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Impacts of climate change on global 
agriculture accounting for adaptation

Andrew Hultgren1 ✉, Tamma Carleton2,3, Michael Delgado4, Diana R. Gergel5, 
Michael Greenstone3,6,7, Trevor Houser4, Solomon Hsiang3,8 ✉, Amir Jina3,7, Robert E. Kopp9, 
Steven B. Malevich4, Kelly E. McCusker4, Terin Mayer10, Ishan Nath11, James Rising12, 
Ashwin Rode6 & Jiacan Yuan13

Climate change threatens global food systems1, but the extent to which adaptation 
will reduce losses remains unknown and controversial2. Even within the well-studied 
context of US agriculture, some analyses argue that adaptation will be widespread and 
climate damages small3,4, whereas others conclude that adaptation will be limited and 
losses severe5,6. Scenario-based analyses indicate that adaptation should have notable 
consequences on global agricultural productivity7–9, but there has been no systematic 
study of how extensively real-world producers actually adapt at the global scale. Here 
we empirically estimate the impact of global producer adaptations using longitudinal 
data on six staple crops spanning 12,658 regions, capturing two-thirds of global crop 
calories. We estimate that global production declines 5.5 × 1014 kcal annually per 1 °C 
global mean surface temperature (GMST) rise (120 kcal per person per day or 4.4%  
of recommended consumption per 1 °C; P < 0.001). We project that adaptation and 
income growth alleviate 23% of global losses in 2050 and 34% at the end of the century 
(6% and 12%, respectively; moderate-emissions scenario), but substantial residual 
losses remain for all staples except rice. In contrast to analyses of other outcomes  
that project the greatest damages to the global poor10,11, we find that global impacts 
are dominated by losses to modern-day breadbaskets with favourable climates and 
limited present adaptation, although losses in low-income regions losses are also 
substantial. These results indicate a scale of innovation, cropland expansion or further 
adaptation that might be necessary to ensure food security in a changing climate.

Disruptions of the global food system owing to climate change threaten 
human well-being12–14 and social stability10,15, but researchers lack a 
complete understanding of the magnitude and structure of potential 
impacts on food systems globally2,16. It is known that changes to the 
climate will alter the distribution of weather experienced across the 
planet17 and that biophysical processes in agricultural systems will 
respond5,7,8. However, the degree to which humans around the world 
will effectively adapt their agricultural practices in reaction to these 
changes remains unknown2,3,8,9. For this reason, existing global projec-
tions have been unable to account for the adoption rates and efficacy 
of producer adaptations7,8,18 and it remains unresolved whether the 
compensatory responses of producers are likely to overcome the chal-
lenges posed by climate change4,19.

Here we develop a unified empirical approach to measure the effect of 
climate change on staple crop production, accounting for the costs, ben-
efits and adoption rates of producer adaptations as they are observed 
in practice around the world. We study one of the most comprehen-
sive samples of subnational crop yields ever assembled, representing 

two-thirds of global cropped calorie production, which allows our results 
to be globally representative. Using high-resolution data from popula-
tions across diverse contexts allows us to understand the real-world 
response of producers to weather events, changes in climate and eco-
nomic development. We then apply our empirical results to project 
probabilistic global climate change impacts on yields that account for 
environmental changes, biophysical processes and the compensatory  
responses of producers.

Previous analyses using process-based models have provided crucial 
insights about the potential impacts of climate change on global food 
systems and have enabled decades of progress in agronomic model-
ling7–9,18. These models explicitly characterize the biophysical processes 
that generate yields (for example, root depth, evapotranspiration, 
light utilization) and are calibrated to precisely managed experimen-
tal fields7,18, thereby providing detailed insight into the agronomic 
mechanisms by which climatic changes influence yields. However, 
these models generally assume that producers optimize yields sub-
ject to decision rules formed through modeller expert judgement  
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(for example, ‘no adaptation’ or ‘optimal varietal switching’7,18) in con-
trast to observing the decisions made by producers on the ground16,20,21. 
These decision rules describe what is theoretically possible but might 
not reflect actual conditions across diverse socioeconomic contexts, 
which are influenced by financial constraints, market failures and 
human error, along with other factors (Methods). Furthermore, 
because global process-based models are parameterized on the basis 
of data from scientifically managed experimental fields, concerns have 
been raised about their ability to represent actual producer decisions 
in diverse and resource-constrained contexts16,20,21.

To address these challenges, we develop an econometric approach 
that simultaneously captures the combined impact of biophysical 
crop responses and producer decision-making. In place of modeller- 
prescribed adaptation scenarios, our approach empirically recovers 
the effect of actual adaptations undertaken in response to diverse cli-
matic and economic conditions faced by producers. This reduced-form 
approach does not attempt the difficult task of identifying and mod-
elling each individual mechanism through which these adaptations 
occur. Instead, we measure the total impact of adaptive adjustments 
in response to the climate (for example, changing varietals, altering 
cultivation windows, adjusting fertilizer) without modelling interme-
diary processes explicitly (Methods and Supplementary Information, 
section B). We apply these measurements—which capture the extent, 
intensity and efficacy of real-world producer adaptations as a function 
of local climates and economic conditions—in simulations of future 
crop production under climate change and economic development. 
The key assumption underlying our approach is that producers facing 
similar climates, incomes and irrigation infrastructure make similar 
management decisions, which allows us to estimate the effects of 
producer decisions, which we do not observe. The weakness of our 
approach is that, if producers facing similar contexts are not compara-
ble, then our estimates of producer adaptation may be biased (Methods 
and Supplementary Information, section B).

Previous empirical work has demonstrated how reduced-form econo-
metric approaches can be calibrated to producer behaviour in specific 
regions2,5,11,22,23, such as maize producers in the USA5. Follow-up work 
demonstrated that this approach is complementary to, rather than a 
replacement for, detailed process-based models8,9,20,23–25. We build on 
the literature analysing the variation of weather responses with local 
climate as an indicator of adaptation4,19,26,27, making use of the method 
for capturing the benefits of adaptation in ref. 28 and accounting for 
adaptation costs based on ref. 29. Our work here represents, to the 
best of our knowledge, the first global analysis of staple crops that:  
(1) accounts for observed adaptation behaviour and how it varies glob-
ally; (2) uses these results to generate global projections of climate 
impacts on yields over the twenty-first century; and (3) transforms these 
projections into an empirically derived ‘damage function’ that links 
changes in global calorie production to changes in GMST (ΔGMST). The 
scale and scope of our projections are comparable with global gridded 
process-based models, such as those underlying the Agricultural Model 
Intercomparison and Improvement Project (AgMIP)7. However, unlike 
those models, our analysis is based on globally representative data and 
accounts for the adoption rates and efficacy of adaptive behaviours 
that producers choose to undertake in practice across diverse envi-
ronmental and economic contexts (for example, varietal switching 
and optimization of inputs such as fertilizer or irrigation intensity;  
see Supplementary Information, section B).

A data-driven approach that accounts for adaptation
We make four contributions that address key challenges when project-
ing global impacts of climate change on agriculture. First, we assemble 
one of the largest datasets of subnational crop production available 
(Ray et al.30 analyse the only comparable dataset we are aware of, con-
taining “~13,500 political units” and four crops, but have not made  

their data public), covering 12,658 subnational administrative units 
from 54 countries for six staple crops spanning diverse local climates 
and socioeconomic contexts (Fig. 1a–c,e, Supplementary Fig. 1 and 
Supplementary Table 1). Second, we systematically select from many 
correlated aspects of weather affecting crop biophysical processes 
which have been separately studied2. In our models of crop bio-
physical processes, we endeavour to ‘let the data speak’ and select 
from this broad set of weather variables using cross-validation over 
our rich panel data, an approach commonly used in machine learn-
ing (Supplementary Information, section C, Extended Data Figs. 1a  
and 2 and Supplementary Fig. 2). Third, we estimate the degree of  
producer adaptation, which has been widely debated2–6,19,22,31. 
Follow ing previous research, we use climate summary statistics 
(such as average temperature, average rainfall; see bars in Fig. 1d,f) 
to identify similarly adapted subpopulations4,5,26,28,29,31,32 (Extended 
Data Figs. 1b, 3 and 4, Methods and Supplementary Information, sec-
tion D). However, we select crop-specific measures of climate by means 
of cross-validation (Extended Data Fig. 1c). Further, we account for 
both the costs29 and the benefits of local adaptations (Methods and 
Supplementary Information, section H); failing to account for costs 
overstates the value of adaptation19. Fourth, our model allows for differ-
ences in resource access (for example, fertilizer, technology, insurance 
and credit markets or labour markets) to influence patterns of food 
production (Methods). This is particularly important in projections, 
as future economic development is likely to alter agricultural prac-
tices in ways that could make agriculture more resilient or vulnerable  
to weather33.

