nature biotechnology

Article

https://doi.org/10.1038/s41587-024-02218-y

Decrypting the molecular basis of cellular
drug phenotypes by dose-resolved
expression proteomics

Received: 22 August 2023

Accepted: 25 March 2024

Published online: 7 May 2024

W Check for updates

Stephan Eckert® %%, Nicola Berner"?3%, Karl Kramer®", Annika Schneider’,
Julian Miiller ®', Severin Lechner ®', Sarah Brajkovic',

Amirhossein Sakhteman®"’, Christian Graetz®*, Jonas Fackler®,

Michael Dudek®, Michael W. Pfaffl*, Percy Knolle®, Stephanie Wilhelm' &
Bernhard Kuster ® "2

Proteomics is making important contributions to drug discovery, from
target deconvolution to mechanism of action (MoA) elucidation and

the identification of biomarkers of drug response. Here we introduce
decryptE, a proteome-wide approach that measures the full dose-response
characteristics of drug-induced protein expression changes that informs
cellular drug MoA. Assaying 144 clinical drugs and research compounds
against 8,000 proteins resulted in more than 1 million dose-response
curves that can be interactively explored online in ProteomicsDB and a

custom-built Shiny App. Analysis of the collective data provided molecular
explanations for known phenotypic drug effects and uncovered new

aspects of the MoA of human medicines. We found that histone deacetylase
inhibitors potently and strongly down-regulated the T cell receptor complex
resultinginimpaired human T cell activation in vitro and ex vivo. This offers

arational explanation for the efficacy of histone deacetylase inhibitors
in certain lymphomas and autoimmune diseases and explains their poor
performance in treating solid tumors.

Most drugs act on proteins’*and it has been known since the days of
Paracelsus that drugs exert their effects in a dose-dependent fash-
ion. The molecular processes leading to a drug-induced change in
cellular phenotype can be roughly divided into (1) target binding,
(2) pathway engagement and (3) cellular reprogramming to arrive at
anew viable state or cell death, together forming the MoA of adrug™’.
Today, quantitative mass spectrometry is the most comprehensive
approachforthe proteome-wide characterization of drugsonall three
levels because of its ability to assay thousands of proteins in complex

cellular backgrounds in parallel’. The technology does not require
any preconceived hypotheses as to which proteins a drug may target,
which pathways it may perturb, or what the proteomic composition
of the new cellular state may be. While phenotypic dose-response
measurements have been commonplace for decadesin pharmacology,
thereisalack of proteomic studies that consider dose as the arguably
most important characteristic of a drug.

Potent drugs typically engage their cellular targets within minutes,
sometimes hours if they have a particularly slow on-rate™*. Among the
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mostsuccessfulapproaches for proteome-wide target deconvolution
areactivity- and affinity-based proteome profiling. Both aim to measure
theinteraction of adrugwithits target(s) directly®°. When performed
in a dose-dependent fashion, they also allow the determination of
apparent interaction constants'>". Alternative methods measure
drug-induced changes in other biophysical or biochemical proper-
ties of proteins such as solubility at elevated temperature'>” or in the
presence of organic solvents'*", sensitivity to oxidizing reagents'®
or susceptibility to partial enzymatic hydrolysis''®. While powerful,
these methods often require high levels of target engagement to lead
to measurable effects. In addition, the observed effects often extend
beyond thetargetitself, thus complicating the differentiation between
direct and indirect drug effects.

Because many cellular pathways are regulated by reversible post-
translational protein modifications (PTMs), mass spectrometry can
alsobe used to measure if a drug engages pathways downstream of the
target”. The time frame hereis also typically in the minute to few hours
range'. Published studies often report large numbers of observable
PTMchanges as aresult of applying arbitrary and typically high single
doses of a drug or because the data were collected after many hours
of treatment®. Again, the interpretation of such data can be difficult
because both direct and indirect effects are contained in the data. It
hasonly very recently been demonstrated that measuring drug effects
on PTMs in a dose- and time-dependent fashion is a more powerful
approach to pathway engagement measurements because it enables
prioritizing the data by drug potency®.

The adaptation of a cell to anew functional state inresponse to a
drugisacomplex process, ofteninvolving changesin gene expression,
messenger RNA (mRNA) and/or protein stabilization or degradation
over the course of several hours or even days”. The L-1000 connectivity
map project” has addressed the transcriptional angle of drug pertur-
bations and, more recently, a number of studies have extended such
investigations to the level of the proteome?*?*. Such data are useful
because they characterize the molecular consequences that underlie
the cellular endpoint (phenotype) of adrug treatment. However, to the
best of our knowledge, a systematic evaluation of the dose-response
characteristics of drug-induced proteome expression changes has not
been undertaken yet, limiting insights as to the molecular basis that
drive and describe the observed phenotypic changes.

Here, we close this gap by introducing amethod termed decryptE,
able to measure the dose-response characteristics of expression
changes of ~-8,000 proteins in human cells in response to a drug. We
exemplify the feasibility and utility of the approach by characterizing
144 drugs with diverse MoA and highlighting several noteworthy find-
ingsincluding therepression of (Jurkat) T cell activation in response to
histone deacetylase (HDAC) inhibitors. The collective data comprise
>Imilliondose-response curvesthat areaccessible viaProteomicsDB
and the custom-built decryptE web application for further exploration.

Results

DecryptE for dose-resolved expression proteomics

The decryptE approach (Fig. 1) was developed using Jurkat acute
T cell leukemia cells as a model system and is exemplified by analyz-
ing 144 drugs from 16 drug classes (Supplementary Table 1). These
comprise approved (53) and phase Il (15) drugs as well as phase I/II
investigational or frequently used tool compounds (76). Briefly, cells
were grown in 48-well plates and treated for 18 hours with five drug
dosesinfulllog,, steps between1and 10,000 nM and vehicle control
(dimethylsulfoxide, DMSO). Metabolic activity and cytotoxicity, as
well as cellmorphology, were determined for all drugs across the same
doserangein parallel and were only marginally affected within the time
frame of the experiment (Supplementary Table 1 and Extended Data
Fig.1a) while observed proteomic drug effects were most pronounced
(Extended Data Fig.1b-d). Proteins were extracted by SDS-containing
buffer and digested into peptides on a robotic platform following

the single-pot, solid-phase-enhanced sample preparation protocol
(SP3) approach®. We previously demonstrated that microflow-liquid
chromatography with tandem mass spectrometry (LC-MS/MS) ena-
bles high-throughput proteome measurements® and, here, extended
the approach by incorporating anion mobility dimension (high-field
asymmetricion mobility spectrometry, FAIMS) to achieve a proteome
coverage of >7,000 proteins per hour (Extended Data Fig. 1e-i). The
entire drugscreenrequired 768 hours of instrument time (equivalent
to 5.3 h per drug) and led to the identification and quantification of
8,892 proteins using MaxQuant and Prosit rescoring??. Based on
48 DMSO replicates, a median quantitative precision of 19% coeffi-
cient of variation (CoV) was determined for the assay (Extended Data
Fig.2a) withahigh degree of data uniformity (Extended DataFig. 2b).
Dose-response curves were fitted to the data providing information
ondrug potency (effective concentration required to achieve 50% of
the effect, EC,,) and effect size (area under the curve or fold change
over DMSO). The statistical power of the dose-response data enabled
robust classification 0f1,133,847 dose-response curves (regulated or
not) that formed the basis for all further analysis. DecryptE datawere
reproducible with 69.5% of all determined EC, values within halfalog,,
of drug concentration (Extended Data Fig. 2c-e). Moreover, the CoVs
of regulated proteins were invariably higher than for not regulated
proteins (Extended Data Fig. 2f).

Tofacilitate the use of this resource by the community, the data can
be exploredin ProteomicsDB (https://proteomicsdb.org/decryptE)*
as well as in a custom-built Shiny App (https://decrypte.proteom-
ics.Is.tum.de/) in which dose-response curves can be visualized and
compared. Additional information on cell morphology, cell metabolic
activity, cytotoxicity, protein half-lives and protein targets of com-
pounds and drug-target affinity (where available) are provided to help
interpreting the observed effects.

