane transfer technique.

Conductance measurements
Voltages are applied using a custom-built digital-to-analogue con-
verter consisting of a.c. + d.c. sources. Current is measured using a 
FEMTO amplifier, followed by an NI sampler. We use a Zurich Instru-
ments lock-in amplifier (MFLI) for force feedback of the piezoresistive 
AFM cantilevers.

High-resolution elastic momentum-resolved tunnelling near 
the commensurate angle of 21.8° and the upper bound it puts on 
strain in the tip and sample
In Extended Data Fig. 1, we show high-resolution momentum-resolved 
imaging experiments conducted near the commensurate angle of 21.8°. 
These cryogenic experiments, performed during the same cooldown 
and using the same sample and tip as in the experiments in the main 
text, reveal an exceptionally sharp momentum-resolved map that 
aligns well with theoretical predictions. Below we explain how this 
measurement allows us to put a tight upper bound on the strain of the 
graphene layers on the tip and flat sample and show that the strains are 
very small, less than 0.1%.

Our experiment involves a TBG interface that is formed in situ, by 
bringing into contact a graphene layer on a tip and one on a flat sub-
strate. It is instructive to ask whether this interface has substantial 
strains, owing to a strain present in one or both participating layers. 
Although monolayer graphene typically exhibits minimal strain when 

placed on a flat hBN substrate, we may imagine that placing graphene 
on the rough topography of the tip could introduce substantial strain, 
particularly near its apex.

To estimate the strain, we use elastic momentum-conserving tunnel-
ling experiments. In such experiments, performed in a QTM geometry, 
we map the electronic energy bands by rotating two samples relative 
to each other and measuring the tunnelling current as a function of 
the rotation angle and bias1. Because current flows between the lay-
ers only when their states match in both momentum and energy, a 
two-dimensional θ–Vb scan effectively maps the energy bands of the 
system. For these experiments, we typically use a thin insulating barrier 
between the two layers, ensuring that the experiment remains in the 
tunnelling regime and allowing for the application of a well-defined bias 
across the junction. However, in this study, the two graphene layers are 
in direct contact, with no barrier material in between. Notably, when the 
experiment is conducted around a twist angle of 21.8°, we still observe 
elastic momentum-resolved current and the experiment is operating 
in the tunnelling regime even without a barrier. To understand this, we 
recall that, although at a twist angle of 21.8° the Fermi surfaces of the 
two graphene layers do not overlap in the first BZ, they do overlap in 
the third extended BZ1,37,39, as shown in Extended Data Fig. 2. Namely, 
the momentum-resolved tunnelling is performed between very high, 
in-plane momentum components of the wavefunction, which cor-
respondingly decay much more rapidly in the z direction. As a result, 
despite the direct contact between the layers, the experiment operates 
in the tunnelling regime.

Extended Data Fig. 1a–c shows the measured tunnelling current and 
its derivatives versus twist angle and bias. The dashed lines in these 
panels correspond to theoretically calculated crossing conditions 
between the Fermi surface in each layer and the empty energy bands in 
the other layer, as illustrated in Extended Data Fig. 1d. The agreement 
between the measurement and theory is notable, given the fact that the 
theory is performed without free parameters (we used the capacitance 
values measured independently in the main text).

Even a tiny strain in the sample or in the tip would make the measure-
ment look completely different—without strain, the BZ of graphene is 
a perfect hexagon with its six Dirac cones exactly 60° apart from each 
other. With strain, this perfect hexagon deforms and the Dirac points 
are no longer equidistant in angle. For example, 1% strain will make 
the angle between adjacent Dirac points vary between 59.5° and 60.5°. 
Remembering that our experiment examines momentum-conserving 
tunnelling collected simultaneously from all six Dirac points in the tip 
matching their corresponding six Dirac points of the bottom sample, 
it is clear that, if the layers are strained, we will see several copies of 
the crossing conditions, displaced along the angle axis. Each copy will 
result from one of the six Dirac points crossing its corresponding Dirac 
point in the other layer. The same holds for the experiments performed 
near 21.8°, at which the six crossing Dirac points are at the corners of 
the third BZ (Extended Data Fig. 2). Indeed, occasionally, we obtain tips 
that have strains and then we can clearly resolve such multiple copies. 
The fact that in the measurement in Extended Data Fig. 1 we see only 
one copy means that all six Dirac points are crossing at approximately 
the same twist angle. In fact, if we assume that the angular width of the 
lines in the measurement comes from smearing owing to several copies 
crossings, then we can put an upper bound on the strain in the tip and 
sample. In the measurement, we can identify lines whose full width at 
half maximum is approximately 0.05°, which puts an upper bound of 
0.1% on the strain in our experiments.

Flat samples and QTM tips
Extended Data Fig. 4 shows the optical image of vdW devices used in 
the experiment. Extended Data Fig. 4a shows a monolayer graphene 
QTM tip. Extended Data Fig. 4b,c shows the graphite sample used in 
Fig. 1 and multilayer graphene (MLG)/hBN/graphite sample used in 
Figs. 2 and 3.



