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Cell-type-specific prediction of 3D chromatin
organization enables high-throughputin
silicogeneticscreening
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Investigating how chromatin organization determines cell-type-specific
gene expression remains challenging. Experimental methods for measuring
three-dimensional chromatin organization, such as Hi-C, are costly and
have technical limitations, restricting their broad application particularly

in high-throughput genetic perturbations. We present C.Origami, a
multimodal deep neural network that performs de novo prediction

of cell-type-specific chromatin organization using DNA sequence and

two cell-type-specific genomic features—CTCF binding and chromatin
accessibility. C.Origami enables in silico experiments to examine the impact
of genetic changes on chromatininteractions. We further developed anin
silico genetic screening approach to assess how individual DNA elements
may contribute to chromatin organization and to identify putative
cell-type-specific trans-acting regulators that collectively determine
chromatin architecture. Applying this approach to leukemia cells and
normal T cells, we demonstrate that cell-type-specificin silico genetic
screening, enabled by C.Origami, can be used to systematically discover
novel chromatin regulation circuits in both normal and disease-related
biological systems.

In mammalian cells, interphase chromosomes are hierarchically interactions to regulate cell-type-specific gene expression*>%,

organized into large compartments containing topologically associat- While the general scaffold of chromatin organization is well
ing domains (TADs) at the sub-megabase scale'®>. Thegenome organi-  described, revealing the mechanisms underlying cell-type-specific
zation is cell type-specific and largely determined by featuresin DNA  chromatinstructure and the implications to gene expression remains
sequence and trans-acting factors that regulate chromatininterac-  challenging'™*. Chromatin conformation capture technologies,
tions'”. Chromatin looping within TADs restricts enhancer-promoter  such as Hi-C, are typically time- and resource-consuming’, limiting
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Fig.1|De novo, cell-type-specific prediction of 3D chromatin organization
with C.Origami. a, A schematic of C.Origami architecture. b, C.Origami
integrates DNA sequence, CTCF ChIP-seq and ATAC-seq signals as input features
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their contribution to understanding how chromatin organization
determines cell-type-specific gene expression.

Owing to its ability to model complex interactions, deep learn-
ing has emerged as a powerful approach for studying genomic fea-
tures and reducing the need for experimental analyses of chromatin
organization>'*, DNA sequence encodes motifs that act with chromatin
binding proteins to define genome folding, and thus can be used to
make approximate prediction of chromatin organization”*°. However,
due to the lack of genomic features which govern cell-type-specific
interactions, these approaches are unable to make accurate de novo
predictions in different cell types”2°. Conversely, methods that rely
only on chromatin profiles lacking motif features in DNA sequence
often require multiple epigenomic data to improve predictive
power? 2%, These limitations render the current methods unsuitable
for high-throughputinsilico investigation of cell-type-specific mecha-
nisms of chromatin organization.

We propose that an accurate de novo prediction of chromatin
folding requires a multimodal neural network incorporating both
DNA sequence and cell-type-specific genomic features. For practical-
ity, it should also use a minimal set of inputs without compromising
performance. Based on these principles, we developed C.Origami, a
deep neural network that synergistically integrates DNA sequence
features and two essential cell-type-specific genomic features: CTCF
binding and chromatin accessibility (Supplementary Fig.1). C.Origami
achieved accurate de novo prediction of cell-type-specific chromatin
organization inboth normal and rearranged genomes.

The accuracy of C.Origami enables in silico genetic perturba-
tion experiments that assess the impact of cis-elements on chroma-
tin interactions, and, moreover, allows systematic identification of
cell-type-specific mechanisms of genomic folding through in silico
genetic screening (ISGS). Applying ISGS to T cell acute lymphoblastic
leukemia (T-ALL) cellsand normal T cells, we identified T-ALL-specific

regulation of chromatin organization through cis-elements and
cell-type-specific trans-regulators. Taken together, these results dem-
onstrate that C.Origami canserve as a high-throughputinsilico genetic
perturbation platform for future studies of three-dimensional (3D)
chromatin organization.

Results

C.Origami predicts cell-type-specific 3D chromatin
organization

To achieve accurate and cell-type-specific prediction of genomic
features, we first developed Origami, a generic multimodal archi-
tecture to integrate both nucleotide-level DNA sequence feature
and cell-type-specific genomic signal (Fig. 1a). Origami adopts an
encoder-decoder design with two encoders, a transformer module
and a task-specific decoder (Fig. 1a and Methods). The two encoders
are one-dimensional (1D) convolutional neural networks that con-
dense DNA sequence and genomic features. Condensed sequence
and genomic feature representations are subsequently concatenated
and processed by a transformer module, which enables long-range
information exchange?. The decoder transforms the processed fea-
tures to make task-specific predictions. In this study, we deployed a
two-dimensional (2D) convolutional neural network with alarge recep-
tive field asadecoder and named this variant model Chromatin Origami
(C.Origami) for predicting chromatin organization as captured by Hi-C
contact matrices (Fig. 1a and Methods).

C.Origami predicts chromatin organization within a2-megabase
(2-Mb) window to cover typical TADs, and outputs a Hi-C contact matrix
withabin size of 8,192 base pairs (bp) (Fig. 1b and Methods)". As poten-
tial inputs to the model, we considered genomic features that are
cell-type-specific and widely available, and as few as possible without
compromising model performance. CTCF binding is one of the most
critical determinants of genome organization into TADs? In addition,
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Fig. 2| C.Origami accurately predicts 3D chromatin organization.

a, Validation loss of models trained from different combinations of input features.
Lower validation loss indicates better model performance. b,c, Experimental

(b) and C.Origami-predicted (c) Hi-C matrices of IMR-90 on training (chr2),
validation (chr10) and test (chr15) chromosomes. d, Input CTCF-binding

and chromatin accessibility profiles. e, Insulation scores calculated from
experimental (solid line) and C.Origami-predicted (dotted line) Hi-C matrices.
Pearson correlation coefficients between prediction and target insulation
scores are presented. f, Insulation score correlation between predicted and

experimental Hi-C matrices across all windows in both validation and test
chromosomes with Pearson (r) and Spearman (p) correlation coefficients.
g, Chromosome-wide distance-stratified interaction correlation (Pearson)
between prediction and experimental data. h, Comparison of model
performance across Akita, DeepC, Orca and C.Origami using genome-wide
insulation score correlation between prediction and experimental data
from IMR-90 cells. Error bars in the violin plots indicate minimum, mean and
maximum values. y, average insulation correlation.

previous studies revealed that at accessible chromatin regions, inter-
actions between enhancers and promoters contribute substantially to
cell-type-specific chromatin organization®°, Based on these insights,
we considered CTCF chromatin immunoprecipitation followed by
sequencing (ChIP-seq), assay for transposase-accessible chromatin
using sequencing (ATAC-seq) and DNA sequence features as potential
inputs that caninformatively contribute to predicting cell-type-specific
3D chromatin organization (Fig. 1b).

To examine model performance with different combinations
of inputs, we trained the model using all possible combinations of
the three potential input features using data from IMR-90 cells
(Fig. 2a)", and randomly split the chromosomes into training,
validation (chromosome 10) and test sets (chromosome 15) (Fig. 1b).
We found that C.Origami trained with DNA sequence, CTCF

ChIP-seq and ATAC-seq achieved the best performance, accurately
predicting contact matrices emphasizing both topological
domains and chromatin loops (Fig. 2a-d and Methods). Removing
or replacing any of the three input features during model training
led to compromised performance (Fig. 2a, Extended Data Fig. 1 and
Supplementary Fig. 2). Ablating any of the input features during model
inference led to inferior prediction (Supplementary Fig. 3). Notably,
adding DNA sequence to the genomic features during model training
always led to substantially improved performance (Fig. 2a). Last, we
trained the model using sparse input genomic features (ChIP-seq/
ATAC-seq peaks) and found that it underperformed compared with
densefeatures, indicating C.Origami’s capability of leveraging nuanced
genomic features beyond peak positions and intensities (Supplemen-
tary Fig. 4).
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Fig. 3| Cell-type-specific de novo prediction of chromatin structure.

a,b, Experimental (a) and C.Origami-predicted (b) Hi-C matrices from IMR-90
(left) and GM12878 (middle), and their differences (right). Arrowheads highlight
differential chromatin interactions between the two cell types. ¢, CTCF-binding
and ATAC-seq profiles. d, Insulation scores calculated from experimental Hi-C
matrices (solid line) and C.Origami-predicted Hi-C matrices (dotted line).
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and experimental Hi-C matrices across cell types. f-h, Genome-wide evaluation
of sequence-based models and C.Origami using de novo prediction results
from GM12878 cells. Presented metrics include insulation score correlation

(f), observed versus expected matrix correlation (g) and distance-stratified
correlation (h). Error bars in violin plots of fand g indicate minimum, mean

and maximum values within each group. Corr, correlation; obs/exp, observed/
expected.