Because our data span climatic zones around the world, we are 
able to empirically measure how adaptive practices in different cli-
mates mediate the influence of environmental conditions (Fig. 1d,f 
and Extended Data Fig. 1b,c). This ‘reduced-form’ approach does not 
provide the granular detail contained in process-based models but it 
does account for the net consequence of nearly all climate-associated 
adaptive actions available to producers, without requiring that each is 
explicitly modelled or observed22. For example, our approach accounts 
for adaptive actions such as selecting a varietal with an earlier harvest 
date to avoid late-season heat exposure, adjusting typical fertilizer 
use conditional on socioeconomic conditions and adjusting typical 
irrigation water use conditional on access to irrigation, along with 
many other available adaptive measures. Notably, our approach does 
not account for altering the area planted to a given crop (that is, crop 
switching, although we do account for this in our valuation of climate 
impacts) and shifting the planting date outside present growing season 
windows (although we do account for varietal selections with earlier 
harvest dates).

Our final global model for each crop is high dimensional, nonlinear 
and dependent on the underlying economic and climatic character-
istics of each location—but nonetheless fully interpretable. Each crop 
model includes several measures of weather that are all interacted 
with several measures of climate, as well as income and possibly irri-
gation (Extended Data Fig. 1c). This approach allows yields in a given 
year and location to be computed by (1) weather in that location–year, 
which is an argument to (2) a location–year function determined 
by crop-specific measures of climate, income and irrigation. The 
resulting models are relatively parsimonious compared with global 
process-based models7,8 because the influence of many other factors 
not explicitly included in the model (for example, soil type and quality) 
is captured non-parametrically (Methods and Supplementary Informa-
tion, section B). However, these parsimonious models are skilful. Our 
model outperforms process-based model benchmarks globally across 
crops and regionally over 81% of crop–country pairs (Supplementary 
Information, section F and Extended Data Tables 1 and 2). Further-
more, in a ground-truth exercise, our model reproduces variation 
in local yields (R2 values from 0.63 (cassava) to 0.88 (rice); Extended 
Data Fig. 5), including over localized regions in our data representing 
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both high and low values of average yields and cropping intensity  
(Extended Data Fig. 6).

We project climate impacts to yields across 24,378 global admin-
istrative regions until the end of the century. Projections include a 
high-emissions scenario (Representative Concentration Pathway 
(RCP) 8.5; Figs. 1g and 2) and a moderate-emissions scenario (RCP 4.5; 
Extended Data Fig. 7), each matched to two socioeconomic scenarios, 
in each of 33 climate models and model surrogates that represent the 
full range of climate sensitivities (Methods). We account for statistical 
uncertainty through 1,920 Monte Carlo simulations per crop, following 
refs. 28,29,34 (Methods).

We report results based on where crops are cultivated today, noting 
that our approach also allows us to estimate theoretical impacts for a 
crop in locations in which it is not cultivated at present (Supplemen-
tary Fig. 7).

The global distribution of impacts
The projected effects of climate change on crop yields vary around 
the world (Fig. 2 and Supplementary Figs. 10 and 11). Regions exhibit 
different initial climates and socioeconomic conditions and they expe-
rience different changes in temperature, precipitation and incomes.  
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Fig. 1 | Global econometric analysis of longitudinal subnational 
administrative data enables empirical estimation of crop-specific climate 
impacts that vary with local economic and environmental conditions. 
Region-specific and crop-specific impacts are projected to evolve in the future 
based on changes to economic conditions (for example, GDP per capita) and 
climate (for example, average temperature), reflecting economic development 
and adaptation. a, Fraction of cropped area observed in our subnational 
administrative data, for example, regions spanning North, Central and  
South America. b, Example inset regions surrounding Lucas do Rio Verde 
municipality (black outline) in Mato Grosso state, Brazil. c, Time series of maize 
yield administrative data from Lucas do Rio Verde. d, Empirically estimated 
relationship between daily temperature and log maize yields (shaded region: 
95% confidence interval) conditional on other factors that include rainfall, 
climate and access to inputs and technology (Methods). Bars indicate 

county-specific values for variables used to predict the local, county-level 
effects of temperature and rainfall (red is average temperature, blue is average 
precipitation, orange is GDP per capita and green is area equipped for irrigation). 
Example regions depicted from top to bottom are: Iroquois County, Illinois, 
USA; La Barca municipality in Jalisco, Mexico; and Lucas do Rio Verde in Mato 
Grosso, Brazil. e, As in a but for an example region of Asia. f, As in d but for the 
response of rice to daily temperature in Dongbao district in Hubei, China, the 
cities of Thanjavur and Tiruchirappalli in Tamil Nadu, India, and Sulawesi Utara, 
Indonesia. g, Expected exceedance degree days over 30 °C projected for each 
of 24,378 regions in 2090 in a high-emissions scenario (RCP 8.5). Exceedance 
degree day projections (and other variables) from each model are combined 
with econometric results, such as d and f, to project crop-specific climate 
impacts that account for adaptation.
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These in turn alter the environmental factors crops are exposed to 
and the adaptive decisions of producers. Our projections are devia-
tions from local baseline yield trends, which have historically been 
positive30,35 and will probably remain generally positive (see the  
‘Conclusions and discussion’ section).

First, for all crops, temperature changes (through degree days and 
minimum temperature for rice and wheat) generally dominate the 
sign of local projected impacts. Precipitation strongly influences 
inter-annual variability in yields—which is important to producers, con-
sumers and government planners—but does not generally drive overall 
trends. Global patterns in yield losses reflect the nonlinear response 
of crops to temperatures, with increasing extreme heat depressing 
yields and reductions in cold days increasing yields. Adaptive responses 

to rising average temperature moderate losses to extreme heat (for 
example, Extended Data Fig. 3a), consistent with producers taking 
protective measures in response to temperature extremes that are 
expected19. However, benefits from these protective measures are 
partially offset by decreased yield gains during moderate temperatures. 
The trade-off between temperature resilience and average yield has 
been documented and is understood to reflect physiological compro-
mises across varietals19,36, although its potential global impact on future 
food production has not been previously demonstrated or quantified.

A second general pattern across several crops applies to equatorial 
regions of the world with high rainfall, including central Africa, South-
east Asia and South America. In these regions, the benefits of moderate 
temperatures are amplified by increasing levels of precipitation, driven 
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Fig. 2 | Projected end-of-century change in crop yields resulting from 
climate change, accounting for adaptation to climate and increasing 
incomes. a–f, Colours indicate central estimate in a high-emissions scenario 
(RCP 8.5), net of adaptation costs and benefits, for maize (a), soybean (b), rice (c), 
wheat (d), cassava (e) and sorghum (f) for 2089–2098. Projections computed 
for 24,378 subnational units relative to counterfactual yields, uncropped regions 

are shaded in grey. Wheat shows winter wheat and spring wheat projections 
combined, weighted by their area share in each region. Estimates in each 
location are ensemble means across climate and statistical uncertainty. 
Incomes from SSP3. See Extended Data Fig. 7 for a moderate-emissions 
scenario (RCP 4.5) and Supplementary Information, section J for results 
adjusted by CO2 fertilization.
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by an intensifying water cycle37. Although rising temperatures may 
ultimately reduce yields in these regions, the benefits of high rainfall 
in these regions partially offset those effects.

Maize
Under a high-emissions scenario, our projected end-of-century maize 
yield losses are severe (about −40%) in the grain belt of the USA, East-
ern China, Central Asia, Southern Africa and the Middle East (Fig. 2a, 
Extended Data Fig. 7a and Supplementary Figs. 10 and 11). Losses in 
South America and Central Africa are more moderate (about −15%), 
mitigated in part by high levels of precipitation and increasing long-
run precipitation (Extended Data Fig. 3b). Impacts in Europe vary 
with latitude, from +10% gains in the north to −40% losses along the 
Mediterranean. Gains in theoretical yield potentials occur in many 
northern regions in which maize is not widely grown (Supplementary  
Fig. 7).

Soybean
The spatial distribution of soybean yield impacts is similar in structure 
to maize, although magnitudes are accentuated (Fig. 2b, Extended Data 
Fig. 7b and Supplementary Figs. 10 and 11); for example, about −50% in 
the USA and about +20% in wet regions of Brazil under a high-emissions 
scenario.

Rice
High-emissions rice yield impacts are mixed in India and Southeast 
Asia, which lead global rice production, with small gains and losses 
throughout these regions. This regional result is broadly consistent 
with earlier work1. In the remaining rice-growing regions, central 
estimates are generally negative, with magnitudes in Sub-Saharan 
Africa, Europe and Central Asia exceeding −50% (Fig. 2c, Extended Data  
Fig. 7c and Supplementary Figs. 10 and 11).

Wheat
Wheat losses are notably consistent across the main wheat-growing 
regions, with high-emissions yield losses of −15% to −25% in Eastern 
Europe, Western Europe, Africa and South America and −30% to −40% 
in China, Russia, the USA and Canada (Fig. 2d, Extended Data Fig. 7d 
and Supplementary Figs. 10 and 11). There are notable exceptions 
to these global patterns: wheat-growing regions of Western China 
exhibit both gains and losses, whereas wheat-growing regions of 
Northern India exhibit some of the most severe projected losses across  
the globe.