Symmetry of phonon modes in voltage bias
Extended Data Fig. 5 shows the mirrored I–V curve (in voltage bias) of 
the graphite–graphite tunnelling junction (as shown in Fig. 1d). The 
phonon peak positions appear at the same energy for both positive 
and negative voltage biases. However, there is an asymmetry in pho-
non peak intensity, which may arise from the complex, electron–hole 
asymmetric band structure of graphite.

Imaging the tip contact area in situ and determining the 
pressure in the experiment
The QTM geometry creates a clean two-dimensional interface 
between the QTM tip and the sample side. We can image this inter-
face by scanning the tip laterally across a region of the sample that 
has a transition metal dichalcogenide (TMD) layer with atomic defects 
(three-monolayer-thick WSe2 in the current experiment, placed adja-
cent to the area in which the main experiment is performed). The 
defects provide an extra channel for the tunnelling current (Extended 
Data Fig. 6a). Thus, whenever the tip overlaps with a defect, we observe 
an increased current. As a result, in a measurement of the current as 
a function of lateral scanning (X and Y coordinates), each defect pro-
duces an image of the tip’s contact area. Extended Data Fig. 6b shows 
such imaging, in which we resolve several copies of the bulk and out-
line of the tip. Knowledge of the exact area of the tip is crucial for the 
quantitative analysis of the EPC strength. The left panel of Extended 
Data Fig. 6b shows the tip contact area of the hBN-backed monolayer 
graphene tip used in this work. The area of tip 1 is 37,602 nm2 and that 
of tip 2 is 18,106 nm2. We apply a d.c. bias close to the band edge (on 
the order of ±1 V for WSe2); in this energy window, many defects are 
active for tunnelling.

In the experiment, we use the built-in AFM in our cryogenic QTM to 
measure and maintain a constant force throughout the experiment. 
We generally apply small forces F ≈ 100 nN. Combined with the area 
of tip 1 mentioned above, this amounts to a pressure on the interface 
of P ≈ 2.5 MPa, which is much smaller than the vdW adhesion pressure, 
which is on the order of 1 GPa.

Theory model for inelastic tunnelling through phonon emission 
and the two mechanisms of EPC
The phonon-assisted inelastic tunnelling is modelled using Fermi’s 
golden rule:
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in which we assume the interlayer tunnelling current δIinter is flowing 
from the tip (top layer) to the sample (bottom layer). δIinter results from 
the tunnelling of an electronic state |k, s⟩ in the top layer to another 
electronic state |p′, s′⟩ in the bottom layer, with the emission of a pho-
non mode r and momentum Q. s and s′ are the band index of graphene 
layers. Ek,s and ωr,Q are the corresponding electronic state energy and 
phonon mode energy. Nf = 4 accounts for the spin and valley degen-
eracy. fT(Ek,s) and fB(Ep′,s′) are the Fermi–Dirac distribution functions 
for the top and bottom layers. The chemical potential for the top and 
bottom layers and their relative energy shift are determined from the 
electrostatic model (Methods section ‘Electrostatic model for the QTM 
junction’). Here we denote Q for the phonons emitted in the top layer 
and Q′ for the phonons emitted in the bottom layer. For each layer, 
there are three possible Q vectors contributing to the tunnelling cur-
rent in the leading order, which correspond to three Bragg scatterings 
within the first BZ.

The above formula is a general expression for phonon-assisted tun-
nelling and the matrix element ⟨k, s|Tin-el|p′, s′; r, Q⟩ contains two types 
of EPC49:

⋯T H H G H H G H= + + + , (3)in-el inter T 0 in-layer in-layer 0 T

Hinter is the interlayer EPC, for which the phonon field affects the inter-
layer tunnelling amplitude t⟂ and gives rise to the coupling between 
the layers, as shown in Fig. 2h. The other two terms correspond to the 
in-layer mechanism shown in Fig. 2g. The microscopic expression 
includes: HT, accounting for the pure electronic interlayer tunnel-
ling; G0, the Green’s function of the uncoupled layers accounting for 
the energy denominators of the virtual intermediate states; Hin-layer, 
the in-layer EPC originating from the changes of hopping ampli-
tudes in the layer. The detailed derivation of the two types of EPC is 
shown in ref. 49. Here we give the final expressions of the interlayer  
EPC:
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These two coupling matrices are for phonons emitted in the top and 
bottom layers, respectively. Inside the square brackets in equations (4) 
and (5), the first term describes in-plane phonons and the second  
term describes out-of-plane phonons (both ZA mode and ZO mode). 
α and β are sublattice indices and dz is the interlayer distance. ωr,Q and 

r
α
,ε Q are the phonon energy and polarization vector, respectively, for 

phonon mode r at momentum Q. M is the total mass in the unit cell.  
N is the number of unit cells. K (K′) and Gj=1,2 (G′j=1,2) are the Dirac point 
and reciprocal lattice vectors of top (bottom) layer, respectively.  
Gj=0 = 0 corresponds to the no Bragg scattering case. d is the shift  
vector between the two layers. qj is the vector connecting the Dirac 
points between the top and bottom layers, for which j = 0, 1, 2 accounts 
for three Bragg scatterings within the first BZ. They correspond to 
three emitted phonon vectors, as seen by the delta functions δ , jQ q   
and δ ′, jQ q  in equations (4) and (5). Note that q0 = qM in our notation in 
the main text. The interlayer electronic tunnelling matrix T j