High-level analysis of decryptE profiles

Several observations wereimmediately apparent from a global analysis
of the data. First, the abundance of most proteins did not change in
response to any drug within the time frame of the experiment (18 h;
n=982,824 dose-response curves; 87%) (Fig. 2a). Dose-dependent
up-regulation occurred in 73,299 cases and dose-dependent
down-regulation was observed in 77,724 cases. Second, the extent
to which any of the 144 drugs remodeled the proteome of Jurkat cells
varied tremendously. Some drugs regulated the expression of >1,000
proteins, othersjust afew (Fig. 2b). Similarly, some drugs showed very
potent effects, others only at high concentrations (Extended Data
Fig.3a).Both aspects areimportant to be able to attribute the observed
phenotypic (here morphology, metabolic activity and cytotoxicity)
and molecular (here protein expression) response of acell tothe MoA
ofaparticular compound. As one might expect, drugs targeting basic
cellular processes caused many changes. For instance, HDAC inhibitors
such as vorinostat or panobinostat alter transcriptional programs
and, consequently, the expression of many proteins. The proteasome
inhibitor carfilzomib also showed massive effects becauseit inhibits a
major protein degradation machine in cells. Many changes were also
observed for the HSP90 inhibitor geldanamycinbecauseitinactivates
a key member of the protein folding machinery. More specifically,
geldanamycin strongly up-regulated proteins (up to 50-fold) involved
inthe unfolded protein response (for example, DNAJB1, HSPA1B) pre-
sumably because of a cellular attempt to counter the drug-induced loss
of protein folding capacity (Extended Data Fig. 3b). In stark contrast,
some drugs induced only minor proteomic changes. Among these
were the histone lysine methyltransferase inhibitor lirametostat or the
dual c-MET and ALK kinase inhibitor crizotinib. The former suggests
that interfering with dynamic histone lysine methylation in cultured
Jurkat cells did not bear any consequences within the time frame of
the experiment and the latter implies that the viability of Jurkat cells
isnot dependent on ALK and MET activity.
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Fig.1|DecryptE workflow for the proteome-wide and dose-dependent characterization of drug-induced protein expression changes. See text and methods for

details (i, inhibitor; E3L, E3 ligase; AUC, area under the curve).

Itis oftenstated that drug-induced proteome expression changes
can be used for the deconvolution of drug targets'>*>**. Animportant
learning point from the global decryptE data analysis is that this is
generally not the case. First, while the list of 8,892 detected proteins
contains 66% of all designated targets of the drugs investigated here
(expression regulated or not, Extended Data Fig. 3c), known targets
for about 34% of all drugs were missing and simulation showed that
this number rapidly increased as proteome coverage decreased (Sup-
plementary Fig. 1). Second, only about 25% of all drugs changed the
expression levels of their designated protein target(s) (Fig. 2c). Third,
even if that occurred, the particular drug target did often not stand
out from the data in terms of potency or effect size, as illustrated by
thymidylate synthetase (TYMS). While the protein was up-regulated
by its direct binders methotrexate (MTX) and pemetrexed (Extended
DataFig.3d), TYMS levels were also regulated by 63 other compounds
thatarenotreported totarget TYMS (Fig. 2d). Another exampleis the
HSP90 inhibitor tanespimycin. HSP90 levels were regulated by the
drug (Extended Data Fig. 3e), but so were hundreds of other proteins
and many more potently and with larger effect sizes than HSP90 itself
(Fig. 2e). When generalizing this analysis, far more often than not, a
protein showed drug-induced expression changes even though it is
not the target of that drug (Fig. 2f). Therefore, it seems unlikely that a
drugtarget can generally or clearly be delineated from drug-induced
protein expression changes alone.

Multi-omics analysis of drug-induced cellular remodeling

Tolearnwhether drug-induced protein expression changes are rooted
in altered transcriptional programs or pre-, co- and/or posttransla-
tional mechanisms, we performed dose-dependent RNA sequencing
(RNA-seq) experiments for seven selected drugs in the same cell line
and under the same drug treatment conditions. As evident from Fig. 3a,
several concordant and discordant effects were observed. For instance,
protein and mRNA levels of HDAC1 remained unchanged in response
tothe HDAC inhibitor vorinostat. In contrast, protein and mRNA levels
ofthecell cycle regulated protein RRM2 were equipotently diminished
inresponse to the CDK4/6 inhibitor palbociclib. This may be explained
by the dose-dependent increase in the number of cells arresting at
astage of the cell cycle where RRM2 levels are low. Conversely, the

proteasome inhibitor carfilzomib up-regulated both transcript and
protein levels of the cochaperone BAG3 with similar potency but with
very different effect sizes, suggesting that BAG3 protein levels only
moderately increase in cells on drug treatment. Another scenario is
presented by the DNA methyltransferase DNMT1for which protein but
nottranscriptlevels were reducedinresponseto decitabine. Thisisin
line withliteraturereporting that decitabine, whenintegratedinto DNA,
covalently traps DNA methyltransferases, in turn, leading to their deg-
radation’. A similar behavior was observed for molecular glues such as
pomalidomide that led to a potent and dose-dependent reduction of
the protein IKZF1 but not its mRNA level (Extended Data Fig. 4a). The
aforementioned drugMTXled to astrong and dose-dependentincrease
in proteinlevels of its direct target DHFR while mRNA levels remained
unchanged (Fig. 3a). This clearly points to a posttranscriptional event.
Previous in vitro experiments have shown that DHFR binds its own
mRNA to repress its translation and that addition of MTX abolishes
this repression®. This mechanism would be an elegant explanation for
the observation that MTX alsoinduces a very strong thermal or solvent
stability shifts for DHFR when bound to MTX'>1%5,

Another case is presented by the dual specificity protein kinases
CLK1-4 that showed potent up-regulation of both mRNA and protein
levels on treatment with the kinase inhibitors brigatinib, abemaciclib
and milciclib (Fig. 3b and Extended Data Fig. 4b-e). Published target
deconvolution data showed that these proteins are direct targets of
all three drugs'®. Apart from the full-length protein, CLK1 also exists
intwo shorter versions that contain the N terminus butlack thekinase
domain either owing to intron 4 retention or exon 4 skipping. The dif-
ferent forms of the proteinarise fromthe ability of CLK1to regulate its
own splicing by phosphorylating certain splicing factors®. Quantita-
tive PCR withreverse transcription (RT-qPCR) data collected here for
CLK1-4 showed that the ratio of N-terminal to full-length transcripts
shifted in favor of the full-length transcript at higher drug concentra-
tions, in turn, leading to higher levels of full-length protein. While
an interesting observation, it remains unclear whether this has any
functional consequences in cells as these drugs block kinase activity
atthe same time. These selected cases highlight several discrepancies
between drug regulated transcriptome and proteome changes that
are rooted in different cellular mechanisms. Many more cases are in
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Fig.2|Summary of drug-induced expression changes. a, Pie chart of the
absolute number and relative distribution of dose-response curve categories.
b, Bar plot showing the number of up- or down-regulated proteins for each of
the 144 drugs (inh., inhibitor; Methyltr., methyltransferase). c, Pie chart of the
proportion of drugs that did or did not lead to expression changes of at least
one designated target protein. d, Radar plot showing the number of drugs that
changed the expression of the protein TYMS. The length of each line indicates

the pECs, (—log,, EC) of the observed regulation. MTX and pemetrexed are
highlighted because TYMS is a designated target of both drugs. e, Same as
dbut showing all proteins that are regulated by the drug Tanespimycin. The
highlighted proteins are targets of this drug. f, Bar plot showing the number of
drugs (yaxis) that regulate a particular target protein. The proportions of drugs
for which a particular protein is a designated target are highlighted in pink.

the data and often with very large drug-specific differences, both in
absolute and relative terms (Fig. 3¢). Itisalso apparent from these data
that the direction of regulation is not always concordant on mRNA
and protein level (Extended Data Fig. 5a). Opposing regulation events
are rare for most of the drugs studied. However, carfilzomib treat-
ment up-regulated members of cellular folding machinery on mRNA
level while down-regulating the respective proteins (Extended Data
Fig.5b-d), possibly in an attempt to maintain proteostasis.