Cassava
Cassava is projected to have uniformly negative projected impacts 
in nearly all regions in which it is grown at present, with the largest 
losses in Sub-Saharan Africa (−40% on average under a high-emissions 
scenario). Although cassava does not make up a large portion of global 
agricultural revenues, it is an important subsistence crop in low-income 
and middle-income countries. Thus, these yield losses may be a sub-
stantial future threat to the nutritional intake of the global poor (Fig. 2e, 
Extended Data Fig. 7e and Supplementary Figs. 10 and 11).

Sorghum
Sorghum losses are widespread in almost all of the main regions in 
which it is grown at present: North America (−40%), South Asia (includ-
ing India) (−10%) and Sub-Saharan Africa (−25%). Projected gains 
emerge in Western Europe (+28%) and Northern China (+3%) (Fig. 2f, 
Extended Data Fig. 7f and Supplementary Figs. 10 and 11).

Impacts on global yields
We compute aggregated global yield impacts based on the present 
distribution of global croplands, accounting for adaptation benefits 

and costs (Fig. 3a). For all crops except rice, we estimate that warming 
will likely reduce global yields by 2050 (probability of loss ranges from 
0.701 (sorghum) to 0.946 (wheat), high-emissions scenario) after 
accounting for both statistical and climate model uncertainty. Central 
estimates for global end-of-century losses under the high-emissions/
moderate-emissions scenarios (RCP 8.5/RCP 4.5) are −27.8%/−12.0% 
(P = 0.258/0.308) for maize, −6.0%/−1.1% (P = 0.477/0.475) for rice,  
−35.6%/−22.4% (P = 0.185/0.206) for soybean, −29.8%/−12.8% (P = 0.179/ 
0.248) for cassava, −21.7%/−5.9% (P = 0.329/0.417) for sorghum and 
−28.2%/−13.5% (P = 0.038/0.058) for wheat. End-of-century uncer-
tainty ranges may be substantial, with the largest 90% credible 
range for rice (q5 = −58.6%; q95 = 109.4%; RCP 8.5) and the narrowest 
range for wheat (q5 = −20.7%; q95 = −10.4%; RCP 4.5). These ranges 
allow for moderate likelihood that the impact of high emissions on 
global yields is positive for rice (probability = 0.477), maize (prob-
ability = 0.258), cassava (probability = 0.179) and sorghum (probabil-
ity = 0.329) or more negative than −30% for rice (probability = 0.240), 
maize (probability = 0.417), sorghum (probability = 0.410), wheat 
(probability = 0.535), soybean (probability = 0.560) and cassava  
(probability = 0.481).

Impacts by climate
Although the impact of heat on yields is nonlinear and pronounced for 
many crops (Extended Data Figs. 3 and 4), global aggregate yields are 
not driven downward most strongly by the hottest regions of the world. 
Accounting for adaptation, we find that the middle 50% of regions 
with moderate average temperatures tend to suffer the largest yield 
losses (Fig. 3b). This is largely because hotter locations are already more 
adapted to heat, so further warming has a reduced impact, whereas 
cold locations benefit from warming. Furthermore, high average 
rainfall, prevalent in many hot locations, is linked to increased gains 
from moderate warming (Extended Data Figs. 3b and 4b). This finding 
underscores the importance of accounting for real-world patterns of 
differentiated adaptation in global-scale analyses.

Impacts by income
Our projections suggest that changes in global yields affect populations 
around the world unequally. We estimate that total calorie production 
is generally affected more heavily by climate change in regions that 
are richer today (Fig. 3c), along with the lowest-income decile owing 
to its reliance on cassava. We estimate average losses of 28% in the 
lowest-income decile but more moderated losses of roughly 18% across 
deciles 2–8. In the highest-income deciles, average losses increase to 
29% (ninth) and 41% (top). This result is partially because lower-income 
populations tend to live in hotter climates, in which present adaptation 
rates are higher, and in the tropics, in which high average precipitation 
reduces warming impacts (Fig. 3b). This has important implications for 
global damages, as high-income regions include many of the world’s 
breadbaskets. Because relative yield losses are greatest in regions in 
which modern agriculture is concentrated, they have amplified influ-
ence on global caloric production under climate change.

Global calorie production
We combine our projections across all six crops to estimate the total 
potential impact of warming on global caloric production (Methods and 
Supplementary Information, sections B and K). Following the approach 
in refs. 28,29,34, we index lost calorie production against ΔGMST for 
each climate model. We recover a damage function describing the joint 
distribution of ΔGMST and lost calorie production for these six staple 
crops in each 5-year moving window of the twenty-first century (Fig. 3d). 
We estimate that the magnitude of impacts to present croplands 
increases nearly linearly at a rate of −5.54 × 1014 kcal (P < 0.001, 95% cred-
ible interval −5.63 to −5.44 × 1014 kcal) of calorie production per +1 °C in 
GMST in 2100 (see Supplementary Fig. 21 for other decades), amounting 
to approximately −121 kcal per day per 1 °C per person based on Shared 
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Socioeconomic Pathway 3 (SSP3) 2100 global population projections, 
or −4.4% of present per capita recommended consumption per 1 °C.  
(For example, warming of 4 °C in GMST in 2100 would correspond to a 
loss of about 17.6% of present per capita recommended consumption).

The role of adaptation and development
In contrast to previous global analyses7,8, projections here account 
for producer adaptation rates that reflect observed behaviour. We 
find that accounting for climate adaptation, its costs and rising 
incomes have substantial impact on high-emissions projections for 
all crops and regions (Table 1). We estimate that development and 
adaptive adjustments reduce global calorie impacts (relative to a 
‘no adaptation’ scenario) by roughly 23% in 2050 (column 1a versus 
1b, Table 1, 6% for moderate emissions) and 34% at the end of the 
century (column 2a versus 2b, 12% for moderate emissions), owing 
to the growing extent of adjustment under greater climatic change. 
The relative impact of adaptation is largest for rice (79% reduction 
of end-of-century impacts, 86% for moderate emissions) and small-
est for wheat (statistically unchanged) (Supplementary Tables 10  
and 11). Adaptation and development exacerbate average wheat losses 
from climate change (Supplementary Figs. 4 and 5 and Supplementary 
Tables 10 and 11) because wheat producers are observed to take on 
further weather-related risk as GDP per capita rises (Supplementary 
Information, section G), resulting in small losses from adaptation and 
development for Europe and Oceania (Table 1). By contrast, the largest 
regional benefits of adaptation accrue to South America (61% reduc-
tion of end-of-century impacts, 23% for moderate emissions), mostly 
from maize and soybean adaptation gains. Our results indicate that 
producer adaptations are likely to have strong influence over climate 

change impacts to agriculture, highlighting the critical importance of 
accounting for these adaptations; however, our central estimates for 
the overall impact of climate change on potential production of staples 
remain negative and meaningful, even accounting for the net effects 
of adaptation. Substantial uncertainty persists in these estimates, 
originating from both econometric uncertainty and climate model 
uncertainty, such that overall risks should be assessed across the full 
range of projected impacts.

Adjustments for CO2 fertilization
The above results do not account for CO2 fertilization, which is chal-
lenging to measure empirically. However, we adjust our results post- 
estimation to incorporate CO2 fertilization using previous estimates9 
(Methods and Supplementary Information, section J). Adjusting for CO2 
fertilization does not qualitatively alter the structure of our findings 
(Supplementary Figs. 13–18) but it does reduce the central estimate 
for end-of-century yield losses by 5.0– 9.5 percentage points (Fig. 3a) 
and increases the likelihood of positive aggregate effects. We do not 
account for the decreased crop nutrient content that might result 
from CO2 fertilization38.

Computing a partial social cost of carbon
Losses to future global yields can be incorporated into present-day 
climate policy, for example, by computing the net present value of 
future economic harms that result from the present emission of an 
extra ton of CO2, a value known as the social cost of carbon (SCC). 
We compute a component of the SCC—a ‘partial SCC’—that results 
from changes in global yields by integrating these projections into 
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Fig. 3 | Global impact of climate change on staple crops. a, Time series of 
projected climate change impacts on global average yields (area-weighted)  
in a high-emissions scenario (RCP 8.5), accounting for producer adaptations 
and adaptation costs. Box and whisker plots show total distribution of end- 
of-century projections accounting for joint statistical and climate model 
uncertainty (in each subplot: boxes, 25th to 75th percentiles; whiskers, 5th to 
95th percentiles). To the right are projections adjusted for the estimated effect 
of CO2 fertilization from ref. 9 (shaded) and projections for moderate emissions 
(RCP 4.5) without CO2 fertilization (unshaded). See full results for moderate 
emissions in Supplementary Fig. 8, CO2 fertilization in Supplementary 
Information, section J, and uncertainty in Supplementary Figs. 4 (RCP 8.5) and 
5 (RCP 4.5). b, Projected end-of-century yield impacts, by deciles of present- 
day average temperature over 24,378 regions. Impacts across crops weighted 
within region by cropped area and caloric content; distributions across  