αβ  is 
expressed as

T t T t= 1 1
1 1

, = e 1
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in the sublattice space and ζ = π2
3 . For the interlayer mechanism, the 

theory predicts: (1) the dominant twist angle dependence in equa-

tions (4) and (5) is coming from the ZPM factor 
Q

ħ
Mω2 r,

, which results 

in an enhanced EPC as the twist angle decreases for the acoustic modes, 
whereas for optical modes, the coupling approximately remains con-
stant. (2) There is a geometric factor between the K–Gj vector and 
phonon polarization vector, as seen by the term εK G Q( ′ − ′ ) ⋅j r

α
,  in equa-

tion (4) and εK G Q( − ) ⋅j r
β
, ′ in equation (5). For the transverse mode, this 

dot product gives ( )cos θ
2

 factor, in which θ is the twist angle, whereas 
for the longitudinal mode, it gives ( )sin θ

2
 factor, which suppresses the 

EPC. This explains the missing LA mode in the experiment. In the 
experiment, the measured EPC is averaged over the Fermi surface of 
the top and bottom layers, and we define it as:
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in which θk and θp′ are the polar angle of the electron momentum rela-
tive to the top and bottom layer Dirac point, respectively. Here we can 
change the phonon field basis of the top (Q) and bottom (Q′) layers 
into layer-symmetric and antisymmetric mode and account ∣ ∣g rinter, , = MQ q  
as the EPC only for one phason mode, as the layer-symmetric mode 
does not couple to tunnelling electrons.

As for the second mechanism, the in-layer EPC is given by49:
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in which β0 = ∂t∥/∂r∥ and jê  is the unit vector along the in-plane carbon–
carbon bond direction. The in-layer contribution to the tunnelling 
current is given by T H G H H G H= +in-el

in-layer
T 0 in-layer in-layer 0 T. After averag

ing over the Fermi surface, the matrix element is approximated by49:
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qα =

t
ħν

⊥

D M
 is from the virtual tunnelling process and 

∣ ∣Q qg rin-layer, , =
2

M
 is the Fermi surface averaged in-layer EPC. As qM gets 

smaller, g rin-layer, , = MQ q
 for the acoustic mode tends to zero as qM

, 
whereas the coupling to the optical mode remains constant. Compared 
with the phason mode, we have the extra Nlayer = 2 factor coming from 
phonons emitted in the top and bottom layers.

In the numerical calculations for the interlayer and in-layer EPC in 
Fig. 4, we use the following parameters50: t⟂ = 0.1 eV, νD = 106 m s−1, 
β0 = 4.22 eV Å−1. The phonon dispersion and polarization vectors are 
solved by diagonalizing the dynamic matrix of graphene51. The numer-
ical calculations are shown in Extended Data Fig. 7, for Fermi surface 
averaged interlayer 

qg rinterlayer, , M
∣ ∣ and intralayer ∣ ∣α N g rlayer in-layer, , Mq

 
contributions as a function of rotation angle. To simplify notation, we 
denote them as |ginter,r| and |gin-layer,r| in Extended Data Fig. 7. For the TA 
mode, the interlayer mechanism dominates over the in-layer mecha-
nism. For the LA mode, the in-layer process is stronger than the inter-
layer one, owing to the geometric factor that suppresses the interlayer 
coupling. The overall coupling strength of the LA mode at the momen-
tum qM that the QTM tip examines is weak compared with the TA mode. 
For TO and LO modes, we plot both the separate and averaged value in 
Extended Data Fig. 7c. The averaged contribution is dominated by 
in-layer coupling contributions, which become stronger as the twist 
angle decreases. The experiment measures the EPC to the TO and LO 
modes together, near the K point, along an arc in the momentum space. 
Along this trajectory, the TO and LO modes have an avoided crossing, 
as seen in Extended Data Fig. 7d. The corresponding bare in-layer EPC 
of TO and LO also differs, as shown in Extended Data Fig. 7e. Note that, 
near the K point, the TO phonon has larger bare EPC than the LO phonon. 
In Extended Data Fig. 7f, we further decompose the TO and LO contri-
bution in terms of ∣ ∣qα N g r

2
layer in-layer, ,

2
M

 and qg rinterlayer, ,
2

M
∣ ∣  (r = TO, LO) 

and compare with the data: ΔGoptical/2βνTνBAtip from Fig. 4a. In the 
experiments, we cannot separate LO and TO phonon contributions, 
and the averaged value is consistent with the theory estimate, for which 
TO phonon has a stronger contribution. In short, both the interlayer 
and in-layer mechanism are, in general, the same order of magnitude. 
However, parametrically, the interlayer mechanism is much stronger 
for the acoustic TA mode, whereas the in-layer mechanism dominates 
for the optical modes.