Drug response phenotypes group drugs by function

While individual drugs may have different targets, they may lead to
similar cellular and molecular drug phenotypes™®. To explore whether
decryptE profiles can group drugs in such a way, we performed gene
ontology (GO) enrichment analysis for up- or down-regulated proteins

for each compound separately, followed by hierarchical clustering of
theresults for all 144 drugs (Fig.4aand Supplementary Table 2). Indeed,
compounds leading to cell cycle arrest formed two mirrored clusters
(Cland C2) characterized by up- or down-regulation, respectively, of
enriched GO termsrelated to forexample sister chromatid separation,
mitosis and/or meiosis or cytokinesis. Closer inspection revealed that
this analysis distinguished compounds that arrest cells in G1/S or G2/M
(Fig.4b). Examples for proteins that drive this clustering are the strong
up-and down-regulation of the cell cycle regulated proteins PLK1and
ANLN, respectively. When summarizing this informationfor all proteins
that are up-regulated or down-regulated, respectively, for all three
drugs, they showed a congruent distribution of pECs, values (Fig. 4c—f).
On this basis, and when following a guilt-by-association argument,
mitotic functions may be assigned to proteins not yet annotated in
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the ratio of the N term and kinase domain transcripts (determined by RT-qPCR)
for CLK1-4 as a function of the dose of Brigatinib. ¢, Comparison of drug-induced
mRNA and protein expression changes for seven drugs. The bar plots in the
middle panel show the fraction of up-, down- or not regulated proteins (left bars)
and mRNAs (right bars). The Venn diagrams in the upper panel show the number
and overlap of up-regulated proteins versus mRNAs (data confined to mRNAs
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this process and this concept may hold for other molecular functions
presentinother clusters. The pEC,, plots also ranked drugs by potency
identifying paclitaxel as the most potent mitotic inhibitor of the set.
The two aforementioned HSP9O0 inhibitors formed a small but
distinct cluster (C3) driven by GO terms related to the up-regulation
of the unfolded protein response (Supplementary Table 2). The PI3K/
mTOR inhibitor GSK-1059615, the DNA cross-linker oxaliplatin and
the p53 activator serdematan formed a tight cluster indicative of
down-regulated ribosome biogenesis (C4) (Supplementary Table 2).
Thethree platinum-containing drugs oxaliplatin, carboplatin and cis-
platin did not cluster. And indeed, their decryptE profiles were rather

different as exemplified by the down-regulation of ribosomal proteins
by oxaliplatin but not the others, implying different cellular modes of
action (Extended Data Fig. 6a,b)**.

HDAC inhibitors impair T cell activation

Unexpectedly, HDAC inhibitors formed a cluster (C5) with strong
links to T cell proliferation and activation (Fig. 4a). For instance, pan-
obinostat down-regulated the expression of many key components
of the T cell receptor (TCR) with low nanomolar potency (Fig. 5a),
notably the TCRitself and its coreceptors (Fig. 5b). Cell viability was
only marginally affected within the time frame of the experiment
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(Extended DataFig.7a and Supplementary Table 1). The other HDAC
inhibitors showed the same qualitative effect (Extended Data Fig. 7b)
and the dose-dependent RNA-seq data collected for vorinostat indi-
cated a concerted transcriptional mechanism rather than protein
degradation (Extended DataFig. 7c). These results demonstrate that
the reduction of TCR components can be directly attributed to the
loss of HDAC activity. This also resulted in the reduction of anti-CD3
and/or CD28 antibody-mediated T cell activation in genetically engi-
neered Jurkat TCR and/or CD3 effector cells that express luciferase
inresponse to T cell activation (Fig. 5c).

To test whether HDAC inhibition also diminishes protein expres-
sion of TCR componentsin primary human T cells, we separated CD4
and CD8 positive T cells from healthy donors and exposed untreated

(referred to as ‘naive’) and anti-CD3/CD28-activated cells to several
HDAC inhibitors (Fig. 5d). Live-cellimaging showed that drug-treated
primary cells exhibited a reduced ability to bind to beads carrying
anti-CD3/CD28 antibodies (Fig. 5e and Extended Data Fig. 7d). Fur-
thermore, all tested HDAC inhibitors recapitulated the findings of the
invitroJurkatcellline experimentsin all four ex vivo cell populations,
exemplified by the dose-dependent loss of CD247, CD3D and CD3E
(Fig. 5f). Among many other proteins, a dose-dependent reduction
of the transcription factor TCF7, the master regulator of naive T cell
differentiation, was observed in naive cells after HDAC inhibitor treat-
ment. Inactivated cells, we observed areduction of granzyme B levels,
animportantregulator of T cell activation and proliferation (Extended
Data Fig. 7e,f). These results clearly indicate that HDAC inhibition
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affects T cell activation and differentiation with yet unknown func-
tional consequences, but potentially important ramifications for the
use of HDAC inhibitors as anticancer agents or as tools to study T cell
biology (Discussion).

Discussion

DecryptE specifically addresses the longer-term dose-dependent
response of a cell to a drug (or other bioactive agent) akin to many
phenotypic assays. The difference is that decryptE yields thousands
of molecular readouts rather than just one (for example, cell viability
or morphology changes). As such, the approach should not be con-
fused with proteomic technologies aiming to elucidate the targets of
adrug or illuminating the signaling pathways that lead to a cellular
endpoint. These important aspects of drug MoA may be contained in
decryptE profiles, but they may not be obvious from the data without
substantial previous knowledge. Instead, decryptE profiles reflect the
third element of cellular drug MoA, referred to in the introduction,
which is the transition of the proteomic makeup to a drug-adapted
(new) cellular state. There are two main new technical aspects in the
currentwork. First, showing that the combination of microflow-LC and
FAIMS yields deep proteomic coverage and quantitative information
(dose-response curves) for one drug and ~8,000 proteinsinjust over
5hours of analysis time. Second, demonstrating that dose-response
measurements add information not attainable from single doses. The
decryptE apporachthus paves the way for large-scale proteome-wide
drug perturbation screens that may be further enabled by combining
faster and more sensitive mass spectrometers than used here with data
independent acquisition or stable isotope multiplexing by tandem
mass tags*>**. Withmore than1 million dose-response curves, our data
already provide arich resource for the scientific community that can
be analyzed in many ways not covered here. For instance, we strictly
only considered sigmoidal dose-response characteristics because
theseareregarded asthebest understood drug-proteininteractions.
However, the data may also contain nonsigmoidal drug-induced
behaviors that may, for example, represent pharmacological switches
inacell.

While decryptE profiles faithfully report changesin protein expres-
sioninresponse toadrug, these may arise by several mechanisms that
add important information regarding drug MoA. In light of the com-
parisons made here between mRNA and protein-drug profiles, we
propose to measure transcriptomes and proteomes systematically ina
dose-dependent fashionin parallelinthe future to better understand to
whatextent transcriptionitselfor splicing events play arole. Similarly,
adding proteomic measurements that address protein synthesis and
degradation, for example by pulse-labeling using stable isotopes®*?,
will provide additional important insights. The latter is particularly
important given the high attention in current drug discovery to the
development of chemical degrader molecules such as proteolysis
targeting chimeras or molecular glues.

Evenif not investigated here, we note that protein level changes
induced by a drug may be cell-type specific. DecryptE profiling of
immunomodulatoryimide drugs (IMiDs) such as thalidomide, poma-
lidomide, lenalidomide and iberdomide did not show changes in pro-
tein levels for members of the E3 ligase complex itself (CRBN, DDBI,
CUL4a) (Extended Data Fig. 8a,d). This suggests that the ubiquitinyla-
tion complex acts as a classic enzyme that releases its neo-substrates
after ubiquitin transfer and that the molecular glue functions as a
catalyst. Endogenous CRBN substrates (GLUL, ORAI1) were unaffected
by IMiD treatment (Extended Data Fig. 8b,c). DecryptE profiles further
showed that three of the four IMiDs degraded the neo-substrate IKZF1
inJurkat cells in a dose-dependent fashion (Extended Data Fig. 4a).
However, this was not the case for other reported neo-substrates
including IKZF2, IKZF4 and PATZ1 (ref. 38). RAB28 was identified as
a new neo-substrate of Iberdomide in Jurkat cells (Extended Data
Fig. 8e)*. Such apparent discrepancies with the literature likely arise

from molecular differencesin the ubiquitinylation machinery present
ina particular biological model system.

We note, that observed drug effects not only depend on the model
system used but also on time, which might be different for each com-
pound. This is supported by the vast differences in both the absolute
number of regulations as well as which proteins show drug response
when comparing decryptE profiles with published single dose data*>*
(Supplementary Fig. 2 and data deposited on MassIVE).

Future extensions of decryptE should include PTMs despite the
fact thatlong-term drug responses may lead to complex PTM datasets
that can be difficult to interpret. Special cases from the current work
illustrating this need are pemrametostat and onametostat. Both are
inhibitors of the protein arginine methyltransferase PRMT5 leading to
reduced methylationlevels of target proteins. By including methylation
as a variable modification in a standard database search for protein
identification, it was possible to measure in-cellinhibition of enzymatic
activity with low nanomolar potency by monitoring methylation sites
onthe PRMT5substrate SNRPBinresponse to the two drugs (Extended
DataFig. 8f). This would have gone unnoticed if the PTM level was not
considered.