Genome-wide evaluation of C.Origami performance

To systematically assess C.Origami’s performance, we first calcu-
lated insulation scores to evaluate chromatin organization similar-
ity between experimental and predicted Hi-C matrices (Methods
and Fig. 2e). C.Origami achieved on average 0.95 and 0.94 insulation
score correlation (Pearson) on validation and test chromosomes,
respectively (Fig. 2fand Supplementary Fig. 5). C.Origami-predicted
contact matrices also follow the same exponential decay pattern
observed in experimental data (Extended Data Fig. 2a). In addition,
we found that predicted contact matrices were stable across neigh-
boring regions, enabling constructions of chromosome-wide pre-
dicted Hi-C matrices (Extended Data Fig. 2b-d and Methods). Based
onthe chromosome-wide predicted contact matrices, we calculated
adistance-stratified correlation against experimental Hi-C (Meth-
ods). C.Origami achieved correlation above 0.8 within a 1-Mb region
(Fig. 2g and Supplementary Fig. 6).

Loop calling identifies point-to-point interactions from Hi-C
matrix. To further evaluate C.Origami’s performance, we performed
loop calling onboth prediction and experimental Hi-Cin IMR-90 cells
(Methods). We found that C.Origami achieved high performance in
loop detection, with anarea under thereceiver operating characteristic
curve (AUROC) of 0.92 for the top 5,000 predicted loops (Extended
Data Fig. 3). We categorized these loops into CTCF-CTCF loops, pro-
moter-enhancer loopsand promoter—-promoter loops. We found that,
ineach category, C.Origami-predicted matrices can be applied to call
chromatin loops comparably to the performance of experimental
results (Supplementary Fig. 7).

Last, we compared C.Origami against three recent sequence-based
approaches: Akita', DeepC" and Orca®. After preprocessing and
standardizing the results from different methods (Methods and Sup-
plementary Figs. 8-10), we used four metrics to evaluate the perfor-
mance of each model: (1) insulation score correlation, (2) observed/
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expected Hi-C map correlation, (3) mean squared error (MSE) and (4)
distance-stratified correlation (Methods). We found that C.Origami
outperforms previous methods under all metrics (Fig. 2h and Sup-
plementary Fig.11).

De novo prediction of cell-type-specific chromatin
organization

To assess C.Origami’s performancein acell-type-specific de novo pre-
diction task, we applied the model to a new cell type, GM12878, using
its corresponding CTCF ChIP-seq and ATAC-seq profiles. GM12878
is alymphoblastoid cell line with different chromatin organization
from IMR-90 (ref. 13), represented by a locus on chromosome 2
(Fig.3a). Comparing predictionsinboth IMR-90 and GM12878 cells at
the samelocus, we found that C.Origamitransferred successfully tothe
new cell type and accurately predicted cell-type-specific chromatin
interactions in GM12878 (Fig. 3a-c). Insulation scores calculated from
predicted and experimental datain GM12878 are also highly correlated
(Fig.3d). We further expanded de novo prediction to two more celllines,
embryonic stem cells (HI-hESCs) and erythroleukemia K562 cells, and
achieved the same accurate predictions, demonstrating the robust-
ness of C.Origami and its practical potential for broader applications
(Extended DataFig. 4).

To systematically evaluate the performance of C.Origami in
de novo prediction, we carried out a genome-wide analysis. Since
most TAD boundaries are conserved across cell types”, we first iden-
tified subsets of genomic loci with differential chromatin structures
astesting regions, representing around 15% of the genome (Extended
Data Fig. 5a and Methods). We performed this filtering process for
each pair of cell types in the confusion matrix followed by evaluating
model performance in these regions. In line with observations from
the single-locus results (Fig. 3a-d), we found that predictions using
input features from one cell type have the highest correlation coef-
ficients with the experimental Hi-C data of the same cell type (Fig. 3e
and Extended Data Fig. 5b,c, scores at the diagonal line). As a control,
we performed a similar analysis using structurally conserved genomic
regions and found universally high correlations across all cell types as
expected (Extended Data Fig. 5d-f).

As an orthogonal validation, we performed loop calling on
IMR-90 and GM12878 prediction and experimental Hi-C to evaluate
C.Origami’s ability to detect cell-type-specific chromatin loops. We
found that C.Origami can predict notable (log, fold change (fc) >1)
IMR-90-specific and GM12878-specific loops with 0.88 and 0.87
AUROC, respectively (Supplementary Fig.12). Calling cell-type-specific
loops under different categories also achieved similar performance
(Supplementary Fig.13).

Since DNA sequence-based models are unable to general-
ize to unseen cell types, we expect C.Origami to have an advan-
tage in cell-type-specific de novo prediction. This performance
gap can be observed by comparing de novo predictions gener-
ated by sequence-based models and by C.Origami (Extended Data
Fig. 6). Comparing genome-wide de novo predictions in regions with
cell-type-specific chromatin organization (Methods), we found that
C.Origami outperformed sequence-based models by a large margin
under all metrics (Fig. 3f~h and Extended Data Fig. 7).

The mouse genome differs from human in its genomic compo-
nents but the two share similar mechanisms in3D chromatin organiza-
tion™***', We sought to test whether C.Origami could perform de novo
prediction across species. We found that the model trained with data
from human IMR-90 cells predicted mouse chromatin organization,
indicating that C.Origami can transfer its learned genome organization
principles to predictions across conserved species (Supplementary
Fig. 14). Notwithstanding its good performance, the performance of
C.Origami prediction in mouse can be further improved by training
amodel using mouse data to account for species-specific genomic
features.

Last, we tested whether C.Origamiis able to predict the chromatin
organization changes upon removal of key trans-acting regulators,
suchas CTCF. A previous study found that acute degradation of CTCF
protein led to the dissolving of TADs in mouse embryonic stem cells,
and subsequent restoration of CTCF reestablished TAD structures®.
We simulated such experiments by predicting chromatin organiza-
tion in pre-depletion, CTCF-depleted and CTCF-restored conditions
(Methods). We found that C.Origamiaccurately predicted the TAD loss
and reformation upon CTCF depletion and restoration, respectively
(Supplementary Fig.15).

C.Origami enables cell-type-specific in silico genetic
experiments

Chromosomal translocations and other structural variants generate
recombinant DNA sequences, subsequently inducing chromatininter-
actions which may be critical in tumorigenesis and progression®*.
However, the allelic effect and high heterogeneity of structural vari-
ations make it challenging to study their custom chromatin organi-
zations. As an example, CUTLLI, a T-ALL cell line, incorporated a
heterozygous t(7;9) translocation® (Fig. 4a). The translocation intro-
ducesaneo-TAD structure with astripe which can be observed in experi-
mental Hi-C data (Fig. 4b and Methods)*.