Extracting EPC from the measured inelastic conductance steps
Equation (2) can be simplified (derivations are detailed in ref. 49). Here 
we show the result:
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in which Ω is the tunnelling area of the twisted junction and, in our 
experiment, Ω = Atip, imaged directly by atomic defects (see Methods 
section ‘Imaging the tip contact area in situ and determining the pres-
sure in the experiment’). νT and νB are the DOS of the top and bottom 
layers, respectively. θ(eVb − ωr,Q) is the step function, which onsets the 
conductance I

V
d

d
in−el when the bias voltage reaches the phonon energy. 

We defined the angular averaged coupling:
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in which N is the number of unit cells in the junction. Inserting into 
equation (10), we have:
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 is the unit-cell area and νT and νB are the DOS on the 

top and bottom layers, respectively. Because the phonon wave vector 
Q is related by the C3 symmetry (as seen by δ , jQ q  factor in equations (4) 
and (5)), we have the conductance step owing to the emission on a 
phonon mode r as:
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, such that Nb = 3 accounts for the Bragg scat-

terings and Nf = 4 accounts for the flavour degeneracy (spin/valley). 
Given the two types of microscopic EPC, ∣ ∣g rin-el, ,
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For the in-layer mechanism, Nlayer = 2 because phonons in both layers 
contribute. For the interlayer mechanism, only the layer-antisymmetric 
phason mode contributes. For extracting the in-layer coupling in Fig. 4, 
we use the parameters t⟂ = 0.1 eV and νD = 106 m s−1 for estimating the 
value of the α factor.

Electrostatic model for the QTM junction
The QTM junction is modelled by a three-capacitor model1. A graphene 
layer on the tip side and a graphene layer on the sample side are sepa-
rated by a vacuum gap. The third layer is the graphite back gate, sepa-
rated by a hBN spacer on the bottom sample side. We have the following 
electrostatic equations:

eV μ μ
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C
= − − (15)b B T

2
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g
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e n n

C
= +

( + )
, (16)bg B

2
B T

bg

in which Vb is the voltage bias applied between the two graphene layers 
and Vbg is the back-gate voltage with respect to the bottom graphene 
layer. nB (nT) and μB (μT) are the carrier density and chemical potential, 



respectively, of the bottom (top) layer graphene. Cg is the geomet-
ric capacitance per unit area between two graphene layers and Cbg is 
that between the back-gate and the bottom graphene layer. We use 
the values Cg = 11 μF cm−2 and Cbg = 38.6 nF cm−2 to fit the data. From 
the electrostatic model, we plot the charge-neutral Dirac point lines 
(dashed red and blue lines) in Fig. 3d,e and Extended Data Figs. 9 and 11.

Bulk-graphite phonon dispersion model
In the main text, the phonon dispersion of graphite is modelled using 
a dynamic matrix through the force constant approaches. For the 
in-layer force constants, we use the parameters from ref. 51 (GGA cal-
culation, column 3 in table 3 in that reference), which includes the 
fourth nearest-neighbour coupling that fits to DFT calculations. To 
obtain the bulk-graphite phonon spectrum, we further include the 
interlayer mechanical coupling in the dynamic matrix, as detailed in 
ref. 52. We include only the nearest-neighbour out-of-plane radial and 
tangential coupling, denoted by ϕr̂ and ϕt̂, and rescale these two param-
eters together to match the ZA phonon gap measured in experiments, 
giving the values ̂ϕ = 3,296 dyn cmr

−1  and ϕ = − 7,121 dyn cmt
−1̂ . For 

other phonon modes, introducing these interlayer coupling parameters 
generates an energy splitting of less than 0.5 meV. In Extended Data 
Fig. 8, we compare the spectrum obtained from ref. 52 (Extended Data 
Fig. 8b) to the model described above (Extended Data Fig. 8a) and we 
can see that the latter fits the experiments much better.

Further data: G as a function of Vb and Vbg measured at two more 
twist angles, θ = 22.7° and 9.4°
In Fig. 3, we show the junction conductance as a function of Vb and Vbg 
at twist angle θ = 16.8°. Extended Data Fig. 9 shows the same map at two 
more angles, θ = 22.7° and 9.4°. These figures show similar features as 
in Fig. 3d,e: horizontal lines owing to inelastic phonon emission pro-
cesses and conductance dips tracing the neutrality points of the top 
and bottom graphene layers. The dashed blue and red lines correspond 
to the neutrality points calculated using the electrostatic model for 
the QTM junction.