The perhaps most exciting pharmacological result of the present
workisthe observation that HDAC inhibitors led to strong and potent
down-regulation of the TCR with aconcomitant reduction of the ability
tomountaT cell response. This may well explain the efficacy of HDAC
inhibitorsin the treatment of TCR signaling-driven T cell lymphomaor
the attenuation of TCR signaling observed in animal models of certain
autoimmune diseases***!. At the same time, because TCR activity is
critical for T cell lineage selection, antigen specificity, effector func-
tionand survival, arepressed expression of TCR complex components
may turn out to be detrimental for the treatment of so-called ‘hot’
tumors that are characterized by immune cell infiltration, and which
often respond to immune checkpoint inhibition therapy. In this con-
text, clinical trial designs may be called into question that combine
immune checkpointinhibition with HDAC inhibitors*2. However, there
may also be beneficial scenarios. Persistent high antigen stimulation
can lead to the phenomenon of T cell exhaustion, diminishing the
ability of the immune system to fight a tumor*™*¢, In such cases, and
depending on the immune status of the tumor, it may be possible
that repressed expression of TCR complex components in response
to HDAC inhibition reduces the absolute level of TCR stimulation
to a degree that reinvigorates exhausted T cell responses. Clearly,
further functional studies are required to better understand such
possible HDAC inhibitor-related effects in patients and the poten-
tial of HDAC inhibitors as research tools in the context of studying
T cell exhaustion.

Taken together, the results obtained in this study indicate that
dose-dependent and proteome-wide measurements of drug-induced
proteinexpression changes should become astandard tool alongside
dose-dependent target deconvolution and pathway engagement stud-
ies. The combined information is highly valuable for basic research as
well as preclinical and clinical drug discovery because it provides a bet-
ter appreciation of the molecular capabilities of bioactive compounds,
from chemical probes to human medicines.

Online content
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maries, source data, extended data, supplementary information,
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Methods
Cell culture
Human Jurkat cells Clone E6.1 (ATCC TIB-152) were cultured in RPMI-
1640 containing 10% fetal bovine serum (FBS) at 37 °C and 5% CO,.
Culture medium was refreshed every 2-3 days and cells were kept at
densities between 0.5 x 10° and 2 x 10° cells per ml until lysis or drug
treatment.

Cell line authentication was accomplished by single nucleotide
polymorphism profiling (Multiplexion).

Compound information

The information of the target space of the 144 compounds included
inthis study was obtained from DrugBank Online (status of July 2023)
and vendor specifications. Information about the clinical phase the
compoundswereinatthe time the study was conducted was retrieved
from ChemBL (status of July 2023).

Compound treatment

Compounds were prediluted in DMSO and further in culture medium
inside a 48-deep-well plate. Per 48-deep-well plate, three DMSO con-
trols were added. For treatment, 4 x 10° cells in RPMI-1640 medium
supplemented with 10% FBS were added on top of each compound
predilutionresultingin afinal volume of 2 ml and final treatment con-
centrations starting from 10 uM to 1 nMin full log,, steps, resultingin
five doses for each drug (10 uM,1pM, 100 nM, 10 nM, 1 nM). Cells were
incubated for18 hif not stated otherwise at 240 rpm, 37 °C and 5% CO,.
Thefollowing day, cells were subjected to viability assessment and lysis.

Confluency, viability and metabolic activity assessment

For determination of cell viability and metabolic activity after com-
pound treatment, 100 pl of cell suspension per well were added to a
96-well plate containing 50 pl of IncuCyte Cytotox Dye (250 nM final
concentration, Sartorius) and alamarBlue Cell Viability Reagent (10%
final concentration (v/v), Invitrogen). The plate was placed into the
IncuCyte live-cell analysis system (37 °C and 5% CO,) and cells analyzed
for cytotoxicity over atime course of 3 h (x10 magnification, scantype
was standard with five images per well, channel selection was phase
contrastand fluorescence (300 msacquisition time), scaninterval was
every hour). Theintegrated software of IncuCyte (Basic Analyzer) was
used for confluency and cytotoxicity analysis. After 3.5 h, metabolic
activity was determined by fluorescence measurement of the Alamar-
Bluereagent usingthe fluorescence read out onthe microplate reader
FluoStar Omega (A, = 544 nmand A., = 584 nm, BMG Labtech).

For confluency and metabolic activity evaluation, the resulting
values were normalized to the average values for the DMSO control.
For cytotoxicity, the values were corrected for differences in conflu-
ency, before normalizing the values to the average values for the DMSO
controls. Dose-response curves were fitted to the data as described
below (section ‘Curve fitting’).

Any microscopic pictures displayed in the paper or elsewhere
were exported fromthe IncuCyte software as displayed and not further
modified.

Celllysis for protein extraction

To obtain cell lysate from untreated cells (for optimization purposes),
cell suspension was centrifuged at 172g for 5 min at room tempera-
ture, washed with PBS (phosphate buffered saline, without calcium or
magnesium) and pelleted before resuspensionin lysis buffer (2% SDS,
40 mM Tris/HCI, pH 8,95 °C).

Lysis of compound-treated cells was performed in 96-deep-well
plates. Therefore, after 18 h of treatment time, 48-deep-well plates were
centrifuged (172g, 10 min, 4 °C), supernatant was discarded, cell pel-
lets were resuspended in PBS and transferred to a 96-deep-well plate.
Cell pellets were washed two more times with PBS and centrifuged to
discard the supernatant before lysis in 100 pl of lysis buffer.

For hydrolysis of DNA, lysate was heated to 95 °C for 10 min while
shaking at172gand trifluoroacetic acid was added to a final concentra-
tion of 1% (v/v) and incubated for 1 min while shaking. Subsequently,
N-methylmorpholin (NMM) was added for neutralization to the hot
lysate to a final concentration of 2% (v/v). Lysate was stored at —20 °C
until further use.

Tissue and bacteriasample preparation

Mus musculus (M. musculus) and Arabidopsis thaliana (A. thaliana)
tissue samples were snap frozenin liquid nitrogen before homogeniza-
tionusing the TissueLyser Il (Quiagen, 5 min, 30 Hz, using one stainless
steel bead witha5 mm diameter). Lysis buffer (4% SDS, 40 mM Tris/HCI,
pH 8) was added after removing the bead and samples were sonicated
using the Bioruptor Pico (Diagenode, 25 cycles with 30 s on/off). DNA
hydrolysis was performed as described above using final concentra-
tions of 2% trifluoroacetic acid and 4% N-methylmorpholin, respec-
tively. Lysates were cleared by centrifugation (60 min, 4 °C, 21,000g).
Supernatant lysate was stored at —20 °C until further use.

Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aerugi-
nosa) were growninashaker culturein Luria-Bertani mediumat 37 °C,
300 rpm. Whenreaching an optical density of 0.5and 0.6, respectively,
cultures were harvested by centrifugation (172g, 60 min, 4 °C) and
washed twice with PBS. Lysis buffer was added to the pellet, followed
by DNA hydrolysis as described above. Lysate was sonicated using the
Bioruptor Pico (above) before clearance by centrifugation (60 min,
4°C,21,000g). Cleared lysate was stored at =20 °C until further use.

Isolation and sorting of T cells from healthy donors

Thrombocyte-depleted blood samples were obtained from two
healthy, voluntary human donors (male, age 26) after they gave
written and informed consent. This study was approved by a vote from
the ethics committee of the University Hospital Miinchen rechts der
Isar (564/18S). Sample were transferred into 50 ml Falcon tubes, with
each tube containing approximately 15 ml of blood. The Falcon tubes
were thenfilled up to atotal volume of 37.5 ml with PBS, and the blood
was thoroughly mixed. Toisolate peripheral blood mononuclear cells
(PBMCs), a12 ml layer of Pancoll was meticulously underlaid using a
24 mlsyringe with along needle (G20 x 23/4’; @ 0.9 x 70 mm). Subse-
quently, the blood samples were subjected to centrifugation using a
programmed gradient (acceleration of 7, deceleration of 1, 2, 7g, for
20 minatroom temperature). Following the gradient centrifugation,
the plasmafractionwas discarded, and the PBMC-containing buffy coat
was carefully collected. The PBMCs were then washed with 50 ml of PBS
using centrifugation (441g, 5 min, at room temperature).