regions weighted by total cropped area. c, As in b but by decile of present-day 
income. d, Empirical end-of-century global damage function describing 
calories (kcal) lost as a quadratic function of global mean surface temperature 
anomaly (ΔGMST). Each point represents a single climate-model-by-Monte 
Carlo run for RCP 4.5 (blue) or RCP 8.5 (red) in 2093–2097, including gains  
from CO2 fertilization. Grey bands indicate 10th–90th and 25th–75th quantile 
bands, conditional on ΔGMST. Bottom panel shows the distribution of  
warming under each RCP across 33 climate models and model surrogates 
(Supplementary Information, section G). Box plots to the right show 
distribution of damages collapsed to RCP. Right axis describes calorie losses 
normalized by 2015 global calorie production for the six crops studied here. 
Projected log(yield) impacts for panels a–c winsorized at the top and bottom 
1% of the impacts distribution over all region–GCM–years, by RCP–crop, then 
converted to percentages.
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the Data-driven Spatial Climate Impact Model (DSCIM) developed in 
refs. 28,29 (Methods and Supplementary Information, section K). We 
assign country-specific average prices to total calorie production (Sup-
plementary Fig. 20), allowing producers to intensify/reduce production 
to meet demand in their market at increasing marginal cost (Methods, 
Supplementary Information, section K, and Supplementary Fig. 19). In 
general, aggregate yield losses under climate change harm consumers 
as caloric consumption is lower and prices are higher; producers are 
also harmed by production losses, but these may be offset by gains from 
higher prices. In all scenarios, our approach implicitly allows the spatial 
distribution of within-crop varietals to adjust optimally within present 
cropped locations (Extended Data Fig. 1, Methods and Supplementary 
Information, section B). In some further scenarios, we deflate these 
estimates to account for the roles of crop switching and international 
trade, which might cause the spatial distribution of planting areas to 
shift (Methods and Supplementary Information, section K).

Across different modelling assumptions, the partial SCC for the crops 
we study ranges from $0.99 per ton of CO2 (5% constant discounting; 
adjusted for flexible crop switching, movement of cropped land and 
international trade; moderately elastic demand and supply; frictionless 
trade within countries; RCP 8.5) to $49.48 per ton (Ramsey discount-
ing39; crop type and land distributions mirror present day; moderately 
elastic demand and supply; frictionless trade within countries; RCP 8.5). 
See Extended Data Table 3 and Supplementary Table 13 for all partial 
SCC estimates.

Conclusions and discussion
Our analysis of staple crops is, to the best of our knowledge, the first 
to quantify the adaptations of real-world producers to climate around 
the world and to apply these measurements to projections of global 
agricultural damages from climate change. Our econometric results 
complement a well-developed literature from process-based models 
that resolve the underlying mechanics of crop production and some 
important forms of adaptation but which take producer decision rules 
as exogenous7,8,18,20. Our results indicate a substantial and statistically 
significant rate at which ΔGMST reduces the ability of present global 
food systems to produce calories, net of adaptation. However, in the 

absence of adaptation, we project that agricultural outcomes would 
be materially worse.

Our findings indicate that projected consumption losses tend not 
to be evenly distributed across global populations. Wealthy regions 
of the world more easily absorb grain price shocks. In poor regions of 
the world, food shortages and associated price shocks may be more 
destabilizing. This suggests that future modelling efforts would benefit 
from representing realistic costs and benefits of adaptation, imper-
fect information and other aspects of producer decision-making. We  
expect that these changes would lead to projections of climate impacts 
to agriculture that are less optimistic than those assuming agronomi-
cally optimal management7 and more optimistic than models that do 
not model adaptation at all2.

A key finding is that global populations exhibit extensive adapta-
tion to climate already, especially in relatively low income and hot 
regions of the world—with the exception of the world’s poorest, who 
depend heavily on cassava and face higher potential losses (Fig. 3b,c, 
Supplementary Information, section I.3 and Supplementary Fig. 9). 
We also observe that breadbaskets of the world, in which the climate 
is moderate, exhibit more limited adaptation at present. Because such 
a large fraction of agricultural production is concentrated in these 
wealthy-but-low-adaption regions, they dominate projections of global 
calorie production, generating much of the global food security risk 
we document. This result is consistent with earlier regional findings 
that US crop systems are optimized for high average yields but not 
robustness to climatic changes36 and that projected maize losses 
in Sub-Saharan Africa are largest in the most productive and clima-
tically moderate countries, whereas countries with hotter present- 
day climates have lower historical yields and smaller projected yield 
losses40.

Our projection of productivity declines under climate change 
contrasts with process-based model results that are calibrated to 
experimental farms, use researcher-defined adaptation rules and 
generally tend to indicate productivity gains globally (ref. 8 is an 
important exception). For example, ensemble mean projections of 
AgMIP process-based models indicate end-of-century productivity 
gains for maize (+1.3%, RCP 8.5), wheat (+9.9%), soybean (+15.3%) 
and rice (+23.3%)7. These differ substantially from the generally 

Table 1 | Projected change in staple crop yields owing to climate change

Change in 2050 (% yield) Change in 2098 (% yield)

1a Producer behaviour 
unchanged

1b Accounting for adaptation 
and development

2a Producer behaviour 
unchanged

2b Accounting for adaptation 
and development

World RCP 8.5 −10.1 −7.8 −36.6 −24.0

RCP 4.5 −8.3 −7.8 −12.7 −11.2

Africa RCP 8.5 −14.6 −10.6 −39.4 −26.7

RCP 4.5 −10.8 −8.7 −16.0 −11.6

Asia RCP 8.5 −8.4 −5.7 −29.1 −15.8

RCP 4.5 −5.3 −4.7 −9.3 −7.5

Europe RCP 8.5 −4.0 −5.0 −21.5 −23.6

RCP 4.5 −4.2 −5.5 −6.0 −8.9

North America RCP 8.5 −14.6 −13.5 −55.5 −43.6

RCP 4.5 −16.7 −16.0 −21.0 −20.8

Oceania RCP 8.5 −13.0 −13.7 −31.7 −33.6

RCP 4.5 −13.8 −13.8 −15.3 −15.6

South America RCP 8.5 −11.7 −6.8 −48.5 −18.7

RCP 4.5 −8.9 −7.8 −16.6 −12.7

Percentage change in staple crop yields (that is, calories per hectare) owing to climate change relative to projected future baseline yields, comparing estimates that do and do not account for 
adaptation and economic development. Yield changes aggregated across six staple crops based on planted areas and caloric content. Roman values indicate estimates in a high-emissions 
scenario (RCP 8.5) for mid-century (columns 1a and 1b) and at the end of the century (columns 2a and 2b). Italics values indicate corresponding estimates for a moderate-emissions (RCP 4.5) 
scenario. Projected log(yield) impacts winsorized as in Fig. 3, then converted to percentages. For all regions, see Supplementary Fig. 10. For uncertainty and inclusion of CO2 fertilization, see 
Supplementary Table 10.
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negative impacts we predict, with central end-of-century estimates 
that range from −35.6% (soybean) to −6.0% (rice) (Supplementary 
Table 10; RCP 8.5), although both sets of projections exhibit large 
uncertainties. A comparison of model skill over historical data sug-
gests that the statistical approach of this paper outperforms the AgMIP 
ensemble across crops and locations (Extended Data Tables 1 and 2 
and Supplementary Information, section F) and accurately captures 
observed variation in local yields (Extended Data Figs. 5 and 6 and 
Supplementary Information, section F). These differences highlight 
the importance of using globally representative data and accounting 
for empirically measured rates of adaptive behaviours in projections 
of climate change damages. Unlike process-based crop models, our 
estimates do not provide insight about the agronomic mechanisms 
through which climatic changes influence future yields. Such insight 
is useful in guiding agricultural innovation and, indeed, process-based 
models are used at present in a Genotype by Environment by Manage-
ment (GxExM) framework to target crop science research about future 
climate stresses41–44. The work we present underscores the urgency 
and importance of such crop technology developments and the 
importance of ensuring access to adaptive technologies by global 
producers broadly.

Future producer adaptation to climate change may differ from the 
historically observed patterns we recover. For example, technologi-
cal breakthroughs, such as the industrial fixation of nitrogen, trans-
formed what is understood about the limit of global productivity. 
However, the repeatability and penetration of these innovations has 
been uneven and perhaps should be interpreted cautiously—for exam-
ple, synthetic fertilizers remain incompletely deployed despite their 
invention long ago45 and progress towards heat tolerance for some sta-
ple crops has stalled46. Furthermore, to the extent that these advances 
are correlated with income, our projections implicitly account for 
them. Notably, innovation has contributed positively to average yield 
trends in many regions30,35, which will probably continue into the 
future in some form. Our projected yield impacts should therefore 
be interpreted as deviations from a future trend in average yields that 
is driven by other factors, including innovation. Indeed, our findings 
provide a sense of the scale required of such innovations to maintain 
global food security.