To examine the performance of C.Origami in discovering new
chromatin interactions in rearranged cancer genomes, we predicted
Hi-C contact matrices at the translocation locus in CUTTLI (Fig. 4c-e
and Methods). We found that C.Origami predictionaccurately captured
theneo-TAD structure spanningt(7;9) translocation (Fig. 4e,f). Specifi-
cally, we found a stripe extending from translocated chromosome 9
to chromosome 7, indicating a regulation of the affected oncogene
(NOTCHI) within the neo-TAD (Fig. 4b,e)***. We additionally performed
the same in silico experiments around three experimentally verified
translocation breakpointsin K562 cells and obtained similarly accurate
results”, demonstrating C.Origami’s potential in cancer genomics
studies (Extended Data Fig. 8).

Moreover, we expect that the high performance of C.Origami can
enable cell-type-specificinsilico genetic perturbation experiments as
an efficient approach for studying chromatininteraction mechanisms.
Asanexample, verifying the function of a specific CTCF-binding event
in chromatin organization requires complicated experimental stud-
ies®®*, Using C.Origami, deletions of CTCF-binding and subsequent
prediction of Hi-C contact matrix can be performed in silico within
seconds. We found thatinsilico deletion at TAD boundaries with CTCF
binding led to domain-merging events between the originally insulated
adjacent TADs (Supplementary Fig. 16).

Our previous study showed that disrupting a CTCF-binding site
near the MYClocus reduced chromatin looping in human naive CD4*
Tcells, resultinginreduced chromatin insulation®. Applying C.Origami
predictiontothe MYClocusinT cells, we found astripein the predicted
Hi-C matrix at the CTCF-binding site (Fig. 4g, arrowhead). A 500-bp
in silico removal of the CTCF-binding region attenuated the stripe
(Fig. 4h), and reduced its looping with MYC (Fig. 4i, virtual 4C), con-
sistent with previous experimental data (Supplementary Fig. 7E in
Kloetgen et al.)*. Similarly, the DXZ4 locus is critical for determining
chromosomal organizationin X chromosome inactivation*’. We found
that deleting the DXZ4locus led to substantial loss of insulation at the
flanking regions in female cell lines only (IMR-90, GM12878) and notin
male celllines (CUTLL1and Jurkat, Supplementary Fig.17), consistent
with experimental knock-out results*.

ISGS of putative cis-regulatory elements

Identifying cis-regulatory elements required for chromatin organiza-
tion is critical for 3D genome studies*’. We propose using C.Origami
to systematically and quantitatively assess how individual DNA ele-
ments contribute to the 3D chromatin organization (Fig. 5). Building on
C.Origami’s model architecture, we first developed two fast approaches
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Fig. 4| C.Origami enables prediction of 3D chromatin organization upon
insilico genetic perturbations. a, Chromosomal translocation t(7;9) in
CUTLLI1 cells®. b, Experimental Hi-C datamapped to a custom reference
chromosome with t(7;9) translocation®. ¢,d, C.Origami prediction of chromatin
organizationinintact chromosome 7 (c) and chromosome 9 (d), each centered
atthe translocation sitesin CUTLL1cells. e, C.Origami-predicted Hi-C matrix.
The dotted boxes highlight the neo-TAD at the translocation locus. Black and
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foridentifying critical cis-elements: agradient-based saliency method
named Gradient-weighted Regional Activation Mapping (GRAM), and
anattention-based score derived from the transformer module (Meth-
ods). Both metrics captured regions that determine genome structure,
such as TAD boundaries (Fig. 5¢). In particular, GRAM can be positioned
atthebottom layer to obtain attribution maps at nucleotide-level reso-
lution (Extended Data Fig. 9a). However, itis not stable to window shifts
and random seed changes (Extended Data Fig. 9c-e). In contrast, the
layer-specific attention score averaged across all channels of atten-
tion heads is more robust (Extended Data Fig. 9b,d). Visualization of
allattention weights revealed that different attention heads attend to
specific regions (Supplementary Fig. 18). While both approaches can
quickly estimate the contribution of cis-elements, neither of them
quantitatively assessed how much a specific DNA element influences
local chromatin organization.

Inspired by the mechanism of reverse genetic screening, we
developed anISGS framework for identifying cis-regulatory elements
required for chromatin organization. Different from qualitative GRAM
and attention scores, ISGS quantifies the difference in C.Origami
predictions upon systematic perturbations (deletions) of input ele-
ments (Methods). As an example, we first carried out ISGS in a 2-Mb
window (chr2: 0-2.1 Mb) by sequentially perturbing 256 loci of ~8-kb
lengths, followed by assessing Hi-C contact map changes through
C.Origami prediction. We quantify the impact of a perturbation via
ametric termed impact score, calculated as the mean absolute dif-
ference between predictions before and after perturbation (Fig. 5a,b
and Methods). We found that perturbations at TAD boundaries with
enriched CTCF ChIP-seqand ATAC-seq signals had higherimpact on
chromatin folding, consistent with the GRAM and attention scores
(Fig.50).

To systematically identify the impactful cis-elements that are
required for 3D chromatin organization, we conducted agenome-wide
1-kb-resolution ISGS (Fig. 5d). By examining the local impact scores,
we isolated a set of impactful cis-elements representing ~1% of the
screened genome (Methods). According to the presence or absence
of CTCF-binding and ATAC-seq signals, these impactful cis-elements
were classified into four groups (Fig. 5e). More than half of theimpact-
ful cis-elements arein open chromatin and cobound by CTCF (Group1,
Fig. 5e). Plotting CTCF-binding and ATAC-seq signals across
cis-elementsinthree quantiles, we found that CTCF-bound cis-elements
intensity stays overall the same across Group 1and Group 2 quantiles,
while the ATAC-seq signals are negatively correlated with the impact
scores (Fig. 5f, top). Meanwhile, Group 1 and Group 2 elements are
enriched with RAD21and SMC3 binding signals, indicating chromatin
organization through loop extrusion (Fig. 5f). Consistently, Group 1and
Group 2 elements enriched more at TAD boundaries and enhancer-
promoter regions (Fig. 5g). Notably, we identified a substantial frac-
tion of impactful cis-elements enriched in open chromatin, but not
bound by CTCF (Group 3). Group 3 elements show a positive correlation
between their impact scores and ATAC-seq signal intensity, and are
highly enriched in promoter and enhancer regions, suggesting the
presence of enhancer-promoter or promoter-promoter interactions
(Fig. 5f)*°. We also found a small set of elements that are not related
to CTCF or ATAC-seq signals (Group 4, Fig. Se-g), possibly indicating
alternative mechanisms which shape local chromatin organization.

We sought to test whether additional factors could be enriched
in the impactful elements for chromatin organization. Recently,
Myc-associated zinc-finger protein (MAZ) has been shown to colocal-
ize with CTCF, acting as a potential architectural protein to organize
chromatinstructure***, To test this observation, we performed a simi-
lar enrichment analysis of MAZ ChIP-seq profile across the four groups
ofimpactful elements (Fig. 5f). We found that MAZ is enriched in open
chromatinregions, regardless of CTCF binding (Group1and 3, Fig. 5e,f).
This observationindicates that MAZ may organize chromatininterac-
tionsinactive enhancer-promoter regionsindependently from CTCF.

ISGS identifies T-ALL-specific chromatin organization

We then envisioned that the ISGS framework could empower
high-throughput discovery of disease-specific chromatin organization.
To systematically identify T-ALL-specific cis-regulatory elements, we
performedISGS and calculated genome-wide impact scoresin CUTLLI,
Jurkat and normal naive T cells (Extended Data Fig. 10a). We hypoth-
esized that the dysregulation of local cis-regulatory elements around
chromatin remodeling factors can lead to their abnormal expression
in cancer*®*. To connect the ISGS-identified impactful cis-elements
with chromatin remodeling genesin T-ALL, we also performed a pooled
CRISPR knock-out screen targeting chromatin remodeling factors in
CUTLL1andJurkatcells. Thisscreenidentified aset of genes, including
CHD4, PHF5A, BRD4 and KATS, as top hits relevant for T-ALL cell prolif-
eration (Fig. 6a,b). By associating ISGS-identified impactful elements
with these four genes (Extended DataFig.10b-e), we found thataninsu-
lator element upstream of CHD4, henceforth termed CHD4-insu, has a
highimpactscoreinTcellsbutlowin T-ALL (Fig. 6¢, black arrowhead).