For cell separation, 10’ PBMCs were resuspended in 40 pl MACS
buffer (PBS, 1% FCS, 2 mM EDTA) and incubated with 10 pl antihuman
CD4 beads for 15 min at 4 °C. Subsequently, PBMCs cells were washed
with 15 ml of MACS buffer and centrifuged. CD4 T cells were positively
enriched with the autoMACS Pro Separator. Flowthroughwas collected
and used for theisolation of CD8 T cells according to theisolation pro-
tocol of CD4 T cells. Isolated primary T cells were cultured in RPMI-1640
containing10% FBS and 1% penicillin and streptomycin (37 °C, 5% CO,)
and were either subjected to HDACi treatment immediately or were
activated as described below.

HDACi treatment of peripheral T cells from healthy donors

Foreach population (CD4/CD8") afraction of cells was activated using
Dynabeads Human T-Activator CD3/CD28 for T Cell Expansion and
Activation (Invitrogen) and incubated for 48 h (37 °C, 5% CO,) before
HDAC inhibitor (HDACi) treatment. Naive T cells were subjected to
treatment immediately after isolation and sorting. Irrespective of
activationstatus, cells were treated with different HDACi (five doses for
eachdrug:10 pM, 1M, 100 nM, 10 nM and 1 nM) for 18 h, followed by
viability, confluency and cytotoxicity assessment as described above.
Cell lysis, protein extraction followed by proteomic workflow and
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LC-FAIMS-MS/MS measurement was carried out as described in the
respective sections. For samples, where available material was limited,
proteininput was adjusted for tryptic digestion and obtained peptides
were loaded on Evotips and analyzed on an Evosep-FAIMS-Exploris
set-up as described previously*® (for a full list of used instrument soft-
ware, see Supplementary Table 3, Materials).

Transcriptome sample preparation and analysis

For transcriptome analysis, Jurkat cells were treated according to the
protocol described above. After 18 h, cells were lysed and total RNA
was extracted using the ReliaPrep RNA Cell Miniprep System (Pro-
mega), according to the manufacturer’s protocol, and evaluated on
a 2100 Bioanalyzer (Agilent Technologies). RNA library preparation
occurred with the 3 mRNA-Seq Library Prep Kit FWD with Unique
Dual Indices (Lexogen) and was sent to Lexogen for gene expression
profiling. Alignment of obtained reads was done using the data pro-
cessing pipeline provided by the manufacturer using the QuantSeq
FWD pipeline and Homo sapiens (H. sapiens) genome annotation. The
obtained alignments were trimmed, reads were counted and normal-
ized.Dose-response curves were fitted to the data as described below
(section ‘Curve fitting’).

SP3 sample preparation and tryptic digestion

Protein yield was determined by Thermo Pierce BCA (bicinchoninic
acid) protein assays. All steps were performed according to the manu-
facturer’s protocol.

Before tryptic digest, detergent was removed by single-pot SP3
clean-up, following the protocol first described by Hughes et al.”
adapted to a Bravo Agilent liquid handling platform. In short, lysate
containing 200 pg of protein was mixed with 1 mg SP3 beads (50:50
mixture of Sera-Mag carboxylate-modified magneticbead types Aand
B (Cytiva Europe)) in a 96-deep-well plate and proteins were precipi-
tated ontothe beadsin70% ethanolin ddH,0 (double distilled water).

The beads were washed three times with 80% ethanol in ddH,0
and once with100% acetonitrile (ACN). Disulfide bonds were reduced
with 10 mM dithiothreitol for 45 minat 37 °C, followed by alkylation of
cysteines with 55 mM CAA (2-chloroacetamide) for 30 minatroomtem-
perature in 100 pl of digestion buffer (2 mM CaCl, in 40 mM Tris-HCI,
pH 7.8). Trypsin (1:50 (wt/wt) enzyme-to-protein ratio) wasadded and
proteins were digested offthe beads at 37 °Cand 1,200 rpm overnight.
For peptide recovery, the beads were settled on magnets and the super-
natant was transferred to a new 96-well plate. Beads were washed by
addition of 100 pl 2% formic acid in ddH,0 and the supernatant was
transferred to the collection plate. Subsequently, the samples were
desalted as described below.

Desalting and drying of peptides

Before LC-MS/MS analysis samples were desalted using
hydrophilic-lipophilic balanced (10 mg of N-vinylpyrrolidon-
divinylbenzol porous particles 30 pm, Macherey-Nagel) 96-well plates
using centrifugation at 7gfor1 min until specified otherwise. For this,
hydrophilic-lipophilic balanced material was primed with 500 pl of
isopropanol, ACN and solvent B (0.1% formic acid in 70% ACN in ddH,0)
and equilibrated with 1,000 pl of solvent A (0.1% formic acid inddH,0)
before sampleloading (by gravitation, 5 min). The sample flowthrough
was reapplied to the plate and bound peptides were washed with
1,000 pl of solvent A. Peptides were eluted with 250 pl of solvent B
(3 min, 7g; 1 min, 172g). Samples were frozen at -80 °C, dried by vacuum
centrifugation and stored at —20 °C until LC-MS/MS measurement.

High pH reversed-phase fractionation

Here, 50 pg of peptides (A. thalianafor Extended Data Fig. 1iand Jurkat
for Fig. 3b and Extended Data Fig. 4d-e) were fractionated by basic
pHreversed-phase material (reversed-phase sulfonate cartridge tips;
5 pl of polystyrene-divinylbenzene (PS-DVB) resin, Agilent) into six

fractions using the Agilent AssayMAP Bravo pipetting system. The
reversed-phase sulfonate cartridges were primed, washed and equili-
brated according to the manufacturer’s protocol. Peptides were recon-
stituted in 100 pl of 25 MM ammonium formate (pH 10) and loaded
onto the cartridges. Peptides were fractionated by increasing ACN
concentrations (5,10,15,20,25,30,80%). The seven elution steps were
either combined intosix fractions, combining the 5and 80% fractions,
orintofour fractions. For four fractions, the 5and 25%, the 10 and 30%,
the 15 and the 80%, and the 20% ACN fraction and the flowthrough
were combined. All fractions were acidified with formic acid to a final
concentration of 1%. Samples were frozen at -80 °C, dried by vacuum
centrifugation and stored at —20 °C until LC-MS/MS measurement.

Microflow-LC-(FAIMS)-MS/MS measurements

All samples (except where indicated otherwise) were analyzed
on a microflow-LC-MS/MS system using a Vanquish Neo ultra
high-performance LC system (Thermo Fisher Scientific) coupled to
an Orbitrap Eclipse Tribrid mass spectrometer (Thermo Fisher Sci-
entific) with or without installed FAIMS Pro Interface (Thermo Fisher
Scientific). For afull list of used instrument software, see Supplemen-
tary Table 3, Materials.

Before measurement, samples were reconstituted in 0.1% formic
acid, 2% ACN. For system optimization, the peptide concentration was
determined using a Nanodrop system (Thermo Fisher Scientific) and
theamount of peptide required for each run wasinjected accordingly.
For drug profiling samples, half of the samples were injected per run
(50 pg). For fractionated samples everything was injected.

Chromatographic separation was performed via direct injection
on al5cm Acclaim PepMap 100 C18 column (2 um, 1 mm inner diam-
eter x 15 cm, Thermo Fisher Scientific) at aflow rate of 50 pl min™. The
columntemperature was setto 55 °C. Solvent Awas 0.1% formicacid in
3%DMSO inddH,0, and solvent Bwas 0.1% formicacid and 3% DMSQOin
ACN.Thegradients for differentlengths canbe foundin Supplementary
Table 3, LC gradients.

Incorporation of FAIMS into microflow-LC-MS/MS

Because micro-LC separations generate much sharper peaks than
nano-LC, theincorporation of FAIMS into microflow-LC-MS/MS system
needed tobeevaluated fromthe bottom up. Wefirst characterized the
device for peptide transmission at different compensation voltage
(CV) values using a tryptic digest. With these data in hand, we next
simulated how many and which CV values should be combined for best
proteome coverage. Simulations were experimentally tested using
LC gradient lengths between 15 and 180 min and we systematically
compared performance with and without FAIMS. For gradient times
of 15,30 and 60 min, only one CV setting can be meaningfully used
because CV switching takes substantial amounts of time. Regardless
of LC times, FAIMS increased the number of identified protein groups
atagiven time or halved the MS time needed to obtain the same depth
of analysis compared to the same LC set-up but without using FAIMS.