Further data from different samples and QTM tips
Here we show further measurements performed with different bottom 
graphene samples and QTM tips to those shown in the main text. Our 
scanning set-up allows us to create the twisted interface at different 
locations along the bottom graphene, which are separated by several 
micrometres. Because the tip contact area is only several hundreds of 
nanometres, measuring at such spatially separated positions effectively 
means that we have switched to a completely different bottom sample. 
Also, within the QTM set-up, we have the capability to modify in situ the 
tip shape. One example is shown in Fig. 3b, in which the area of the tip 
is changed by approximately a factor of two (tips 1 and 2). Because the 
area added to the tip is substantial and can potentially have different 
strains, edges and so on, the measurements with these two tips effectively 
amount to experiments performed with different tips. In Fig. 2, we show 
the phonon spectrum measured using tip 1. Extended Data Fig. 10a,b 
shows further inelastic phonon spectroscopy data obtained using tip 2,  
which was also measured in a different sample location, overlaid with 
the theoretical phonon dispersion of bulk graphite. This scan was per-
formed only down to 10°, because, at this angle, the tip caught some dirt. 
Performing the same analysis as in Fig. 4, we extract the electron–phason 
and electron–optical couplings and compare them with the data in Fig. 4 
over the angular range that they overlap. Extended Data Fig. 10c shows 
this comparison for the extracted intervalley optical TO/LO EPC and 
Extended Data Fig. 10d shows the comparison for the electron–phason 
coupling. We can see that there is a good agreement both in terms of the 
magnitudes of the coupling as well as on their twist angle dependence.

Extended Data Fig. 11 shows further measurements performed 
with a completely different tip and sample in a different cooldown. 
Extended Data Fig. 11a,b shows the graphene–graphene junction 

conductance G and d2I/dV2 and as a function of Vb and Vbg at twist 
angles θ = 30° and 20°. We can clearly resolve in both scans horizon-
tal lines that correspond to inelastic processes with the different 
phonon modes. We also see that the step in conductance changes 
gradually with back-gate voltage. Performing a similar analysis as 
in the main text (Fig. 3g) and plotting the height of the conductance 
steps for the TA and ZA modes as a function of gate voltage (Extended 
Data Fig. 11c), we clearly resolve the predicted linear dependence. 
Moreover, unlike the sample in the main text, which could not be 
measured at large negative back-gate voltage owing to a gate leak, in 
the sample below, we also explored the hole side and we can clearly 
see how that, also there, the dependence is linear with a slope with 
inverted sign (dashed lines in Extended Data Fig. 11c are the model  
calculations).

Removing contact resistance in the two-probe measurement
In the experiments, we apply a voltage Vapplied between the contacts 
connected to the vdW-devices-on-tip and to the flat sample side and 
record the current I flowing through the twistable junction and its 
derivative, ∼G = I

V
d

d applied
. However, as these are two-terminal measure-

ments, there will be a contact resistance Rc leading to/from the twist-
able junction area. Therefore, the voltage bias Vb falling on the junction 
will be smaller than Vapplied. The difference between Vapplied and Vb 
becomes notable when the junction resistance is low (either at high 
applied voltage or at low twist angles). To remove this effect, we rotate 
to zero twist angle (for which the resistance of the junction is the low-
est) and record the resistance Rc (about 50 kΩ for the monolayer gra-
phene–monolayer graphene experiment (Figs. 2–4) and about 4 kΩ 
for the graphite–graphite experiment (Fig. 1)). For each measurement, 
we remove the corresponding Rc to obtain:

∼
V V IR G G R= − , = ( − ) . (17)b applied c

−1
c

−1

Limitations at small twist angles
In the experiments, the QTM is capable of controlling the twist angle 
of TBG continuously down to 0°. However, the measurements show 
that phonon emissions steps in G start to disappear when the twist 
angle is less than 6° and, at low bias, we measure substantial junction 
conductance. There are several possible reasons for this. (1) The tail of 
elastic tunnelling processes becomes more and more dominant and 
overwhelms the inelastic phonon emission processes. (2) At smaller 
angles near the magic angle, the two layers become strongly hybridized 
such that Fermi’s golden rule approximation, which is used to interpret 
our measurements, breaks down, as electrons can tunnel back and 
forth several times across the junction coherently (Fermi’s golden rule 
assumes just a single pass). (3) Processes involving the absorption of 
thermal phonons can be notable at low angles and may dominate the 
phonon emission processes of interest to us. The energy of a phonon 
at q = qM becomes smaller with decreasing twist angle. For θ = 6°, it is 
already ωph ≈ 10 meV. For lower twist angles, it will be even smaller. 
Because the same EPC element is relevant for both the emission and 
absorption of phonons, absorption of thermally activated phonons at 
T = 4 K may well be responsible for the large conductive background 
at low angles44. (4) Contact resistance: at lower angles, the EPC gets 
stronger as shown in the main text and junction conductance becomes 
better. The tail of the onset of phonon emission already leads to a junc-
tion resistance that can be much smaller than the contact resistance. 
We can account for some of this effect with our theoretical model, but 
if the junction resistance becomes negligibly small, then it becomes 
impossible to resolve its behaviour.