Finally, our monetization of agricultural damages from climate 
change is limited, as it does not capture the impact of all future 
changes, such as linkages between climate change, food availabil-
ity and social instability10,15. Nonetheless, synthesizing the complex 
global response of agriculture into a partial SCC is an important step 
towards representing these damages in climate policies47. Comparison 
of our partial SCC with existing estimates provides context for these 
findings. The Framework for Uncertainty, Negotiation and Distribu-
tion (FUND) model reports a partial SCC for agriculture of −$2.70 per 
ton CO2 (ref. 48) using a 3% discount rate (that is, warming improves 
global welfare through agriculture). Because this value relies on older 
(pre-2000) studies for calibration49, Moore et al.9 construct a revised 
estimate based on a meta-analysis of previous estimates8, mostly from 
process-based models. Inserting these projections into a computable 
general equilibrium model for 16 regions, Moore et al.9 estimate a partial 
SCC of $13.05 per ton (adjusted to the USD in 2023), opposite in sign 
from the original FUND partial SCC. Because this estimate is derived 
from process-based models, it does not account for observed rates 
of producer-level adaptation and it is two to five times larger than the 
range of our comparable estimates, $3.08–$6.84 (3% discount rate; 
Extended Data Table 3), that do account for autonomous adaptation. 
We note that, in a recent paper50, researchers incorporate the Moore 
et al.9 results directly into the Greenhouse Gas Impact Value Estimator 
(GIVE) integrated assessment model and find that climate damages to 
the agricultural sector increase to $84. The discussion of that paper 
focuses on other aspects of the analysis and does not detail why this 
estimate changed. Also, neither Moore et al.9 nor this study account 

for non-staple crops or livestock, an important area for future work, 
and neither estimate accounts for the unequal impact of crop losses 
on the global poor (Fig. 3c), for whom lost agricultural revenues and/
or consumption may be particularly damaging10,14,15. In continuing 
work51, we seek to more fairly represent these unequal costs in global 
estimates of monetized damages.
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Methods

This section provides an overview of the data and methods used to  
estimate the relation between agricultural yields and variation  
in weather, accounting for adaptation to climate and economic  
development.

Agricultural data
Subnational yields, production and harvested area, primarily at the 
second administrative level, were collected from the statistical offices 
of 54 countries (Supplementary Fig. 1 and Supplementary Table 1). This 
includes data that were generously shared for Burma, Cambodia, Laos, 
Malaysia, Thailand52 and Zambia53. This yields a dataset for 6 crops in 
12,658 locations (41,186 location–crop pairs) spanning up to 137 years. 
Wheat varietals, when not identified in the data, were manually assigned 
to spring or winter wheat based on ancillary country-specific data (Sup-
plementary Table 6). All growing season definitions are from ref. 54 
and held fixed. Detailed information is provided in Supplementary 
Information, section A.

Historical weather data
The main weather dataset used in this analysis is the Global Mete-
orological Forcing Dataset (GMFD v1)55. Data are available on a 
0.25° × 0.25°-resolution grid from 1948 to 2010. We obtain daily maxi-
mum and minimum temperatures and daily total precipitation for all 
grid cells globally. These data provide surface temperature and precipi-
tation information using a combination of observations and reanalysis, 
which is downscaled and bias-corrected using several station-based 
observational datasets to remove biases in monthly temperature and 
precipitation.

Projected weather data
We use the NASA Earth Exchange (NEX) Global Daily Downscaled Pro-
jections (GDDP) dataset for future projections of climate change. 
This comprises 21 climate projections, which are downscaled to 
0.25° × 0.25° resolution56 from global climate model (GCM) runs in 
the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive57. 
NEX-GDDP uses GMFD55 and quantile mapping to adjust the GCM 
outputs (means and variances) in historical and future time peri-
ods so that the systemic bias of the GCMs is removed. In contrast to 
other approaches58, NEX-GDDP does not assume a common distri-
bution shape between observed (GMFD) and GCM data. However, 
NEX-GDDP only assumes that GMFD (versus GCM) variances are cor-
rect, which other approaches58 do not require. Climate is projected 
under emissions from Representative Concentration Pathways 4.5 
and 8.5 (RCP 4.5 and RCP 8.5) up to 2100 (refs. 59,60), although the 
NEX-GDDP outputs of some models lack precipitation data past 2098, 
so that the ‘end of the century’ in this paper is the year 2098. The CMIP5 
ensemble of GCMs is not a systematic sample of possible futures. To 
provide an ensemble of climate projections with a probability dis-
tribution of GMSTs consistent with that estimated by a probabilistic 
simple climate model, we use the method outlined in ref. 61 to assign 
probabilistic weights to climate projections. A full list of models and 
their weights is given in Supplementary Table 9. For a more complete 
description, see ref. 29.

Historical income data
We obtain national and subnational income data for 1,503 administra-
tive regions from 83 countries from ref. 62. Data are provided by ref. 62 
at the state/province level for each country. We use these subnational 
data to allocate national GDP data from the Penn World Tables (PWT) 
database (https://www.rug.nl/ggdc/productivity/pwt/) under the 
assumption that the within-country distributions of GDP recorded in 
ref. 62 are accurate, but the exact levels may not be. Using these data, 
we construct a consistent panel of subnational incomes for all areas in 

our crop dataset that sum to the national GDP from the PWT database 
for all countries in the sample.

Projected income data
Future projections of national incomes are derived from the Organiza-
tion for Economic Co-operation and Development (OECD) ENV-Growth 
model63 and the International Institute for Applied Systems Analysis 
(IIASA) GDP model64, as part of the ‘socioeconomic conditions’ of the 
Shared Socioeconomic Pathways (SSPs)65. These are the only models 
that provide GDP per capita projections for a wide range of countries in 
the SSP database. The SSPs propose a set of plausible scenarios of socio-
economic development over the twenty-first century in the absence of 
climate impacts and policy. Data are interpolated to annual frequency 
and downscaled following ref. 29.

Irrigation data
We obtain data on the area equipped for irrigation from AQUASTAT of 
the Food and Agriculture Organization of the United Nations (FAO)66. 
These data are a single cross-section centred around the year 2000 at 
0.08° × 0.08° resolution and we hold the values fixed in climate projec-
tions. (Increases in incomes and heat exposure may drive increases in 
future irrigation, whereas aquifer and reservoir drawdown may drive 
decreases in future irrigation).

Model overview
We develop a reduced-form approach to modelling crop yields and 
producer adaptation, allowing us to recover plausibly causal effects 
of weather on yields based on data from real-world farms, without 
having to observe all of the biophysical processes in a given crop that 
mediate these effects. The approach allows us to account for the total 
costs and benefits of numerous real-world adaptive adjustments that 
producers undertake, without requiring that we observe or model each 
adjustment explicitly. This approach builds on ideas and techniques 
developed in refs. 4,19,26,27, using the method for capturing the ben-
efits of adaptation in ref. 28 and accounting for its costs based on the 
revealed preference approach in ref. 29. Following common practice 
in the literature2, our implementation also allows our model to recover 
local, micro level and instantaneous nonlinear effects of environmen-
tal conditions, even though outcome data are only observed at more 
aggregate spatial scales and temporal frequencies28,31.

We apply cross-validation techniques common in machine learn-
ing but adapted for model selection in a causal inference context. 
Our approach has three stages: (1) we remove variation that is associ-
ated with non-parametric controls to condition out the influence of 
unobservables; (2) we apply cross-validation to this residualized data 
to select weather measures; and (3) we again apply cross-validation, 
modifying the model chosen in the previous step to select dimen-
sions of climate that matter for adaptation. We perform the sequence  
(1)–(3) for each of the six crops separately to identify the most suitable 
model for each crop. Having selected and fitted an empirical model 
that accounts for weather and adaptation, we then apply the model in 
projections of climate change impacts. Each of these steps is detailed 
below.

Construction of weather terms. A large number of candidate weather 
variables are constructed from raw weather data based on previous 
literature5,67–71. We assemble variables that previous analyses report 
were influential for at least one crop, although individual variables 
might not ultimately be included in the specification for all or any crops. 
All weather transformations were conducted at the pixel level using 
daily data before aggregation, unless otherwise specified. Encoding 
pixel-by-day weather data after nonlinear transformations allows a 
high degree of flexibility in how local daily weather conditions can have 
an instantaneous and nonlinear impact on crops28,31. This means that 
even short periods of environmental stress are resolved and captured 

https://www.rug.nl/ggdc/productivity/pwt/
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by these variables and the model. Degree day terms were constructed 
following ref. 5, with kink points selected for each crop by a tenfold 
cross-validation search over potential kinks. Growing-season-phase 
precipitation was summed within month by grid cell and then trans-
formed70. Construction of vapour pressure deficit followed ref. 69. 
The count of rain days was calculated by grid cell as days with positive 
precipitation68. Extreme rain was identified by constructing the 1980–
2010 rainfall distribution for each grid cell in the GMFD daily precipita-
tion data and aggregating the amount of rainfall or number of days of 
rainfall in excess of the 95th percentile of this distribution68. Count of 
extreme rain days was measured following extreme rain except grid cell 
days were counted instead of summed within grid cell68. Drought was 
defined as a binary indicator over administrative unit growing season 
precipitation, using a tenfold cross-validation search over percentile 
cut-offs in the administrative unit growing season total precipitation 
distribution, largely following ref. 71 (final cut-offs ranged from the 8th 
to 25th percentiles). Minimum temperatures were calculated as the 
average of daily grid cell minimum temperatures within each month, 
following ref. 67. For all weather terms, weighting and aggregation to 
administrative units were done as described in ref. 29 with cropped 
area weights from ref. 54. See Supplementary Information, section D 
and Supplementary Tables 2–5 for full details on the construction of 
each weather variable.