Measurement without FAIMS installed

The OptaMax NG ion source (Thermo Fisher Scientific) with a heated
electrospray ionization probe was used to acquire the data. The sprayer
was positioned at middle position in the x axis (left to right), at posi-
tionlintheyaxis (front toback) and between positionsMand Linthe
zaxis (probe height).

The mass spectrometer was operated in data-dependent
MS/MS, positive ion mode, using a spray voltage of 3.5 kV, a funnel
radio-frequency lens value of 40, an ion transfer tube temperature of
325°Candvaporizer temperature of 125 °C. The flowrates for sheath gas,
auxiliary gas and sweep gas were set to 32, 5and O | min™, respectively.

Afull-scan (MS1) was recorded from 360 t0 1,300 m/zwith areso-
lution 0f 120,000 in the Orbitrap in profile mode. The MS1 AGC target
was custom set to 100% and the maxIT was set to 50 ms. Based on the
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full scans, precursors were targeted for the MS/MS scans (MS2) if the
isotope envelope was peptidic (monoisotopic precursor selection), the
charge was between 2and 6 and the intensity exceeded 1 x 10*. The MS2
quadrupole isolation window was set to 0.4 m/z. Peptide fragmenta-
tionoccurredin theionrouting multipole by HCD with afixed collision
energy mode, the collision energy normalized to the precursor m/zand
charge with a collision energy of 28%. The MS2 scan was acquired in the
lonTrap withrapid scanratein centroid mode and a defined first mass
of100 m/z.Specific MS2 properties as well as cycle times for different
gradient length can be found in Supplementary Table 3, MS settings.

Measurement with FAIMS installed

The same ion source and probe as above was used, applying the
same position setting. The mass spectrometer was operated in
data-dependent MS/MS, positive ion mode, using a spray voltage of
4 kV, afunnel radio-frequency lens value of 40, an ion transfer tube
temperature of 325 °C and vaporizer temperature of 300 °C. The flow
rates for sheath gasand auxiliary gaswere set to40 and 51 min™, respec-
tively. FAIMS was operated with standard resolution (inner and outer
electrode 100 °C) and a static carrier gas flow of 3.5 min™. Measure-
ment parameters were unchanged and the respective FAIMS CV was set
tothe needed value. For measurements of drug perturbed samples, the
60 min gradient was used withaset CVof-30 V.

If more than one internal CV was used (system optimization),
independent experiments were specified for the different CVs in the
Tune method with the exact same settings, except for the different CV
value (the used CV values can either be read directly from the figures
or theraw file names). This leads to the MS looping through the speci-
fied experiments of the method, switching after each MS cycle (MS1
scan + MS2 scans). To keep the data points and thus quantification
quality stable, the cycle time stated above was divided by the number
of used internal CVs resulting in 0.75 s for 60 min (two CVs), 1.4 s for
120 and 180 min (two CVs) and 0.8 s for 120 and 180 min (three CVs).

Database searching

Theraw MS datafiles were processed withMaxQuant v.1.6.2.10 (ref. 27)
using the integrated Andromeda search engine and searched against
the respective reference database (H. sapiens: downloaded from Uni-
Prot containing canonical and isoforms 24 August 2020; 75,776 entries,
E. coli:downloaded from UniProt containing canonical and isoforms 1
July 2021; 4,713 entries, P. aeruginosa: downloaded from UniProt con-
taining canonical and isoforms 1July 2021; 5,563 entries, M. musculus:
downloaded from UniProt containing canonical and isoforms 1 July
2021;25,381 entries, A. thaliana: Araportll genome release downloaded
from Arabidopsis.org containing canonical and isoforms 16 June 2020;
48,359 entries).

Raw files from runs with multiple internal FAIMS CVs had to be
splitinto separate filesbased on CV values before MaxQuant searches.
These separate files were specified as different fractions, as for the basic
reverse-phase fractions, of the same experiment in MaxQuant. Multiple
injections of the same sample were specified as the same experiment.
Standard MaxQuant search parameters were used. Trypsin/P was speci-
fied as protease, allowing for up to amaximum of two missed cleavages.
Carbamidomethylation of cysteine was specified as fixed modification,
while oxidation of methionine and protein N-terminal acetylation were
considered as variable modifications. Where specified, mono- and
di-methylation of arginine and lysine was enabled as a variable modifica-
tion. Thelabel free quantification (LFQ) algorithm, withastandard LFQ
minimum ratio count setting of 1, as well as the iBAQ (intensity-based
absolute quantification) algorithm, with logfit, was switched on where
needed. Where used, the Match-Between-Runs algorithm was switched
onwith default settings (0.7 minand 5 min for matching and retention
time alignment window, respectively). The false discovery rate (FDR)
was setto1% on proteinand peptide spectral match level. For Prosit res-
coring, the FDRwas set to 100% on protein and peptide spectral match

level. The respective MaxQuant msms.txt and .raw files were rescored
by Prosit. Peptides with g values <0.01 were retained and proteins were
grouped based on the picked FDR method”. For MaxQuant output,
proteins for which no unique peptide was found and thus where not
distinguishable were aggregated to protein groups. For picked FDR
protein group output, proteins are grouped on gene level and only
unique peptides are considered. For readability, we refer to all only as
proteins in the figures. Data analysis and visualization was performed
using R (v.4.1.0) in RStudio (see Supplementary Table 3, Materials for full
list of all packages used) and Microsoft Excel 365. Further editing of plots
was done in Adobe Illustrator CSé6. Information on whether a dataset
was rescored or not canbe found on MassIVE (Data availability section).

Data processing and analysis
Curve fitting. For each protein-drug combination, the LFQ inten-
sity relative to the average protein intensity in the DMSO controls
was calculated for all drug concentrations. The same was done for
each transcript-drug combination of the transcriptomic data using
read counts. For the different viability metrics, the data were pre-
pared as described above. To these normalized data, a sigmoidal
four-parametric log-logistic model (equation (1)) was fitted using the
dose-response curve R package (v.3.0-1), where x is the log,, of the
drug concentration, pECs, is the negative log of the inflection point
of the curve (denoted as the effective concentration 50; ECy), tis the
top or low-dose plateau, b is the bottom or high-dose plateau, sis the
curveslopebetweenthe plateaus and Y(x) is the observed proteinratio
compared to the vehicle control at concentration x.
t—b
Y(x) = —(1 10 (x—pECSO))) +b )

For eachresultingmodel, descriptive parameters were extracted
and reported. Comprising the optimized slope (s), top (t), bottom (b)
andinflection point (ECs,), as well as the areaunder the curve, the coef-
ficient of determination (R?), mean average deviation, the predictedy
value of the fitted curve for the highest concentration (end of curve,
fold change) and the slope of alinear model fitted to the data.

Curve classification. To avoid manual annotation of >1 million dose—
response curves, arandom forest classifier was trained using the ranger
R package (v.0.14.1). As a ground truth dataset, curves of two com-
pounds were manually annotated as up-, down- and nonregulated.
The dataset was split into 80:20 for training and validation dataset,
respectively (training 11,562, validation 2,883, total 14,409). The input
features were comprised of the values described above, along with
the relative LFQ intensities and number of unique peptides for all
concentrations and abundance percentile of the respective proteinin
the DMSO control. After hyper parameter tuning, the final model was
trained with1,200 trees, randomly choosing 15 independent variables
at each split and splitting only nodes with a minimum size of 3. Vari-
able importance mode was set to impurity and the Gini split rule was
applied. The model’s performance and quality were tested using the
validation dataset, calculating precision, confusion matricesand ROC
curves. Theresulting classifier was used as a prefilter, plotting curves
into separate PDFs and writing information into separate..txt files based
on the predicted classes, thereby facilitating manual examination of
all drug datasets. The same classifier was used for the dose-response
curves of the drug perturbed transcriptome dataset. These regulated
proteins were further analyzed to explore the mode of action of drugs.

Further filtering. For further analysis, a protein was regarded as up- or
down-regulated if it was classified accordingly and the fold change
exceeded 1.5 and 0.7 for up- and down-regulation, respectively. The
same was applied to all transcripts, additionally retaining only observa-
tions where read counts were above 50 for all concentrations.
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GO term enrichments. For the heatmap clustering of drugs with
similar effects, a GO term enrichment analysis was performed for
each drugindividually using the clusterProfiler R package (v.4.2.2.)*.
Each drug dataset was tested for enrichment of GO terms on all levels
(cellular compartment, molecular function and biological process)
bothin up-and down-regulated proteins with the whole drug dataset
as the background. P values were corrected using the FDR approach
and the g value cut-off was set to 1. The enrichment results for up-
and down-regulation were combined, retaining the more significant
entry for duplications. After combining the enrichment results for all
drugs, the gvalues were log transformed, multiplied by —1for GO terms
enriched in down-regulation and z-scored for each GO termindividu-
ally. The heatmap depicts the combined, preprocessed GO term enrich-
ment results after hierarchically clustering of both rows and columns
using Pearson correlation as a distance metricand Weighted Pair Group
Method with arithmetic mean as the agglomerative method. The GO
term enrichmentresults displayed in Extended Data Fig. 6awere taken
from the global GO term enrichment analysis described above. For
Extended Data Fig. 5d a new GO term enrichment analysis was done
(Pvalue cut-off, 0.05; Pvalue correction, FDRapproach; Subontology,
Molecular Function; whole H. sapiens database as background).