CHD4 is the helicase component of NuRD complex, which func-
tionsto deacetylate H3K27ac (ref. 48). Perturbation of CHD4 causes cell
cycle arrest at GO in childhood acute myeloid leukemia cells, indicat-
ing therapeutic potential*. We observed aloss of CTCF binding at the
CHD4-insu element in T-ALL cells (Fig. 6¢). Consistently, in silico dele-
tion of CHD4-insu followed by C.Origami predictionin T cellsled to a
gainof chromatininteractions between the flanking regions compared
with T-ALL cells (Fig. 6d).

To test the hypothesis that loss of CTCF binding at CHD4-insu
leads to insulation loss in T-ALL, we compared the experimental Hi-C
contact matrix and its derived virtual 4C signalin CUTLL1and T cells.
We found that, compared with T cells, CUTLL1 cells have stronger chro-
matininteractions between the flanking regions of CHD4-insu, indicat-
ing increased interactions between CHD4 promoter and upstream
cis-regulatory elements in T-ALL cells (Fig. 6d, virtual 4C tracks, and
Fig. 6e). RNA sequencing experiments showed that CHD4 expression
issignificantly upregulatedin CUTLL1 cellsand T-ALL patient samples
(Fig. 6f). These results indicate that loss of insulation at CHD4-insu in
T-ALL cells may have increased CHD4 expression through establish-
ing new chromatininteractions between CHD4-insu flanking regions,
consequently promoting leukemia cell proliferation.

Genome-wide ISGS uncovers trans-factors regulating
chromatin folding

We next aimed to leverage C.Origami-enabled ISGS to identify
cell-type-specific trans-acting regulators determining chromatin
organization. To do so, we first conducted 1-kb-resolution ISGS to
identify cell-type-specificimpactful elements. High-impact elements
werethenaggregated and tested for enrichmentin transcription factor
binding profiles from ReMap database (Methods)™®.

Applying this framework to the two T-ALL cell lines and normal
T cells, we identified acompendium of cell-type-specific transcription
factors contributing to genome organization (Fig. 6g and Supple-
mentary Fig. 19). Notably, our analysis consistently identified known
chromatin organization regulators, such as CTCF, RAD21 and SMC1/
SMC3, as top candidates across cell types (Fig. 6g). In addition, we
found differential sets of trans-acting regulators enriched in T cells
and T-ALL cell lines, respectively. Several known factors critical for
T cell function, such as RCOR1, SMAD3 and ZEB2, are enriched in the
T cell-specific group of trans-acting factors (Fig. 6g). Consistently,
CUTLL1andJurkatcellsenriched similar groups of factors, represented
by MAZ, BRD2 and NOTCHI (Fig. 6g).

Previously, we found that both CDK7 and NOTCHI1 regulate
enhancer-promoter interactions in T-ALL cells®*. Pharmacological
inhibition of NOTCH1 (+ySI) leads to H3K27ac alterations in a subset
of NOTCHI-associated chromatininteractions, while inhibiting CDK7
(+THZ1) leads to widespread H3K27ac changes®®. To test the hypothesis
that pharmacological inhibition of CDK7 leads to broader chromatin
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Fig. 6| C.Origami-based ISGS reveals cell-type-specific cis-elements and
trans-acting regulators of chromatin folding. a, Volcano plot of pooled CRISPR
screening results on chromatin remodeling genes in CUTLL1 (left) and Jurkat
(right) cell lines. The log,fc values indicate the normalized gRNA abundance

in Day 4 versus Day 20 posttransfection, reflecting cell proliferation rate upon
CRISPR targeting. b, Overlap between CRISPR screening-identified chromatin
remodeling genes from CUTLL1 andJurkat cells (a). c, Genomic tracks around
the CHD4locus (170 kb). Presented tracks include impact scores, CTCF ChIP-seq
and ATAC-seq profiles, and virtual 4C signal using CHD4 promoter as viewing
point (gray arrowhead). Black arrowhead indicates the T cell-specific CHD4-insu
element. d, C.Origami prediction of interaction matrices at CHD4 locus (top row)

and theinteraction changes (bottom row) uponinsilico deletion of CHD4-insu
across cell types. Black arrowhead points to the CHD4-insu element.

e, Experimental Hi-C matrices of CUTLL1and T cells at the CHD4 locus. f, Violin
plot of CHD4 expression in RNA sequencing. g, A heatmap of normalized
enrichment odds ratios of trans-acting regulators across cell types.
Representative factors are listed next to the major categories. h,i, Elbow plots of
ISGS-identified trans-acting regulators in CUTLL1 (h) and Jurkat (i) cells. CDK7
and NOTCH1 are highlighted in both plots.j,k, Volcano plots showing chromatin
organization changes of individual TADs upon pharmacological inhibition of
CDK7 (j) or NOTCH1 (k) in CUTLL1 cells. Each dot represents a TAD (n = 3,672).
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organization changes in T-ALL, we systematically assessed the rela-
tive contribution of trans-acting factors and found that CDK7 was
ranked among the top factors in regulating chromatin organization,
whereas the predicted contribution of NOTCH1 was ranked much lower
(Fig. 6h,i). In addition, we found that pharmacological inhibition of
CDK7indeed leads to more TADs with chromatin organization changes
than the effect from inhibiting NOTCH1 in CUTLLI cells (Fig. 6j,k).
Furthermore, ISGS-identified impactful elements are more enriched
inthe changed TADs compared with stable TADs upon CDK7 inhibition
(Supplementary Fig. 20).

Discussion

In this study, we developed a multimodal deep neural network archi-
tecture, C.Origami, thatincorporates both DNA sequence and genomic
features for de novo prediction of cell-type-specific genome organiza-
tion (Fig. 1). We found that DNA sequence information together with
CTCF-binding and ATAC-seq signals are sufficient for accurate de novo
prediction, comparable to high-quality Hi-C experiments (Figs.2 and 3).
C.Origami was able to learn the general rules governing chromatin
organization fromone cell type and extrapolate prediction to unseen
celltypes, including those from different mammalian species. The high
performance and minimal requirements oninput data make C.Origami
generally applicable for studies requiring de novo analysis of chromatin
organization without performing chromatin conformation capture
experiments (Fig. 4). Additionally, C.Origami can be useful in fields
such as cancer genomicsinvolving frequent genome rearrangements
and synthetic regulatory genomics with de novo regulatory circuit
construction®>**2,

With accurate prediction of chromatin organization, our model
enablesinsilicogenetic perturbation as atoolto study how cis-elements
determine 3D chromatin organization in a cell-type-specific manner.
C.Origami can simulate the changes in chromatin organizationuponin
silico genetic perturbation within seconds, providing a highly efficient
way toinfer potentially causal relationships. Expanding the throughput
of insilico genetic perturbations, the ISGS framework can be used for
identifying critical DNA elements determining 3D chromatin organi-
zation (Fig. 5). While multiple previous methods, such as Expecto®,
BPNet** and Enformer®, have been developed to identify functional
cis-regulatory elements, they do not identify elements related to
cell-type-specific chromatin interactions.

Exploiting the power of ISGS, we identified cell-type-specific
impactful cis-elements and trans-regulators between T-ALL cells and nor-
malT cells. We found aloss-of-insulation event upstream of CHD4 which
mightinduce new chromatininteractions between the CHD4 promoter
and upstream regulatory elements, correlating with changes in gene
expression levelsin T-ALL cells (Fig. 6). The discovery of a T-ALL-specific
CHD4 gene expression regulation hints at a potential anti-leukemia
target by perturbing the CHD4-insu element. Moreover, integrating
ISGS results with transcription factor binding databases, we compiled
the compendium of potential trans-acting regulators determining the
chromatinorganizationin acell-type-specific manner. As the numbers
of publicly available CTCF ChIP-seq and ATAC-seq datasets expand into
new cell types, we expect the model to be widely applicable in studies
of cell-type-specific chromatin structure and trans-acting regulators.
Application of insilico screening across normal and disease conditions
may lead to the identification of novel targets for therapeutics.