Cross-validation step zero: residualizing data for causal inference. 
We first select non-parametric controls for unobservable factors to 
isolate plausibly random variation in our set of weather measures5,22,31. 
Specifically, we use administrative unit i (typically county), fixed  
effects μi, absorbing time-invariant confounds such as soil quality; 
country–year fixed effects ρct, absorbing country-by-year price and 
trade policy confounds; and state or province quadratic time trends 
h t( )s , absorbing slow-moving, local confounds such as the diffusion 
of new technologies or local variation in prices (equation (1), Sup-
plementary equations (B.12) and (D.1)–(D.6)). We separately partial 
out the variation in yields yit and the vector of regressors xit on these 
non-parametric controls (Supplementary Information, section B), 
leaving us with residual variation ∼yit  and ∼xit  for our cross-validation 
procedures.

Cross-validation step one: selection of weather measures. We 
implement cross-validation over ten random folds to systematically 
evaluate the importance for yields of the broad range of weather 
measures previously described in the literature. Each potential mod-
el is required to have at least one temperature term and one moisture 
term. (Temperature and precipitation are known to be correlated, so 
causal effects estimation of one without controlling for the other is 
vulnerable to bias5. Vapour pressure deficit was treated as a moisture 
term. Note: these terms may affect moisture demand and/or soil mois-
ture supply). Weather terms are each interacted with a fixed set of 
covariates: growing season average daily maximum temperature 
(‘long-run temperature’, T ), growing season average monthly pre-
c i p i t a t i o n  ( ‘ l o n g - r u n  p re c i p i t a t i o n ’,  P ) ,  l o g ( G D P p c)  
(‘income’, I ) and the share of cropped area equipped for irrigation 
(‘irrigation’, R). This ensures that weather variable selection occurs 
using models that are at least as flexible as those selected after the 
second cross-validation step, without having to simultaneously  
explore the full set of potential combinations of weather measures 
and covariate interactions (which would number 103,904 separate 
models). In selecting a candidate set of weather terms over which to 
study adaptation, we seek to optimize over parsimony and explana-
tory power, selecting a high-performing model in which additional 
weather terms do not individually contribute substantial fit gains (see 
Supplementary Tables 7 and 8).

Not all weather terms can be reliably projected by climate models72–74 
and models containing these candidate variables were explored in 

the cross-validation procedure (Extended Data Fig. 2) but ultimately 
excluded in projections of climate change because they could not be 
projected with reasonably high confidence. Overall, this procedure 
evaluates the out-of-sample (OOS) performance of candidate mod-
els that include all combinations of weather variables that we draw 
from the literature and allows for varying degrees of nonlinearity 
(Fig. 1, Extended Data Figs. 1a and 2 and Supplementary Information,  
sections B–D).

Cross-validation step two: selection of variables that capture adap-
tation. In our second cross-validation step, we select a set of covariate 
interactions for which covariates reflect the factors that mediate pro-
ducer adaptation actions4,19,26,27,75,76 (equation (B.7)). We take as given 
the set of weather parameters selected from the first step, allowing for 
interactions between weather variables and income, irrigation, T , P  
and/or T P× . Further, we allow for the nonlinear precipitation response 
to vary over phases of the growing season or to be constant over the 
growing season, with ‘phases’ of the growing season defined by a sys-
tematic model search (Supplementary Table 4). Finally, we also allow 
for interaction terms between degree day responses and monthly  
precipitation.

Accounting for mediating effects of income and irrigation is impor-
tant because access to resources alters producer actions through sev-
eral channels—such as access to technology77–81, insurance and credit 
markets77,80,82,83, inputs such as fertilizer77,84 or labour markets77,79,81 or 
information85. Notably, this minimizes confounding in our estimates, 
as resources and climate tend to be correlated (for example, poorer 
nations tend to be located in the tropics86) and it allows our model to 
capture that climate and income jointly determine yields87. Further, 
this allows us to project future changes associated with economic 
development.

In this step, we use cross-validation with ten folds over random 
blocks of data grouped by state/province. Here the test of model 
performance is the ability to model yields for a set of states or prov-
inces that are held out of the data. This matches one of the intended 
uses of our interaction surface, which is to model the heterogene-
ous response of yields to weather for locations with no yield data  
available.

In our climate projections, long-run average precipitation (P ) values 
range more than 17 standard deviations outside the mean in our his-
torical data. To prevent extrapolating adaptation behaviour to P  values 
far outside our data, we imposed a single-knot linear spline in P  for 
each weather measure (z P( )a i , z P( )b i  and z P( )c i  below). These knots were 
chosen using a within-R2 search over knot locations (Supplementary 
Information, section D). See Supplementary Information, sections B–D 
for further estimation details.

Example specification for maize. The final maize specification is:
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in which yit is log(yields) in administrative unit i in year t, DDit
8−31 repre-

sents degree days from 8 °C to 31 °C, which is interacted with each of 
average growing season daily maximum temperature (Ti ), splines in 
average growing season total precipitation (z P( )i[⋅] ), the interaction 
between Ti  and z P( )i[⋅] , average log(GDPpc) (Ii) and area equipped for 
irrigation (Ri). The remaining weather terms have similar interactions. 
prcp_phase[j]it represents monthly precipitation summed within 
growing-season-phase j, for j ∈ {1, 2, 3}. μi, hs(t) and ρct are as described 
previously. Standard errors of all estimated parameters allow for the 
correlated nature of yields (and weather) across space and over time. 
Specifically, we estimate cluster-robust standard errors88, which allow 
arbitrary correlations across observations over time within first-level 
administrative units (that is, autocorrelations within and between 
counties within a given state) and across all observations within a given 
country–year. See ref. 31 for a discussion of this issue in this context. 
Note that the terms in equation (1) reflect rows (weather variables) and 
columns (mediating variables) illustrated in Extended Data Fig. 1b. See 
Supplementary Information, section D, for full details of the final model 
specification for each crop.

We note that the overall fit of the above empirical model to the histori-
cal data is high, with an R2 of 0.85 for maize. For reference, the seminal 
analysis of maize by Schlenker and Roberts5 report a model R2 of 0.77 
when modelling yields for only the Eastern United States, for which 
data quality is high relative to much of the globe and the underlying 
patterns of producer behaviour are probably more homogeneous 
across locations.

Accounting for adaptation costs. We are able to empirically observe 
the benefits of adaptive management among producing regions  
because adaptation decisions have costs19,26. If adaptations were free, 
then we would expect all regions to use uniform management practices 
and varieties using only the most climate-resilient technology available, 
as this strategy would convey benefits at no cost19,29. To capture the 
full impact of climate change on agricultural systems, it is therefore 
essential that these costs of adaptation are accounted for, as well as 
adaptation benefits, as these costs would not be incurred in the absence 
of climate change.

We cannot observe these costs directly but they can be inferred under 
the assumption that profit-maximizing producers undertake adap-
tations for which the benefits exceed costs, but not those for which 
costs exceed benefits29. This is referred to as a ‘revealed preference’ 
approach and is widely used in economics research89. Specifically, 
we follow the approach developed in ref. 29 to track these costs for 
each crop and in each region until 2100 (see Supplementary Informa-
tion, section H, for a derivation, Supplementary Fig. 6 for intuition and 
Supplementry equations (H.6) and (H.7) for a detailed example). We 
follow ref. 19 and deduct these costs from yield changes to develop a 
complete measure of climate change impacts29. Thus, our projections 
of climate change impacts on yields should be interpreted as capturing 
both the costs and the benefits of voluntary producer adaptations in 
each location.

Intuitively, consider the term γ Ti6  in equation (1), through which 
long-run average temperature in region i (Ti ) modulates the negative 
effect of extreme heat shocks (DDit

31+) on yields. A 1 °C increase in Ti  
flattens the negative extreme heat slope by γ6 log points per extreme 

heat degree day—a benefit of adaptation in hotter climates. If a producer 
in this example expects ten extreme heat degree days during the grow-
ing season, then the expected adaptation benefit for a 1 °C increase in 
Ti  would be 10 × γ6 log points of yields. This benefit must not be costless, 
otherwise producers would have already adapted away all extreme 
heat yield losses. We thus infer marginal adaptation costs as equal to 
the marginal adaptation benefits that we estimate (an implication of 
assuming that producers maximize profits; see Supplementary Infor-
mation, section H for details).

Model estimates
Weather variables that influence crop yields. Many correlated 
aspects of weather affecting crop biophysical processes have been 
separately studied2,5,36,67–71,101–103 and we evaluate which are important 
drivers of the biophysical processes affecting yields of each crop. We 
use cross-validation to evaluate more than 8,000 candidate empi-
rical models across all six crops, for which each model predicts resi-
dual changes in historical crop yields using a different combination 
of weather variables proposed by previous studies5,67–71. On the basis 
of OOS performance, we find that nonlinear degree days are the most 
important determinant of yields, on average across crops, by a consid-
erable margin (Extended Data Figs. 1a and 2). Degree days increases 
model OOS fit (Supplementary Table 7) across crops by 51.7% on average 
(relative to the second-best model), with the largest gain for sorghum 
(101.6%, a doubling of model OOS fit) and the smallest gains for rice and 
cassava (9.1% and 9.4%). In general, exposure to cool daily temperatures 
(<9 °C for wheat and <29–31 °C for all other crops) modestly increase 
yields, whereas daily temperatures above these thresholds cause sharp 
declines in yields; for example, lowering end-of-season maize yields 
by −5% for each day that shifts from a 25 °C to a 40 °C day (Fig. 1g and 
Extended Data Fig. 3). This finding generalizes previous results from 
the USA (for example, see ref. 5) globally and across crops.