The EPC for the ZA (ZO′) phonon mode
In the main text, we show the extracted EPC for the TO/LO and 
layer-antisymmetric TA phason mode. Here we show the ZA mode  
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(the layer-antisymmetric ZA phonon is often also called ZO′) (Extended 
Data Fig. 12). This mode shows a gapped dispersion in the measurement. 
In the angle range we measure, ZA mode phonon energy decreases as 
the twist angle becomes smaller. The crossing between the ZA and TA 
modes is around θ = 6°. The theory discussions of the ZA mode are 
given in ref. 49, which shows that, similar to the TA mode, the ZA mode 
is dominated by the interlayer mechanism. Its coupling strength 
increases with decreasing angle at approximately 

ω
1

ZA
, as seen by 

equations (4) and (5). Extended Data Fig. 12b shows the extracted gZA 
as a function of θ, which shows the coupling strength of around 25 meV 
at θ = 6°. At θ = 8°, at which this mode overlaps with the TA mode in 
bias, we divided the total conductance step according to the ratio of 
the conductance steps measured at larger angle. This assumption most 
likely overestimates the ZA mode coupling and underestimates the TA 
mode coupling at θ = 8°.

Implications for superconductivity in TBG
Given the EPC we measure, we can estimate the coupling constant  
λ in the Bardeen–Cooper–Schrieffer (BCS) theory. The attractive  
electron–electron interaction from EPC is given by:

U q
g

ħω
A( ) = −

2
, (18)r

q r

q r
eff,

,
2

,
unit

in which gq,r is the EPC for phonon mode r and momentum q. Aunit  
is the unit-cell area. Our experiments measure the EPC at qM ( gqM

).  
For the acoustic phonons and phasons, we assume the q dependence 
of the EPC in the phonon mini-BZ to follow q. Because for these modes 
ωq ≈ q, we get that their Ueff,r(q) is independent of momentum. For opti-
cal phonons, we assume that the EPC is independent of q. Because for 
these modes ωq is independent of q, we get that, also for them, Ueff,r(q) 
is independent of momentum. We can thus readily integrate equa-
tion (18) over the phonon mini-BZ to obtain a Ueff,r that depends only 
on gqM

, measured in our experiments. Consequently, the coupling 
constant λ is given by:
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We approximate the DOS ν = WA0
1

moire
, in which W is the bandwidth 

and Amoire is the moiré cell area. We then get:
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For the phason mode, we measured the gqM
 and ωqM

 at θ = 6°. Assum-
ing the 

q
1

M
 dependence of gqM

 that we measured extends to θ = 1.1°, 
we get:

λ
W

=
1.1
(meV)

(21)phason

For the optical modes, we get:

λ
W

=
0.45
(meV)

, (22)TO/LO

Here we further discuss the limitations of the perturbative theory 
approach and possible breakdowns when extending it to the magic- 
angle regime:
a.	Hybridization of the energy bands at small angles owing to the strong 

interlayer coupling: this strong coupling will cause the lowest-order 
perturbative expansion of the interlayer coupling, resulting from 
the phonon field, to break down.

b.	Gapping of the TA layer-antisymmetric mode owing to inter-
layer mechanical coupling: in our theory, we assume that the 

interlayer symmetric and layer-antisymmetric phonons have the 
same energy. We may expect, however, that, at small twist angles, 
the layer-antisymmetric mode will be gapped as a result of mechani-
cal coupling between the two layers. Such a mechanical gap was 
measured for the layer-antisymmetric mode in Bernal bilayer gra-
phene using Raman28 and already they turned out be rather small, 
approximately 4 meV. We note that, in TBG, we expect the mechani-
cal gapping of the TA mode to be much smaller—this gapping is 
directly related to the mechanical friction between the layers. In 
a bilayer, this friction is high because of the perfect commensura-
tion between the layers. However, once the two layers are twisted, 
their friction reduces substantially as a result of superlubrication. 
Superlubrication should be relevant at angles already as small as 
the magic angle.

c.	Relaxation near the magic angle: lattice reconstruction effects are 
substantial below 2°. For twist angles near or above the first magic 
angle of TBG, linear response theory53,54 provides an adequate des
cription of the relaxation effects, as confirmed by more accurate 
computational methods55,56. The applicability of linear response 
theory indicates that the displacements associated with relaxation 
do not greatly affect the phonon frequencies. In terms of the EPC, 
reconstruction will effectively increase the areas of AB stacking and 
decrease those of AA stacking. This will effectively decrease the tun-
nelling between the layers. Because the phason EPC is dominated by 
the interlayer coupling, namely the modulation of the tunnelling 
elements between the layers, scaling down this tunnelling is expected 
to scale down the EPC in proportion.

d.	Phonon–phonon interactions. As shown in ref. 23, the phason mode 
can be damped at low energies owing to the moiré superlattice dis-
order. This is very important for understanding phenomena such as 
the strange-metal behaviour, as studied in that paper, but as long as 
this does not reach the strong coupling phonon–phonon limit, this 
will not influence the EPC estimated by our model.