Byintegrating DNA sequence and cell-type-specific genomic pro-
files, C.Origami can predict complex genomic features and enable
in silico genetic screens. We expect that the underlying multimodal
architecture, Origami, is generalizable for applications across abroader
range of genomic features, such as epigenetic modifications and gene
expression. We envision future genomics studies to shift towards using
tools that leverage high-capacity machine learning models such as Ori-
gamito performinsilico experiments for discovering cell-type-specific
genomic regulation mechanisms.
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Methods

Hi-C data and processing

We used seven human and mouse Hi-C profiles in this study: IMR-90,
GM12878,H1-hESC, K562, CUTLLI, T cell, Mouse Patski (Supplementary
Table1). Allof the dataare available on GEO (www.ncbi.nlm.nih.gov/geo)
and/or the4D Nucleome Data Portal (https://data.4dnucleome.org). To
minimize biasin Hi-C data preprocessing, we obtained counts datainraw
fastq format. The reads from human cell lines were aligned to GRCh38
human reference genome and mouse cell lines were aligned to mm10
mouse genome. The alignments were filtered at 10-kb resolution and
iteratively corrected with HiC-bench®®. To ensure the compatibility of the
predictionresult with downstream analytical tools, we only used arevers-
ible naturallogtransformto process the Hi-C prediction targets. Predic-
tion from C.Origami with exponential transformation can be directly
used as Hi-C chromatin contact matrix datafor any downstream analysis.

CTCF ChIP-seq and ATAC-seq data

CTCF ChIP-seq and ATAC-seq data for most cell types are publicly
available online from GEO (www.ncbi.nlm.nih.gov/geo) and the
ENCODE data portal (www.encodeproject.org/). CUTLL1 ATAC-seq
was sequenced according to astandard method”. ATAC-seq libraries
were generated from 0.5 x 10° CUTLL1 cells. Libraries were sequenced
on an lllumina NovaSeq using 100-bp paired-end reads. Details on
accession number are listed in Supplementary Table 2. To maintain
signal consistency across different cell lines, we aggregated fastq data
from different replicates and subsampled them down to 40 million
reads. Thereads were processed by Seq-N-Slide to generate bigWig files
(https://doi.org/10.5281/zenodo.6308846). The bigWig files were used
asregular, denseinputs to our model. To prepare an alternative sparse
input format, we used MACS2 to perform peak calling on the interme-
diate bam files to obtain sparse peaks for CTCF and ATAC-seq’®. The
sparse narrowPeak file was converted back to bigWig with ucscutils.
We performed a log(x + 1) transformation on both dense and sparse
bigWig files and used them as inputs to the model.

DNA sequence

We used the reference genome sequence (hg38 and mm10) from the
UCSC Genome Browser database. The original fasta file includes four
typesofnucleotidesand ‘n’forunknowntype. Weretained the ‘n’ category
and encoded it as the unknown fifth ‘nucleotide’. After encoding, each
nucleotideis afive-channel one-hot vector representing ATCGN’, respec-
tively. The same reference genome sequence was used for all cell types.

Training data

The training data consist of DNA sequence, CTCF-binding signal, ATAC-
seq signal and Hi-C matrix from the IMR-90 cell line. The input data to
the modelinclude DNA sequence, CTCF ChIP-seqsignaland ATAC-seq
signal at a 2,097,152-bp region. The output target is the Hi-C matrix
at the corresponding region. The Hi-C matrix was originally called at
10-kb resolution and downscaled to 8,192 bp to match the model output
resolution. To generate batches of training data, we defined 2-Mb slid-
ing windows across the genome with 40-kb steps. Windows that have
overlap with telomere or centromere regions were removed. We ran-
domly split the genome into training, validation and test chromosomes.
Chromosomes10 and 15were used as the validation set and the test set,
respectively. Therest of the chromosomes were used as the training set.

Model architecture

C.Origami is implemented with the PyTorch framework. The model
consists of two 1D convolutional encoders, a transformer module and
a task-specific 2D convolutional decoder. The sequence and genomic
feature encoder has five and two input channels, respectively. Toreduce
memory consumption, encoders start with a 1D convolution header
withstride 2. Toreduce theinputlength from2 Mb down to 256 bins, we
deployed 12 convolution modules, each of which consists of a residual

block and ascaling block. The residual block has two sets of convolution
layerswith kernelwidth 5and the same padding. Batchnormalizationand
ReLU nonlinearity follow each convolutional layer, and the start and end
positions of the residual block are connected by aresidual connection.
The residual blocks do not alter dimension of inputs. The residual con-
nections within the residual block help promote information propaga-
tion. The scaling block consists of a 1D convolutional layer with kernel
size 5andstride 2 followed by batch normalization and ReLU activation.
Thescalingblockreducesinputlengthby afactor of2andincreasesthe
number of hidden layers. We increase the hidden size according to this
configuration:32,32,32,32, 64, 64,128,128,128,128,256,256. The out-
put fromthe last scaling module has alength of 256 with 256 channels.

The transformer module is built with eight customized
attention layers similar toa BERT model®. Specifically, we set the num-
ber of hidden layers to 256 and ReLU as the activation function, and
used eight attention heads. We used relative key query as positional
embeddingand set the maximum lengthto be 256. After the transformer
module, the model concatenates each positioninthe 256 binsto every
other positionto forma256-by-256 interaction map. The concatenation
functiontakes the 256-binsequence from the feature extraction module
and outputs a 256-by-256 grid where location (i, ) is a concatenation
of the features atiand; positions. Since each bin has 256 channels, the
concatenation produces a 512-channel 256-by-256 3D tensor.

The decoder consists of five dilated residual networks.
We designed the dilation at the corresponding layer tobe 2, 4, 8,16,
32 so that the receptive field of each pixel at the last layer covers the
inputspace, reinforcinginteractions between different elements. At the
end of the decoder, we use a Conv2D layer with 1 x 1kernel to combine
256 channels down to one channel, and the outputis a256 x 256 matrix
with one channel. The 256 x 256 output from the model was compared
with the experimental Hi-C map (ground truth) viaan MSE loss. The loss
was back propagated through the whole network for gradient updates.

Model training and prediction

To train the model, we used a training batch size of 8 and Adam opti-
mizer withalearningrate of 0.002. A cosine learning rate scheduler with
200-epoch period was used for stabilizing training. We used three types
of dataaugmentations. First, we selected the 2-Mb window withrandom
shifts within 0.36-Mb range. Second, we reverse-complemented the
sequence and flipped the target Hi-C matrix with 0.5 probability. Third,
we added Gaussian noise to all input signals with zero mean and 0.1
standard deviation. The model achieved minimal validation loss when
trained for 54 epochs. The model training time was 18 hon a GPU cluster
with quad NVIDIA Tesla V100 GPUs, 320 GB of RAM and 10 CPU cores.
Modelinference with amobile NVIDIARTX 2060 GPU canbe achieved
inunder1s,and 3 s onamobile Intel i7-8750H CPU. To run prediction
inIMR-90, the reference DNA sequence, CTCF ChIP-seqand ATAC-seq
fromIMR-90ina2-Mbregionare taken asinput. For de novo prediction
inatargetcelltype, we replaced IMR-90 CTCF ChIP-seq and ATAC-seq
with the corresponding CTCF and ATAC-seq from the specific target
while keeping the same reference sequence.