Seasonal precipitation is the second most important determinant 
of yields across all crops, to the exclusion of a wide range of other can-
didate weather variables put forward in the literature (Extended Data 
Figs. 1a and 2). Nonlinear measures of seasonal precipitation increase 
model OOS fit across crops by 14.5%, with the largest gains for rice and 
maize (22.8% and 22.2%) and the smallest gains for wheat, soybean 
and sorghum (7.8%, 9.2% and 9.4%; Supplementary Table 8). Across 
crops, increasing seasonal monthly precipitation raises yields on aver-
age 0.2% per mm at low rainfall levels (<100 mm per month), has little 
effect at intermediate levels (250–300 mm per month) and reduces 
yields −0.6% per mm at higher levels (>400 mm per month; Extended 
Data Figs. 3 and 4).

In contrast to reports from individual empirical studies (for example, 
refs. 67–69,71), we find that monthly average minimum temperatures 
(tmin), vapour pressure deficit, drought, the count of rain days, the count 
of extreme rain days and the amount of extreme rain generally only 
contribute modest gains to yield model fits (average % gains in OOS 
fit range from 1.2% to 3.6% excluding drought for cassava, discussed 
below). Minimum temperatures are important predictors for rice and 
wheat yields but not other crops (Extended Data Fig. 2 and Supplemen-
tary Tables 7 and 8).

There are exceptions for individual crops. Cassava yields are generally 
insensitive to weather overall (the maximum OOS variance predicted is 
2.3%), motivating its cultivation in contexts in which the climate is not 
conducive to other staple crops that are more sensitive104. We find that 
growing season drought is the most important factor for predicting cas-
sava yields (24.0% gain in variance predicted; Supplementary Table 7). 
Drought is also important for rice yields, as is the count of rain days 
(6.4% and 8.0% gain in variance predicted; Supplementary Table 7). The 
count of rain days is also moderately important for maize yields (6.6% 
gain in variance predicted; Supplementary Table 7). Taken together, 
these results indicate the importance of nuanced projections of future 
precipitation distributions for a restricted set of global staple crops.
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Adaptation to climate. We find that producers adapt to higher tem-
peratures such that, across crops and around the world, yields are 
systematically less sensitive to daily temperature and generally more 
sensitive to seasonal precipitation in locations that are hotter on aver-
age (Fig. 1 and Extended Data Figs. 1b, 3a,e and 4a,e). Similarly, yields 
are less responsive to temperature and more responsive to precipita-
tion in locations that are drier on average (Extended Data Figs. 1b, 3b,f  
and 4b,f). Because climate-associated adaptations influence numer-
ous—possibly correlated—aspects of weather–crop responses, we 
estimate the mediating influence of all dimensions of climate simul-
taneously on all dimensions of weather for each crop, generating a 
multidimensional function describing these interacting relationships 
(Extended Data Figs. 3 and 4). This function serves as the basis for 
projecting adaptation to climate change (Methods and Supplemen-
tary Figs. 4 and 5) and has not been previously represented in global 
process-based models7,8.

Economic development. We also find that rising incomes enable 
producers to respond to environmental conditions in important 
but varied ways, thereby mediating the effects of different climates. 
For example, maize and sorghum yields become more sensitive to 
temperature as incomes rise, whereas rice and cassava become less 
sensitive (Extended Data Figs. 1b and 3c). These differences could be 
because of differences in how access to improved technologies, infra-
structure, banking and credit or insurance77,78,80,82 influence producer  
strategies77,83. Notably, however, we find that higher incomes and  
access to irrigation are associated with greater resilience to precipi-
tation extremes across all crops (Extended Data Figs. 1b, 3g and 4g), 
consistent with access to improved irrigation technologies increasing 
with income77,80.

Projections and the partial SCC
We integrate our econometric results with the DSCIM28,29 to develop 
projections and partial SCC estimates (Supplementary Information, 
section K.5). Calculations were conducted as described in refs. 28,29, 
over 24,378 geographically granular regions, 33 climate models and 
1,920 Monte Carlo draws of statistical uncertainty per crop. Follow-
ing ref. 29, we project the impacts of climate change net of adapta-
tion and its costs, relative to a counterfactual in which incomes grow 
but the climate is held fixed. Projections in percentage terms rep-
resent weighted averages of log yield estimates, converted to per-
centages. Crop impacts are aggregated over space using cropped 
area weights (Supplementary Information, section A), over climate 
models using surrogate model mixed ensemble61 weights (Supple-
mentary Table 9) and over crops using calorie weights90. Yield gains 
from CO2 fertilization are difficult to empirically quantify91–94 but 
we adjust our projections to incorporate CO2 fertilization using pre-
vious estimates9. Yield projections are robust to restricting future 
weather projections to be bound within the support of the historical 
data (Supplementary Table 12 and Supplementary Fig. 12). See Sup-
plementary Information, section G for full details of the projection  
methodology.

To calculate a partial SCC, we must value climate-induced changes  
in yields for both producers and consumers (Supplementary Figs. 19 
and 21). Our approach to this valuation follows ref. 95 and models 
consumers and producers of calories with constant elasticity of 
demand and supply, drawing elasticities from the literature95–97. We 
allow for frictionless crop trade within country but do not allow for 
trade between countries. We test sensitivity to this assumption by 
allowing frictionless trade between countries within continents and 
throughout the globe. We consider the potential impacts of crop 
switching, shifting of cropped areas and international trade by draw-
ing on the previous model-based literature75,98–100. In calculating the 
SCC, we follow ref. 28 to calculate results for constant discount rates 
(2%, 2.5%, 3%, 5%) and refs. 28,47 for Ramsey discounting (ρ = 0, η = 2). 

See Supplementary Information, section K, for full details of the valu-
ation methodology.

Methodological challenges
A challenge to this analysis is the limited way in which future resource 
access has been projected105, that is, relying on standardized scenarios 
contained in the SSPs65. Numerous types of resources probably influ-
ence how staple crops are managed. However, we restricted our analysis 
to consider only the mediating effects of income and irrigation. We 
treat income as a proxy measure for access to resources associated 
with economic development, such as fertilizer or extension services. 
These variables are intentionally omitted from regression models so 
that their influence will be captured by the income variable, allowing 
them to be represented in standard socioeconomic projections for 
which income is projected and available to us, but these other variables 
are not65. Mediating effects of irrigation are accounted for explicitly 
because they are influential and irrigation presence is dependent on 
groundwater geology, local topography and surface water flows, which 
are not well captured by income nor climate measures. An important 
area for future work is to develop projections of irrigation for use in 
crop yield projections.

Another challenge is that our measures of climate used to estimate 
adaptation are cross-sectional; thus, correlations between climate 
and omitted variables that determine the shape of the yield–weather 
response could potentially bias our estimates of adaptation. If such 
correlations exist, they might be regional in nature or otherwise only 
affect limited subsamples of our data. As a partial test of this possibil-
ity, we examine non-parametric estimates of the association between 
climate and temperature sensitivity and find that the associations we 
rely on are systematic throughout the data (Supplementary Fig. 3). 
This suggests that any unknown omitted variable would have to be 
consistently correlated with climate throughout our sample to influ-
ence our analysis.

We are able to account for some, but not all, potential shifts in crop 
growing seasons under future climate change. Our parameterization 
of adaptation implicitly captures effects of shifting the harvest date 
earlier in the growing season (for example, to avoid late-season heat 
exposure; see Supplementary Information, section B). However, we 
cannot capture the effects of planting dates that may shift to a period 
before the start of our growing season windows nor can we capture 
crop switching in our yield models (although we do capture it in the 
valuation of impacts; see Supplementary Information, section K). We 
note that such shifts may not depend only on temperatures but also on 
rainfall quantity and timing, which are not yet well modelled by exist-
ing GCMs72–74. These are forms of adaptation that some process-based 
models explicitly include7–9,18,106–108. Furthermore, unlike process-based 
models, our reduced-form approach by design does not capture the 
agronomic mechanisms by which climatic changes influence future 
yields. Such mechanistic insights can be used to guide crop research 
in expectation of future climate stresses41–44, highlighting an impor-
tant trade-off in the two methodological approaches (Supplementary 
Information, section B.1).

For precipitation effects, we do not project some extreme precipita-
tion effects because these precipitation extremes are not well captured 
by the existing suite of GCMs72–74. We highlight this as an area of need 
for future research from the climate modelling community, with poten-
tially important implications for our further understanding of climate 
change impacts to global food security.