Dose-dependent methylation. The searchresults for lysine and argi-
nine methylation were prepared for dose-response curve fitting similar
tothe process described for proteins and transcripts above. However,
for each peptide-concentration-inhibitor combination the intensity
ratio of methylated to unmethylated version was calculated. The result-
ing valueinturnwas then normalized to the respective DMSO control
before continuing as described above (section ‘Curve fitting’).

Simulation of target coverage in relation to proteomic depth. For
the simulation of target coverage over captured proteomic depth we
ranked all >8000 proteins of this study by their mean iBAQ values in
all DMSO controls in a descending fashion. To simulate the different
proteomic depths, this list was cut at the indicated ranks (number of
identified proteins). For each drug, we checked in turn how many of'its
targets were included in the resulting list and calculated the fraction
of designated targets that were detected.

Replicate analysis. For the volcano plot displayed in Extended Data
Fig.2b assessing the quantitative reproducibility, the 48 DMSO controls
were randomly assigned into two equally sized groups. After median
centering normalization of the LFQ intensities of the picked FDR gene
group output and filtering for completeness in the dataset, a two-sided
Student’s t-test was performed for all 4,694 proteins. Pvalues were cor-
rected for multiple hypothesis testing using the FDR approach using
the R package fdrtool (v.1.2.17).

For the comparison of quantitative reproducibility between
unregulated and regulated proteins using the five individual doses
for each inhibitor as replicates, the LFQ intensities of the picked FDR
gene group output were normalized by median centering. The CoV was
calculated across the five doses for each drug for each protein that was
either classified as up- or down-regulated, or unregulated.

To assess the reproducibility of EC5, determinations, the curves for
each proteinforeach drugreplicate werefitted as described above. For
proteins being classified as up or down-regulated in three out of four
replicates per drug, the standard deviation of the pEC;,s was calculated.

Real-time RT-qPCR

For RT-qPCR analysis, cells were treated according to the protocol
described above. After 18 h cells were lysed, and total RNA was iso-
lated using the Monarch Total RNA Miniprep Kit (New England Biolabs)
according to the manufacturer’sinstructions. RNAyield was determined
using the Qubit fluorometer (Thermo Fisher Scientific). Complemen-
tary DNA (cDNA) was generated from 2 ug of RNA from each sample

using the LunaScript RT SuperMix Kit (New England Biolabs) according
tothe manufacturer’s protocol. Additionally, no-reverse transcriptase
controls were generated for each sample during the reverse transcrip-
tionstep. After reverse transcription, the cDNA was diluted -66 fold with
nuclease-free ddH,0. qPCR was performed in triplicates on a CFX384
Touch Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.)
using 10 ng of cDNA per sample, the Luna Universal qPCR Master Mix
(New England Biolabs) and the primer pairs as shown in Supplementary
Table 3, Primer list. No-reverse transcriptase controls were measured
in pools of all samples on each plate. Nuclease-free ddH,0 was used as
the nontemplate control for each assay. Cycling parameters were set to
95°C (1 min), 40 cycles of 95 °C (15 s) and 60 °C (30 s with plate read on
SYBR channel) each, and finally a melt curve was recorded from 60 to
95 °Cwithanincrement of 0.5 °C per 5s and SYBR channel plate reads
after eachincrement. All samples treated with the same drug as well as
the DMSO control were measured on the same plate.

Analysis of RT-qPCRresults

Quantification cycle (C,) and melting temperature (7T,) values were
determinedinthe CFX Manager v.3.1software (Bio-Rad Laboratories,
Inc.). Theregression method of the software was used for C,assessment
with baseline correction and curve fit turned on. The fold change in
expression after treatment and the ratio of truncated to full-length
transcript were calculated in Microsoft Excel 365 from the mean C,
values for each sample using the 22*““method*.

T cell activation assay

Activation potential of HDACi treated Jurkat cells was analyzed using
TCR and/or CD3 effector cells (nuclear factor of activated T cells or
NFAT) fromaT Cell Activation Bioassay (Promega) with slight adapta-
tions of the manufacturer’s protocol. Briefly, TCR/CD3 effector cells
(NFAT) were incubated with HDACi (five doses for each drug: 10 uM,
1u1M,100 nM, 10 nM and 1 nM) for 16 h, followed by unspecific activa-
tionviaCD3 and/or CD28 using the Human Anti-CD3/CD28 T Cell acti-
vationKit (Cell Signaling Technology). After 5 h, the receptor-mediated
signaling was read out by luciferase activity onamicroplate reader Flu-
oStar Omega (BMG Labtech). Thereby the strength of the luminescence
signal corresponded to the strength of receptor-mediated signaling.
Todetermine thestrength of T cell activation, the luminescence signals
were normalized to the DMSO control. Dose-response curves were
fitted to the dataas described in the section ‘Curve fitting’.

T cell aggregation analysis

Using the brightlightimages of living activated human T cells, acquired
using the IncuCyte live-cell analysis system as described above, cell
aggregates were assigned and quantified (count and area in pm?).
To this end images were processed by ilastik®, a supervised machine
learning image analysis tool kit. The average aggregate size was
calculated for eachimage by summing up the detected aggregate areas
and dividing by the count of aggregates per image, treating the five
imagesacquired per well as replicates. To assess statistical significance
ofthe HDACiinduced reduction of average aggregate size, an analysis
ofvariance test was performed for eachinhibitor individually, followed
by a Tukey honest significant differences post hoc test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The mass spectrometry proteomics raw data, UniProt reference data-
bases (fasta files), MaxQuant search results, Prosit output, transcrip-
tomics raw data and results, dose-response curve fitting outputs (.pdf
and .txtfiles) and comparison to other studies have been deposited to
the ProteomeXchange Consortium viathe MassIVE partner repository
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with the dataset identifier MSV000093659 (PXD047799). All dose—
response curves from this paper can be explored online in Proteomic-
sDB (www.proteomicsdb.org/decryptE). Additionally, dose-response
curves can be visualized and compared in a custom-built Shiny App
(https://decrypte.proteomics.ls.tum.de/). Additional information on
cellmorphology, cell metabolic activity, cytotoxicity, protein half-lives
and protein targets of compounds and drug-target affinity (where
available) are provided'****to help interpreting observed effects.

Code availability

All code used for data curation, analysis and visualization is based on
publicly available R packages as indicated in the respective section
and will be made available upon request with no access restrictions.
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Extended Data Fig.1| Optimization and characterization of the decryptE
workflow for the profiling of drug induced expression changes at scale.

a) Boxplot showing the distribution of drug effect at 10,000 nM for all three
measures of cell fitness. Each dot represents a drug (n = 144). Horizontal lines,
boxes and whiskers of the boxplot depict the median, the range between the
second and the third quartile and the 1.5-fold interquartile range. b) Dose-
response curves of DHFR following treatment with Methotrexate for different
times. ¢) Same as panel b) but for TYMS. d) Same as panel b) but for PLK1.

e) Distribution of the relative number of identified protein groups from Jurkat
cells asa function of the applied FAIMS compensation voltage (CV).f) Heatmap
comparing the number and overlap of identified protein groups between any
combination of two CVs (same data as in panel e). g) Number of identified protein
groups from Jurkat cells as a function of the total LC-MS/MS time used per
sample. h) Far left panel: schematic representation of the experimental design
for testing the robustness of the micro-flow LC-FAIMS-MS/MS method. Colors
represent the different sample types and the size of the ring segment is relative

Injection order log2 protein intensity CoV [%]

to the number of analyses in each segment (total of 250 samples analysed).
Middle left panel: bar plot summarizing the number of proteins identified for
eachsample type. Error bars represent mean + standard deviation (SD, n =25
technical replicates for each sample type). Middle right panel: number of
identified protein groups plotted as a function of the consecutive order in which
the samples were analysed. Far right panel: Cumulative density plot summarizing
the precision with which proteins were quantified across replicate experiments.
Dotted lines indicate the respective fraction of proteins (50% and 90%) that were
quantified with the given coefficient of variation (CoV). i) Left panel: Bar plot
showing the number of identified proteins by single shot micro-flow LC MS/MS
with or without FAIMS installed or by micro-flow LC-MS/MS after fractionation
using high pH reversed phase chromatography (4 or 6 fractions) and using

the specified amount of analysis time. Data are average values + SD fromn =4
technical replicates. Right panel: same as panel h (far right, but for the data
shown in the left panel of i).
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Extended Data Fig. 2| Reproducibility assessment of the decryptE workflow.
a) Left panel: number of quantified protein groups from DMSO control samples
that were analyzed along the entire time frame of the proteomic screen plotted
as afunction of the consecutive order in which the samples were analyzed.