Insulationscore
Insulation score isimplemented as the ratio of maximum left and right
region average intensity and the middle region intensity>®. We also
added a pseudocount calculated from chromosome-wide average
intensity to prevent division by zero in unmappable regions. Given
thatall the regions contain ninteractions, the insulation score can be
formulated as follows:

Insulation

max(i 3 (Left lntensity),% > (Right lntensity))+pseudocount

% Zn(Center Intensity)+pseudocount

where pseudocountis set to the average intensity of one chromosome
within2 Mb.
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Loop calling
We used the Hi-C valid pairs with the FitHiC software®>® to iden-
tify significant interactions. We used a resolution of 10 kb, and
minimum and maximum distances of 30 kb and 1 Mb. For loop
calling on predicted matrices, we converted the predicted matrix
back to valid pairs by merging predictions to chromosomes and
counting the discretized intensity value. FitHiC generated a list of
significant interactions with corresponding false discovery rate
(FDR)-corrected Q values using global background as reference.
For loop analysis on IMR-90, we computed AUROC and overlap
between loops called from experimental Hi-C and loops called from
predicted Hi-C. To calculate AUROC, we used predicted loops as target.
Qvalue cutoffs ranging from1x 107 to 1 x 10 are selected to filter
significant loops called from the predicted Hi-C. Then, the Q values
fromloops called from experimental Hi-C were compared with signifi-
cant loops called from prediction to calculate an AUROC. For overlap
analysis, we chose afixed 1 x 107 cutoffforloops called from predicted
and experimental Hi-C and compared the overlap of significant loops.
For loop analysis on specific types of interaction, we overlapped the
two anchors of each loop and obtained the categories for each loop
called. Theloops were then filtered by different categories and the same
AUROC and overlap analysis was performed on each category of loops.
For cell-type-specific loop analysis between IMR-90 and GM12878,
we first used a more stringent cutoff of 1 x 107 as a threshold for sig-
nificantloops. Then we further categorized specific loops into IMR-90
specific or GM12878 specific according to the log,fc of loop interaction
counts. To calculate AUROC, we used log,fcin place of the Q value cut-
off from previous analysis. We compared two log,fc values. The first
log,fcis between predicted loopsin cell type1and predicted loopsin
cell type 2 (for example, IMR-90 predicted loop/GM12878 predicted
loop). The second log,fc is between experimental loops in cell type 1
and predicted loops in cell type 2 (for example, IMR-90 experimental
loop/GM12878 predicted loop). Then the same AUROC and overlap
analysis was performed for each of the two cell-type-specific groups.
For loop analysis on aspecific type of interactionin a cell-type-specific
way, the same anchor overlap was performed with corresponding
AUROC and overlap analysis.

Chromosome-scale Hi-C contact matrix prediction

Tobridge adjacent 2-Mb-window predictions into chromosome-wide
Hi-C contact matrices, we ran the predictionin asliding window with
262,144-bp step size, which is 1/8 of the 2-Mb prediction window. All
predictions were in-painted to their corresponding location on the
contact map with multiple overlaps. To correct for different levels
of overlap, we counted the total times of overlap for every pixel and
divided by the number of overlaps. The resulting chromosome-wide
prediction canbedirectly used for downstream analysis such as TAD
calling, loop calling and insulation score calculation.

Distance-stratified intensity and correlation

Distance-stratified intensity and correlation calculations were based
onfused chromosome prediction. Stratified intensity at distance iwas
calculated by aggregating the line that is parallel to the Hi-C diagonal
with offset of i. Stratified correlation was calculated as Pearson’s r
between the shifted diagonal line of prediction and ground truth.

Performance comparison with previous methods

We compared the performance of C.Origami against three previously
published methods: Akita'®, DeepC' and Orca*’. We compared the
performance using four metrics: insulation score correlation, observed
versus expected Hi-C metrices correlation, MSE and distance-stratified
correlation. We calculated the four metrics separately for the four
models by comparing their prediction to the experimental Hi-C data.
The comparisonwas carried outin two different cell types: (1) the train-
ing celltype, IMR-90 cells, which most models were trained onand (2)

anew cell type, GM12878 cells, aiming to quantify the performance
of de novo prediction of chromatin organization of the four models.

We generated a set of sliding windows that covers the whole
genome and can be predicted by each model. Since Akita and DeepC
areonly abletopredictinteraction withina1l-Mb window, werestricted
the test regions to 1-Mb blocks. To generate a genome-wide testing
dataset, we selected all 1-Mb regions in a sliding window with 0.5-Mb
overlap between neighboring regions. To ensure compatibility with
all models’ prediction windows, the sliding window starts and ends
1.5 Mb after chromosome starting location and before ending location
to create buffer regions for models requiring 2-Mb windows as inputs.
Intotal, 5,935 regions were generated genome-wide. We used all four
models to predict the interaction for the corresponding regions.

The most relevant versions of the previous models were selected
for comparison. For Akita, the IMR-90 output channel was selected.
For DeepC, we used their model trained with IMR-90 data. Orca was
only trained on two cell types, human foreskin fibroblasts (HFFs) and
H1-hESCs. We used the HFF model because HFF is also a fibroblast cell
line similar to IMR-90. The comparison turned out to be valid because
eventhough Orcawas trained on HFF, it outperformed both Akita and
DeepC on IMR-90 in many benchmarks. For C.Origami, we used the
IMR-90-trained model.

Itisnecessary to performscaling and normalization to each mod-
el'soutputs due to their varied prediction target customizations. Akita
predicts a1,048,576-bp region with 512 bins. We removed the extra
48,576 bp onthe sides to make the prediction1Mb, followed by rescal-
inginto128 bins. Orcacan predictinteractions at multiple scales. Since
C.Origami used a 2-Mb window as prediction target, we selected the
2-Mbwindow in Orcafor consistency. The prediction was then cropped
to 1 Mb and rescaled to 128-by-128. For C.Origami, the predictionis a
2,097,152-bp window. We cropped the prediction to leave the center
1-Mbregions and rescaled to 128 bins.

DeepC’s prediction target is different from other models,
45-degree rotations. DeepC also produces predicted Hi-C maps in
different scales compared with other methods. Thus, we performed a
series of transformations (Supplementary Fig.11) including mirroring,
rotating and cropping to make acomparable contact matrix to outputs
produced by other models. We used a 1-Mb prediction window for
DeepC and rescaled the output to 128-by-128.

The first step to make the models comparable is selecting a com-
mon ground truth Hi-C as the evaluation target. Since eachmodel used
a different ground truth with different transformations (for example,
observed/expected, log, gaussiansmoothing), they cannot be compared
directly. We defined the evaluation target as logged Hi-C intensity with
iterative correction and eigenvector decomposition (ICE): (log(ICE
normalized counts +1)). Logged intensity has a few advantages over
observed versus expected map. First, it allows for computinginsulation
scores. Second, it canbe converted to observed versus expected while the
reverseis notstraightforward. It canalso be converted to raw counts by
taking the exponent. Third, itis used as the default Hi-C format for most
downstream analysis pipelines such as loop calling and visualization.

The second step to make the models comparable is to normalize
model outputs to the evaluation Hi-C target. Since each model used a
different original prediction target, the intensities of prediction and
evaluation target show a large discrepancy depending on the model.
Specifically, DeepCresults stood out with aunique pattern whichmight
bearesult of their custom stratified binning method (Supplementary
Fig.12). We also observed that the raw predicted matrix intensities were
too different to compare (Supplementary Fig.12).

We performed distance-stratified normalization to align all predic-
tions to the target (Supplementary Fig. 13). We computed the mean
ands.d. foreach diagonal and then normalized the prediction to target
experimental Hi-C. Formally, let 7 be the normalized matrix, T be the
target ground truth matrix and Mbe the unnormalized matrix. Let my;
be the corresponding elementin M, and i and o denote the mean and
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s.d.atdiagonal din matrix Tand M. Then, every i entry on d" diagonal,
ty;canbe normalized as follows:

Vtg; € Totq; = — (ma; — 1) + ]

&QE | &Qﬂ

The normalized predictions were compared with the target Hi-C
using the four metrics. Each metric was calculated per chromosome
for every tested model using their corresponding prediction and the
experimental data as ground truth.