Possible future experiments for measuring neutral collective 
modes with the QTM
The inelastic momentum-resolved scanning technique demonstrated 
here should be applicable to a wide range of vdW materials, including 
both carbon-based systems and TMDs. Beyond phonons, this method 
could potentially measure other neutral collective modes as well. Two 
fundamental requirements make these measurements particularly 
straightforward:
1.	 Materials with small Fermi pockets, preferably away from the Γ point.
2.	The Fermi velocity is larger than the velocity of the collective mode.

Requirement 1 is well met by many carbon-based materials, for which 
the band structure is derived from small Dirac points. More importantly, 
this condition is also satisfied by the broader class of TMD materials, 
for which small Fermi surfaces are typically found at the K or Q points 
in the BZ for both electron and hole carriers.

For requirement 2, the phonon sound velocity is much smaller than 
the Fermi velocity in all realistic materials within these families, includ-
ing both carbon-based materials and TMDs. Other neutral collective 
modes, such as magnons and spinons, are also expected to have much 
lower velocities than electrons.

Even when these conditions are not met (for example, for plasmons, 
which travel faster than electrons), the technique can still provide valu-
able insights. In such cases, however, a more thorough analysis would 
be required to separate the electronic contributions from those of the 
collective modes.

Another important point is that the experiment can be performed 
in two different configurations. The first is when the ‘launching’ and 
‘absorbing’ layers for the collective modes are in contact, as in the 
current experiment. In this configuration, we can examine the collec-
tive modes of each individual layer or that of the combined twisted 



interface. The second configuration involves placing an insulating 
material, whose collective modes are to be studied, between the 
‘launching’ and ‘absorbing’ layers. In fact, momentum-conserving tun-
nelling experiments performed in devices with a fixed twist angle have 
already successfully detected the phonons of a hBN barrier between 
the layers41–43. Two examples of proposed experiments consider the 
possibility of studying spinons in quantum spin liquids4 and magnons 
in magnetic moiré heterostructures3.
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Extended Data Fig. 1 | High-resolution momentum-resolved elastic 
tunnelling near the commensurate angle of 21.8°. a, Measured conductance 
(G) as a function of twist angle (θ) and bias voltage (Vb), with a finite carrier 
density in both graphene layers induced by a back-gate voltage of Vbg = 4 V.  

b, The second derivative, I

V

d
2

d b
2

, obtained numerically from panel a. c, The 

derivative of conductance with respect to twist angle, G
θ

d
d

, obtained numerically 
from panel a. The measured conductance clearly reveals a distinct ‘double X’ 
structure, within which the conductance is enhanced. This structure exhibits a 
mirror symmetry around θ = 21.8° and an approximate mirror symmetry with 
respect to bias. The boundaries of this structure are even more pronounced in 
the G

θ
d
d

 plot, in which they appear as narrow red and blue lines. Superimposed on 
these features are nearly horizontal conductance steps, which are more 
prominent in the second derivative I

V

d
2

d b
2

 plot, in which they manifest as 

horizontal lines. These lines correspond to inelastic, momentum-conserving 
phonon emission processes, as described in detail in the main text. The extra 
‘double X’ structure around θ = 21.8° arises from elastic momentum-conserving 

tunnelling between overlapping Fermi surfaces at the corners of the third BZ 
(see illustration in Extended Data Fig. 2). These Fermi surfaces are associated 
with high-momentum components of the in-plane wavefunctions, which decay 
more rapidly in the z direction, explaining why the experiment operates in the 
tunnelling regime despite the two layers being in contact. The dashed black 
lines in all panels represent theoretically calculated conditions for which the 
Fermi surface of one layer touches the unoccupied energy bands of the other 
layer, marking the onset of momentum-conserving tunnelling. The various 
conditions are illustrated in panel d and their calculated trajectories in the θ–Vb 
plane show excellent agreement with the experimental data. Notably, this 
agreement is achieved with no free parameters (the geometric capacitance 
used in these calculations was determined by fitting the phonon spectrum 
measurements in the main text). As explained in the corresponding Methods 
section, this correspondence puts a tight upper bound on the strains of the 
graphene layers in the tip and on the flat substrate, to be smaller than 0.1%.



Extended Data Fig. 2 | Overlap of Fermi surfaces in the extended BZ scheme 
for a twist angle close to 21.8°. Schematic of the extended electronic 
momentum space for the top graphene (blue hexagons) and bottom graphene 
(red hexagons), when the twist between the layers is approximately 21.8°. 

Visibly, the Fermi surfaces of the top and bottom graphene layers (blue and red 
circles) at the corners of the first BZ do not overlap. However, at the corner of 
the third extended BZ, the Fermi surfaces overlap (top inset), leading to the 
elastic momentum-resolved structure observed in Extended Data Fig. 1.
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Extended Data Fig. 3 | The cut in the phonon BZ investigated in our 
experiments. a, In the electronic momentum space, we show the first BZ of  
the top (blue) and bottom (red) graphene layers at a generic twist angle. The 
inelastic tunnelling processes examined in our experiments involve electrons 
scattering between the small Fermi surface of the top bottom layer, around the 
KB point (blue circle), to the Fermi surface of the top layer around the KT point 

(red circle), while emitting a phonon with momentum ( )q K= 2 sin θ
M D 2

. Electrons 
can also tunnel from the other valley at K′B of the bottom layer to the valley at 
the KT point in the top layer and emit a phonon with momentum ∼ ( )q K= 2 sin θ

M D
60 −

2
. 

b, In the phononic momentum space, qM cuts through the phononic BZ along a 
specific arc that goes from the Γ point to the K point (orange). For ∼qM, the 
trajectory is reversed.