Also, we note that our valuation of agricultural damages from climate 
change and the partial SCC only accounts for the crops in our sample, 
which account for a large share of global calories but a smaller share 
of total agricultural revenues. The present analysis does not include 
effects of climate change on other sources of agricultural revenue, such 
as livestock, citruses and other specialty crops. We look to future work 
to incorporate these output categories.



Data availability
Replication data (including historical yield and weather data) and code 
for the main paper figures and table are available on our Zenodo reposi-
tory at https://zenodo.org/records/14511340 (ref. 110). Instructions 
for downloading and running the replication code are provided on 
the repository website.
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Extended Data Fig. 1 | Structured crop yield model selection for weather 
and mediating variables. For each staple crop, cross-validation is used to first 
select key weather variables that influence yields (rows) and then applied to 
select mediating variables that capture adaptation or resource access (columns). 
Each selected mediating variable interacts with each selected weather variable. 
All observations are residualized before model selection, to remove cross- 
sectional and time series confounders. All candidates models are tested for 
each crop; a and b illustrate the process only for maize. a, First step: cross- 
validation is used to select weather variables that influence maize (see Extended 
Data Figs. 2 and 3 for all crops). Top panel (blue) shows the unconditional 
distribution of OOS root-mean-squared error (RMSE) for all candidate models. 
Subsequent rows show pairs of conditional distributions that partition  
the sample. Green distributions depict model performance for all model 
permutations that include the indicated weather variable; grey distributions 
represent all model permutations that exclude the weather variable. Vertical 
lines indicate average values for each distribution. Strongly non-overlapping 
distributions indicate that models including the weather variable systematically 

tend to outperform those that exclude it. Fully overlapping distributions 
indicate that the indicated weather variable used to stratify models does not 
improve model fit. Weather terms with black stars were retained in the maize 
model. b, Second step: using cross-validation to select mediating variables that 
capture adaptation to climate (for example, average temperature) or resource 
access (for example, GDP per capita). Candidate mediating variables are all 
interacted with weather variables from a. Sub-panels depict the mediating 
influence of the these factors (columns) on the response to weather variables 
(rows). Grey panels indicate pairs of variables that are not selected for the  
final model. Colours indicate a weather response that is empirically recovered 
for a lower (blue) or upper (red) tercile, although actual model specifications 
are continuous interactions. All coefficients and interactions are estimated 
simultaneously from a single joint model. Standard errors robust88 to 
autocorrelation over time within first-level administrative units (for example, 
states) and across all units within country–year. c, Similar to b but indicating 
weather-mediating variable pairs selected in the final model (white squares)  
for each crop.
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Extended Data Fig. 2 | Cross-validation for selection of weather variables, 
testing more than 8,000 models across all six crops. The top row shows  
the kernel density of model OOS root-mean-squared error values for each  
crop; subsequent rows show conditional densities for each weather term.  
Pink represents all model permutations including the given weather term;  

grey represents all model permutations excluding the given term. Black bars 
indicate the average fit difference from including the term and red stars indicate 
significance (P < 0.05, t-test). Weather terms with black stars were carried 
forward to the next cross-validation procedure. The bottom four rows represent 
weather terms that cannot be reliably projected by existing climate models72–74.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Interaction terms resulting from the second cross-
validation step. Empirically estimated temperature and precipitation response 
surfaces, by crop and by adaptation parameter. Columns are crops, rows 
are adaptation parameters (covariates). Yellow: all covariates evaluated at 
the sample mean; blue: covariate of interest evaluated at its lower tercile; 

red: covariate of interest evaluated at its upper tercile. Note that the top panel 
includes an extra column for rice (tmin). Also note that cassava does not include 
irrigation in the model, thus no irrigation interaction effects are plotted for  
this crop. Standard errors robust88 to correlated shocks within state over 
space and time and within country–year. See Extended Data Fig. 4 for wheat.



Extended Data Fig. 4 | As Extended Data Fig. 3 but for wheat: interaction 
terms resulting from the second cross-validation step. Empirically estimated 
temperature and precipitation response surface for wheat, by adaptation 
parameter. Columns are seasons, rows are adaptation parameters (covariates). 

Yellow: all covariates evaluated at the sample mean; blue: covariate of interest 
evaluated at its lower tercile; red: covariate of interest evaluated at its upper 
tercile. Standard errors robust88 to correlated shocks within state over space 
and time and within country–year.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Observed versus predicted yields across crops. Crop 
yields observed in our data (‘Observed’) versus those predicted by our model 
when dropping country–year fixed effects from estimation (‘Fitted’). The dotted 
red line is the y = x line; perfect fitted values would lie on this line. The distribution 
of fitted values around this line indicates that our modelled yields are, on average, 

unbiased. Fitted yields in levels converted from logs accounting for the non-
zero expectation of the log error term. Data winsorized at the 99th percentile 
for visual clarity. Horizontal banding in some plots associated with known data 
issues in some countries.
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Extended Data Fig. 6 | Local time series of observed versus predicted yields. 
Comparison of modelled versus observed yields for many regions of the world. 
Red dots are observed values, blue dots are modelled values. Rows are crops. 
Column 1 plots data for the region with average yield at the 95th percentile  
of yields in the data (by crop), column 2 the 95th percentile of cropped area, 
column 3 the 5th percentile of yields and column 4 the 5th percentile of 

cropped area. Yields originally modelled in logs and converted to levels 
accounting for the non-zero expectation of the exponentiated error term.  
95% confidence intervals are asymmetric owing to conversion to levels and 
top-coded in some cases for visual clarity. The y-axis scale is consistent within 
crop (rows).
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Extended Data Fig. 7 | Projected climate impacts under income growth and 
climate adaptation, including adaptation costs, for the end-of-century 
decade 2089–2098. a, Maize. b, Soybean. c, Rice. d, Wheat. e, Cassava.  
f, Sorghum. Wheat is a combination of winter wheat and spring wheat 

projections, weighted by their area share in each region. Incomes taken from 
SSP3 as modelled by the OECD, emissions from the RCP 4.5 warming scenario. 
Results for RCP 8.5 are shown in Fig. 2.
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Extended Data Table 1 | Global model fits for AgMIP GGCMs 
and this study

Column 2 reports AgMIP global gridded crop model (GGCM) ensemble R2 values from ref. 109 
for the global average ensemble fit for the four crops modelled. Columns 3–5 report the  
corresponding global R2 values from this study and root-mean-squared error (RMSE) in  
parentheses, with global aggregations following the approach of ref. 109. Column 3 reports 
fits from the full statistical model of this study, column 4 drops country–year fixed effects 
from the model and column 5 drops country–year fixed effects and does not remove the 
5-year moving average. All specifications in columns 3–5 include panel unit fixed effects and 
state/province quadratic trends. Details described in the surrounding text. Note that ref. 109 
reports correlation coefficients, which we square to obtain R2 values to describe the fraction of 
variance in yields predicted by each model; correlation coefficients in ref. 109 were all weakly 
positive. *Global R2 value for the GGCM ensemble for rice from ref. 109 estimated as described 
in the surrounding text.



Extended Data Table 2 | National model fits for AgMIP 
GGCMs and this study

Column 2 reports AgMIP global gridded crop model (GGCM) ensemble R2 values from ref. 109 
(Fig. 2) for country average ensemble fits for the four crops modelled in that study. Columns 
3–5 report the corresponding country R2 values from this study, with national aggregations 
following the approach of ref. 109. Column 3 reports fits from the full statistical model of 
this study, column 4 drops country–year fixed effects from the model and column 5 drops 
country–year fixed effects and does not remove the 5-year moving average. All specifications 
in columns 3–5 include panel unit fixed effects and state/province quadratic trends. Details 
described in the surrounding text. Note that ref. 109 Fig. 2 reports correlation coefficient 
ranges; we take the range midpoint and square it to obtain R2 values to describe the fraction of 
variance in yields predicted by each model. Correlation coefficients in ref. 109 were all weakly 
positive. All countries with common overlap in both this study and ref. 109 are reported here.
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Extended Data Table 3 | The partial social cost of carbon 
for four different constant discount rates, plus Ramsey 
discounting, and two emissions trajectories, all for incomes 
under the SSP3 scenario

Interquartile ranges of the partial SCC are calculated over both economic and climate 
uncertainty and shown in square brackets; 95% confidence intervals over this uncertainty 
are shown in parentheses. Markets are defined as countries (small countries are grouped 
with their largest agricultural trading partners), supply and demand elasticities are 0.1 and 
−0.04, staple expenditures are top-coded at ag_share_GDP + 10%, CO2 fertilization is included. 
‘Varietal switching’ holds each country’s baseline calorie mix between crops, as well as where 
crops are grown fixed into the future, and assumes trade is frictionless within market and zero 
between markets. ‘+ Flexible production and trade’ includes varietal switching but also allows 
for international trade and also allows producers to switch crops and change the locations 
in which crops are grown. Ramsey discounting has a pure rate of time preference of 0 and 
elasticity of intertemporal substitution of 2 (ref. 47). Ramsey partial SCCs reported are for  
the IIASA future income trajectory; corresponding values for the OECD trajectory are very 
similar (Methods). Variations in key parameters are shown in Supplementary Table 13.  
See Supplementary Information Section K for details.
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