We also performed GM12878 de novo prediction comparison.
For C.Origami, we used the same IMR-90-trained model but GM12878
CTCF ChIP-seq and ATAC-seq profiles as inputs to predict Hi-C. For
sequence-only models, we used the same DNA sequence setup because
they could not provide cell-type-specific de novo prediction. Though
ideally input DNA sequence should be cell-type-specific, such a proce-
dureis notrealistic for general applications.

De novo prediction evaluation

Regions with normal intensity (>10% intensity quantile) and low simi-
larity (<20% insulation difference) between the experimental Hi-C
matrices of the two analyzed cell types were selected as structurally
different genomic regions. Intotal, ~15% of the entire genome (450 Mb)
wasincluded for evaluating the performance of cell-type-specific Hi-C
prediction in each pair of cell types. In comparison, structurally con-
served genomic regions were characterized by normalintensity (>10%
intensity quantile) and high similarity (>20% insulation difference).
Theseregions were used for control analysisin parallel with the afore-
mentioned evaluationin the structurally differential genomic regions.

C.Origami prediction at the CUTLL1t(7;9) translocation site

To generate experimental Hi-C data, we defined a custom chromo-
some in HiC-bench®®. The custom genome in HiC-bench is defined at
the matrix-filtered step where the pipeline assigns reads to chromo-
somes. For the CUTLL1 experiment, we defined a custom chromosome
chr7chr9, with chr7:0-142800000 as the starting chromosome and
chr9:136500000-138394717 as the ending chromosome. CUTLL1t(7;9)
translocation is heterozygous, leading to allele-specific complexity to
its corresponding Hi-C matrix. Since only one allele is translocated, the
experimental Hi-C datamapped to either the normal reference genome
orthet(7;9) translocated reference genome would be amixture of chro-
matininteractions fromboth translocated and normal chromosomes. To
alignwith this hybrid effect of Hi-C contact map, we first separately pre-
dicted threesets of Hi-C maps: t(7;9) translocated chromosome, normal
chromosome 7 and normal chromosome 9. The predicted Hi-C matrix at
thet(7;9) locusis anaverage of the predicted Hi-C maps of t(7;9) transloca-
tionchromosome and afused prediction map ranging from normal chr7
tothebreakpoint chr7:142,797,952 and extending from chr9:136,502,817
totherest of normal chr9. We did not count theinterchromosomalinter-
actions at these loci due to their much weaker intensity compared with
the intrachromosomalinteraction at the translocationsite.

Mouse prediction

For the mouse Patski cell-type prediction*?, the CTCF ChIP-seq and
ATAC-seq inputs were processed using the same pipeline with mm10
as the assembly number. The original C.Origami model trained with
IMR-90 dense input features was used for prediction. For genome-wide
evaluation of predicting mouse chromatin organization, we adopted
the same procedure from the ‘Performance comparison with previous
methods’ section.

CTCF depletion predictionin mouse embryonic stem cells
(mESCs)

We preprocessed CTCF ChIP-seq and Hi-C onmESCs from Noraetal.”,
following the same pipeline for ChIP-seq and Hi-C. Intotal, three sets

of data, with conditions: untreated, auxin-induced CTCF depletion and
wash-off, are processed. Since this study did not measure ATAC-seq,
the C.Origami model was re-trained using only DNA sequence and
CTCF ChIP-seqonthe untreated condition. The re-trained model was
then used for predicting chromatin organization in the CTCF deple-
tion (auxin treatment) and restoration (auxin wash-off) conditions.
Genome-wide performance benchmark followed the same procedure
fromthe ‘Performance comparison with previous methods’ section.

GRAM

The GRAM scoring systemis a generalized version of Grad-CAM on 2D
outputs®. Instead of taking a single output, GRAM operates onaregion
rinthe outputspaceyand runsbackpropagation on all pixels withinr.
GRAM onregion rinnetwork layer mis defined as follows:

GRAM,, (r) = 3 ReLU (a7) - ReLU (A7)
k

where a; is the activation weight for channel kand region r. Formally,
o is defined as:

NI =

ro_
ak_

or
o

where Zis the number of activationsin the layer and the quotientis the
gradient at positioni,jin the activation layer m with respect to output
r.ajcanbeinterpreted as the average gradient across width and height
dimensions at the layer m. A7'is the activation in channel k at layer m.
In this study, we choose r to be the full output space. During forward
propagations, activation (A7) at the target layer m is recorded. This
activation map is a 3D tensor, or animage with k channels. Then, the r
region of the outputis selected for backpropagationand gradients are
calculated forevery layer. The gradients (used for calculating weights
o) atthe target layer mare collected. The set of collected gradients is
alsoanimage-like 3D tensor with k channels. To obtain o, we averaged
the gradients across width and height dimensions, resulting in a
k-dimensional array. The goal of GRAM is to visualize a
gradient-weighted activation map that maximizes the output signal.
To obtain this weighted activation, «} is used as weights to average the
k channels activation image (4™). The final averaged activation is
defined as the GRAM output.

Attentionscore
In the transformer module, we implemented the vanilla multi-head
attention””:

MultiHead (Q, K, V) = Concat (heady, ..., heady,) W°

where Q, K, V are query, key and values. W? is the out projection of
dimension (number of heads h times value dimension d, by model
dimension d,,). In our implementation d, and d,,are set to 128. head;is
asingle attention head and is calculated by:

Vi

N

head; (Q.K,V) = softmax[ 47%

where WQ, WK, WY are projection weights for query, key and value. d, is
the embedding dimension of key, also implemented as 128. During
forward propagation, we extract attention weights for head i whichis
defined as the alignment between query and key:

ights; (Q,K) ft (QW?)(KW:()T
wel S. , = sortmax| ————
g NeR
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The attention score can be calculated by averaging attention
weights across different heads:

Attention score (Q,K) = % > weights,
7

where N = 8 because each layer has eight attention heads. Since the
transformer module consists of eight attention layers, for each predic-
tion, we obtained a set of eight attention scores. The attention score is
visualized with the BertViz package®.

Impactscore

The impact score in the screening experiment is defined as the
pixel-wise mean absolute difference between two predictions. For-
mally, given that we have a prediction S, a 2D contact matrix from the
originalinputand S’ from the input perturbed atlocation x, and let s;;
betheindividual pixelin Sat positioniandjand nbe the width/heights
of §, theimpact score of location x is defined as:

n n
Impact score (x) = > " —
i J

Insilico genetic screen

Typical ChlP-seq profiles have peak widths ranging from a few
hundred base pairs to 1kb. To capture fine-regulation elements,
we performed genome-wide ISGS at 1-kb resolution. The screening
starts from individual chromosomes with a window size of 2 Mb.
Inside this window, a 1-kb perturbation region centered at the 2-Mb
window was deleted followed by padding at the end and C.Origami
prediction. For each window, the original input and perturbed input
were predicted by C.Origami and collected. Once the output acqui-
sition is completed for the window, the screening moves to a down-
stream overlapping window that has 1-kb offset from the current
window. Since the in silico screening offset is equal to the length of
perturbation size, this procedure produces a continuousimpact score
that covers all genomic regions with a resolution of 1 kb. It is worth
notingthatscreeningat1-kb resolution could be computationally inten-
sive. Toreduce computationalload, we randomly sampled 10 chromo-
somes(chr5,7,8,11,12,14,15,19,20, 22) to represent the whole genome
and performed1-kb-resolutionscreening onthe selected chromosomes.

To obtain the mostimpactful elements from the screening result,
we designed acustom peak calling algorithm. We defined the peak score
pofalocus as the difference between maximum and minimum signal
within therange of three binsincluding thelocus. We then selected the
top 1% ofthe total screened regions as a cutoff forimpactful elements
based on the peak score.