Extended Data Fig. 4 | vdW-devices-on-tip and QTM flat side devices.  
a, Optical image of a monolayer graphene QTM tip. b, Optical image of a graphite 
sample used for the graphite versus graphite measurement shown in Fig. 1.  

c, Optical image of the MLG/hBN/graphite sample used for MLG versus MLG 
experiments shown in Figs. 2 and 3. This sample also has a region with 3L-WSe2 
for tip contact area imaging (see Extended Data Fig. 6).
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Extended Data Fig. 5 | Mirrored I–V curve in voltage bias. a,b, Mirrored G and I

V

d
2

d 2
 curves from Fig. 1d. Phonon peak positions appear at the same energy, whereas 

peak intensity is asymmetric.



Extended Data Fig. 6 | Imaging the tip touching area. a, Schematic of the 
QTM tip scanning spatially over atomic defects in WSe2. The tunnelling current 
increases when the tip overlaps the defect, generating an image of the shape 

and area of the tip. b, Real-space images of the graphene tips (tip contact area is 
shaded in blue). d.c. bias during scanning was −1 V for tip 1 and −1.2 V for tip 2.
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Extended Data Fig. 7 | Calculated EPC for the theoretical model in Methods 
section ‘Theory model for inelastic tunnelling through phonon emission 
and the two mechanisms of EPC’. a–c, EPC contributions from the in-layer 
(red) and interlayer (blue) mechanisms for the TA, LA and TO/LO modes as a 
function of the twist angle. In c, the contribution from the TO and LO modes are 
further decomposed. In the experiment, the individual contribution of the TO 
and LO modes cannot be distinguished. However, in this plot, both modes 

contribute, with the TO mode having the dominant effect. d,e, The phonon 
dispersion and bare in-layer EPC for the TO and LO modes near the K point.  
f, Comparison of the extracted conductance step, ΔGoptical/2βνTνBAtip, with the 
theory estimates α N g( )r qlayer in−layer, , M

2∣ ∣  and ∣ ∣g r qinterlayer, , M

2 for both TO and LO 
modes. The legend notations for TO, LO and interlayer/in-layer mechanisms 
follow those in panel c.



Extended Data Fig. 8 | Bulk-graphite phonon dispersion model.  
a, The phonon dispersions (dashed lines) obtained from the model in ref. 51 
augmented by adding interlayer mechanical coupling (detailed in this section). 
The calculation is overlaid on the measured graphite–graphite phonon 

spectrum shown in Fig. 1f. b, Phonon dispersions obtained from the model in 
ref. 52, overlaid with the measured graphite–graphite phonon spectrum shown 
in Fig. 1f. In the main text, we use the first model, as it fits the measurements 
more accurately.



Article

Extended Data Fig. 9 | Conductance as a function of Vb and Vbg at two other angles. G versus Vb and Vbg for TBG at θ = 22.7° (a) and at θ = 9.4° (b).



Extended Data Fig. 10 | Measured phonon spectrum and EPC in TBG using 
tip 2. a, Measured conductance, G, versus bias voltage, Vb, and twist angle, θ, 

exhibiting steps in G that disperse with θ. b, The second derivative, I

V

d
2

d 2
,obtained 

numerically from panel a, overlaid with the theoretically calculated phonon 
spectrum of graphite. c, The intervalley optical modes (TO and LO) EPC, 

g g g= ( + )/2optical TO
2

LO
2 , determined from this measurement (tip 2, cyan) 

compared with data in the main text (tip 1, blue). Error bars are obtained from 
differences between measurements at positive and negative bias and all other 
experimental uncertainties. d, The electron–phason coupling, gphason, determined 
from this measurement (tip 2, cyan) compared with data in the main text  
(tip 1, blue). Error bars are obtained from differences between measurements 
at positive and negative bias and all other experimental uncertainties.
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Extended Data Fig. 11 | Conductance as a function of Vb and Vbg at two 
angles for a different tip and sample. G versus Vb and Vbg for TBG at θ = 30° (a) 
and at θ = 20° (b). c, Amplitude of the conductance step of the ZA and TA modes, 

ΔG versus Vbg, extracted from a and b, respectively. Dashed lines plot the 
theoretical model that predicts a linear dependence of ΔG versus Vbg.



Extended Data Fig. 12 | EPC for the ZA (ZO′) mode. a, Extracted EPC of the ZA 
(ZO′) mode from Fig. 2d. b, Extracted phonon dispersion of the ZA (ZO′) mode 
from the same figure.
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