To annotate the in silico genetic screen-identified impactful
cis-elements, we compiled a set of genomic annotations including
TAD boundary regions, enhancers, promoters, intragenic regions and
intergenicregions. The boundary region was generated by calling TAD
boundaries at 10-kb resolution with HiC-bench®®, using its TopDom
module and connecting adjacent TADs. To increase robustness of
TAD boundary calling, we expanded the boundary width to 50 kb.
The promoter region was defined as a 5.5-kb window, spanning 5 kb
upstream and 500 bp downstream of gene transcription start site.
Enhancers were defined by the H3K4mel modification, which marks
both active and inactive enhancers®’. The H3K4mel ChIP-seq peaks
for IMR-90 were downloaded from ENOCDE with accession number
ENCFF611UWF (https://www.encodeproject.org/files/ENCFF611UWF).
Toincrease robustness, we expanded peaks to have at least 1-kb width.

Insilico genetic screen at 2-Mb windows
We conducted aninsilico genetic screen at afixed 2-Mb window without
centeringthe deletion element. We systematically removed segments

of 8,192 bp, or 1 bin, from model inputs. To scan through the entire
2-Mbregion, we performed 256 deletion experiments at each bin and
calculated the prediction difference map before and after deletion. To
maintain input shape, we appended 8,192 bp of empty input features
totheend.

CRISPR screening for chromatin remodeling genes in T-ALL
celllines

Pooled CRISPR screenings across 313 chromatin remodeling genes in
CUTLL1 andJurkat cells were carried out in parallel with our previous
studies for pooled screening of RNA binding protein in T-ALL cells®.
Briefly, for each chromatin remodeling gene, we designed on average
6-8 single guide RNAs (sgRNAs), for a total of ~2,500 sgRNAs. The
sgRNA sequences were synthesized by Twist Bioscience, and cloned
into alentivirus-based sgRNA vector tagged with GFP (Addgene plas-
mid no. 65656). Cas9-expressing T-ALL cell lines were transduced with
sgRNA library virus at a low multiplicity of infection (MOI, ~0.3), fol-
lowed by infection efficiency assessment through GFP percentage on
Day 4 posttransduction. Remaining cells were placed back into culture
until 20 day posttransduction.

Cell proliferation was measured by comparing the sgRNA frequen-
ciesbetween Day 4 and Day 20 cells. Genomic DNA was collected from
Day 4 and Day 20 cells using Qiagen DNA Purification kit based on the
manufacturer’s protocol. The gRNA frequencies in the genomic DNA
were amplified and quantified following our previous procedure®.
For pooled CRISPR screening analysis, samples of each time-point
were normalized as sgRNA read count/total read count x 100,000.
Subsequently, normalized reads were then used to calculate log,fc (as
normalized read count Day 4/normalized read count Day 20) for each
gRNA. The fold changes between Day 4 and Day 20 for each gene were
averaged from all CRISPR gRNA targets. Pvalues were calculated viaa
two-sided t-test comparing the fold changes of allgRNA targets of the
same gene with fold change of 1.

Virtual 4C

HiC-bench ‘virtual4C’ pipeline® was used to compute the interactions
of each selected viewpoint in a roll-window fashion. We summed the
validread pairsina5-kb area centered at100-bp bins that covered the
area of +2.5 Mb from the viewpoint (50,000 bins per viewpoint). The
interactions were normalized by the total number of valid pairs of the
sample.

Trans-acting regulator identificationin T-ALL cell lines

To connect the differential patterns of cis-elements with trans-acting
regulators, we compared the selected cell-type-specific impactful
regions by a custom peak calling method, followed by a transcription
factor enrichment test for identifying potential trans-acting regulators.
We used the transcription factor database from ReMap2022 (ref. 50).
Toreduce low-quality signals from the ReMap database, we filtered out
transcription factor profiles that had less than 7,000 hits, or profiles
thatonly had asingle experiment. Together, we collected 612 transcrip-
tion factor binding profiles for downstream analysis. We used Fisher’s
exacttest to evaluate the overlap betweenimpactful cis-elements from
ISGS and each transcription factor from the database. The test was
conducted using the LOLA (Locus Overlap Analysis) package®. For
common transcription factors with hit counts larger than20,000, we
downsampled profiles to 20,000. We calculated the Q value with FDR
correction based on the 612 transcription factor profiles tested and
used odds ratio as the main metric to determine enrichment of each
factor inimpactful cis-elements.

To compare the contributing trans-acting regulator profiles
between different cell types, we first normalized the odds ratio within
each cell type. We performed k-means clustering of transcription
factors based on their normalized odds ratios in CUTLLI, Jurkat and
Tcells. The k-means clustering was performed with standard Euclidean
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distance with six centroids. The clusters were further grouped and
visualized using a heatmap.

Intra-TAD activity analysis

Iteratively corrected matrices were re-normalized by dividing each bin
value by the sum of all the values in the same distance bin in the same
chromosome (distance normalization). All the TADs identified in the
controlsample were used as the reference TADs to compute theintra-TAD
activity changes. The set of reference TADs between the two samples, S1
(control) and S2 (treatment), were denoted as set T. A paired two-sided
t-testwas performed on each single interaction bin within each reference
TAD betweenthe two samples. We also calculated the difference between
theaverage scores of allinteractionintensities withinsuch TADs and the
TAD interaction log fold change. Finally, a multiple testing correction
is performed by calculating the FDR on the total number of TAD pairs
tested. The TAD interaction change for each tin Tis calculated as follows:

I I
2 Sai _ 2 Su

TAD change (¢t) = A A
t t

We classified the reference TADs in terms of Loss, Gain or Sta-
ble intra-TAD changes by using the following thresholds: FDR < 0.01,
absolute TAD interaction log fold change > 0.25 and absolute TAD
interaction change > 0.1.

Additional software

Additional software used included the following: software: HiC-bench,
Seq-N-slide, MACS2 (v.2.1.1), FitHiC (v.2.0.7); Python packages: Pytorch
(v.1.9.0), Numpy (v.1.22.3), pybigwig (v.0.3.18), scikit-image (v.0.19.3);
R packages: EnhancedVolcano (v.3.16).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Most of the Hi-C, CTCF ChIP-seq and ATAC-seq datasets used in the
study were public data from the ENCODE portal and/or NCBI GEO
database, with the accession codes listed inthe corresponding Methods
section. The generated data (CUTLL1ATAC-seq) are uploaded to GEO
with accession number GSE216430.

Code availability
The code for C.Origamiis available at https://github.com/tanjimin/C.
Origami.
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Extended Data Fig. 1| C.Origami trained with DNA sequence, CTCF binding
and chromatin accessibility profiles performed optimally. a, Experimental
Hi-C matrices and genomic profiles of IMR-90 and GM12878 cells at chr2:
400,000-2,497,152. The difference between the two cell lines were presented
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ontheright.b-c, Cell-type-specific prediction of the chromatin organization
atthe same locus using C.Origami (b) or model trained with DNA sequence and
CTCF binding (c). d-f, Same as a-c at a difference locus, chr10:122,700,000-

122,797,152,
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | ISGS-identified impact scores at four chromatin
remodeler genesinboth T-ALL cells and T cells. a, Scatter plots showing
impact scores of samples of screened regions (n =10000). Theimpact score
difference between target cell type (CUTLL1and Jurkat) and T cell are shown on
the x axis, and the higher impact scores between the corresponding cell type and
the T cells are shown ony axis. b-e, Impact scores of the DNA elements in T-ALL
cellsand normal T cells were first calculated independently through ISGS and

then visualized at the four chromatin remodeler genes (PHF5A (b), BRD4 (c), KATS
(d) and CHD4 (e), with 50Kb upstream and 50Kb downstream) which are required
forJurkatand CUTLL1cell proliferation according to the CRISPR screening
experiments. The specificity track (fourth track) was calculated as the difference
between T cellimpact score and T-ALL impact score (from CUTLL1 or Jurkat,
whichever is smaller). CHD4 has the highest specificity score between T-ALL cells
and normal T cells.
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