Right panel: Cumulative density plot summarizing the precision with which
proteins were quantified across DMSO control samples. Dotted lines indicate
the respective fraction of proteins (50% and 90%) that were quantified with the
given coefficient of variation (CoV). b) Volcano plot analysis for n = 4694 protein
groups from 48 DMSO control samples from the proteomic screen which were
randomly assigned to two groups. Analysis of significance was done using a
two-sided Welch’s t-test without multiple testing correction. ¢) Cumulative
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density plot showing the reproducibility of pEC50 estimations from replicate
dose-response analysis (n = 4) of palbociclib, panobinostat, and colchicine.

69.5 % of all pEC50 estimates were reproducible within 210g10 step of drug
concentration. Blue and pink dots indicate the SD for example curves of panel

d) and e) respectively. d) Replicate dose-response curves of ATAD2 regulated by
palbocicblib along with the SD for the pEC50. €) Same as panel d) but for AURKA
regulated by colchicine. f) Upper panel: Violine plots showing the distribution
of CoV of all proteins which were not regulated by drug treatment for each of the
144 drugs. Median values are given above each violine for each drug. Lower panel:
same as upper panel but for all proteins that showed drug induced expression
changes.
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Extended Data Fig. 4 | Drug-induced mRNA and protein expression changes.
a) Dose-response curves of mMRNA and protein levels of IKZF1. b) Apparent
binding affinity constants (pKd = —log10 Kd) of brigatinib-Proteininteractions
determined by Kinobead competition assays'’. CLK1,3,4 are marked by respective
text. ¢) Left panel: Dose-dependent change of mRNA levels (determined by
RT-qPCR) for different CLK1-4 domains following treatment with brigatinib.

Middle panel: same as left panel but for abemaciclib. Right panel: same as left
panel but for milciclib. d) Left panel: dose-response curves of CLK1-4 following
treatment with abemaciclib. Middle panel: same as b) but for abemaciclib. Right
panel: ratios of the N-terminal and kinase domain transcripts (determined by
RT-qPCR) of CLK1-4 in response to abemaciclib. The dotted line marks a1:1
quantitative ratio of the two mRNAs. e) Same as panel d) but for milciclib.
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Extended Data Fig. 5| Discrepancies between different omics levels.

a) Comparison of direction of drug-induced expression changes between mRNA
and protein levels for seven drugs. b) Dose-response curves of drug-induced
abundance changes of CCNB2 on protein (blue) and mRNA (pink) level after

carfilzomib treatment. ¢) Same as panel b) but for several proteins of the folding

machinery. d) GO enrichment of genes that are up-regulated on mRNA and
down-regulated on protein level after carfilzomib treatment. Testing of

significance was done using the clusterProfiler R package (v. 4.2.2.) with the FDR
approach for multiple hypothesis testing correction.
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Extended Data Fig. 7| HDAC inhibitors diminish TCR expressionin T-cells.
a) Three measures of cell viability of Jurkat cells treated with panobinostat.
b) Loss of CD3E expression in response to HDAC inhibitors. ¢) Loss of

mRNA expression of several members of the TCRin response to vorinostat.

Relative intensity

0.25-

_| ® Fimepinostat

0.00

Relative intensity

0.50-

CD3E

@ Pracinostat
@ Tucidinostat
@ Panobinostat @ Vorinostat

@ Entinostat

0 110

100 1,000 10,000

Concentration [nM]

CD4+ Vorinostat

GZMB
1.2
L]
L]
0.8+
Activated
CD8+
0.4 @ Panobinostat
CD4+
@ Panobinostat
@ Vorinostat
0.0

0 i 10 100
Concentration [nM]

d) Microscopic pictures of HDAC inhibitor-treated and CD3/CD28-activated

1,000 10,000

c
1.54
‘@ T L[]
S [
3 1.0
(]
el
g Transcript
2 @& CD247
S 05{ @CD3D
14 @ CD3E
41 @ CD3G
& TRBC1
0.0 T T T T T
0 1 10 100 1,000 10,000
Vorinostat [nM]

CD4+ Panobinostat

400 i

CD8- and CD4- positive primary human T-cells (n = 1). e) Dose-dependent
reduction of TCF7 protein expression in primary human T-cells (naive only) in
response to HDAC inhibitors. f) Dose-dependent reduction of GZMB protein
expression in primary human T-cells (activated only).

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-024-02218-y

a E3 ligase complex b ¢
1.54 2.0
E2-Ub binding surface i
Target binding surface l
IMID "\ > 2 15
“’K @ 2 4
2 £ *
2 5 o °
3 05/ GLUL © | ORAN
® “7| elberdomide 0.5{ @ Iberdomide .
©® Lenalidomide ® Lenalidomide
| @ Pomalidomide 4 @ Pomalidomide
©® Thalidomide ® Thalidomide
0.0 : : : . : 0.0 ; - - - ;
0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000
d Concentration [nM] Concentration [nM]
1.5+ 1.54 1.54 1.5
[ ]
n n i B )
. z!ﬂ
S ° S 2 g
S 0.54 % 0.54 L & 0.5 % 0.54
2 © CRBN 2 © CRBN 3 © CRBN 2 © CRBN
4 e CUL4A - e CUL4A 4 e CUL4A 4 e CUL4A
e DDB1 @ DDB1 o DDB1 o DDB1
00 T T T T T o'n T T T T T o'n T T T T T O'n T T T T T
0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000
Thalidomide [nM] Lenalidomide [nM] Pomalidomide [nM] Iberdomide [nM]
e
2.0 IKZF2;IKZF4 204 PATZ1 15] RAB28
’ ® Iberdomide @ Pomalidomide : ® Iberdomide @ Pomalidomide ® Iberdomide @ Pomalidomide
| @ Lenalidomide ® Thalidomide | @ Lenalidomide ® Thalidomide ® Lenalidomide @ Thalidomide
b °
2_1 .5 31'5' >
c . c - c
o © 2o ° ° ° L
IS d ° £ — IS
1.0 - 2 1.00 o 4 t! °
= : = =
8 = © a ° ®
2 T 2 : 2
0.54 0.5
00 T T T T T 0'0 T T T T T o'n T T T = ¢
0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000 0 1 10 100 1,000 10,000
Concentration [nM] Concentration [nM] Concentration [nM]
f SNRPN SNRPB SNRPB SNRPB;SNRPN

© Onametostat

@ Onametostat

VPLAGAAGGPGIGRme - (R108)

GVGGPSQQVMTPQGRme - (R147)

= ~
Pemrametostat ® Pemrametostat @ Pemrametostat 2 . E—,_’
A « Onametostat 20 ° 31.0 51
® £ ’
/\ 215 S S
(‘ [ > ® Onametostat %.
E=
Me ;-E> E 05 @ Pemrametostat % @ Pemrametostat
E10 EO O
g 2 2
- = ©
g5 e °
SNRPB 2 . s >
o ©0.0 v =1
0 K . : , S0
6 1 10 160 1000 o000 © 0 1 10 100 100010000 & 4 1 10 160 1,000 10,000

Concentration [nM]

Extended Data Fig. 8 | Molecular glues and PRMTS5 inhibitors. a) Schematic
representation of the RING-CUL4A-DDB1-CRBN complex with a bound IMiD
molecular glue. b, ¢) Dose-dependent protein expression for GLUL and ORAIL
inresponse to several IMiDs. d) same as b) but for members of the RING-CUL4A-
DDBI-CRBN complex. e) Same as b) but for IKZF2, PATZ1and RAB28.f) Far
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left panel: schematic representation of SNRPB methylation by PRMT5 and its
inhibition by pemrametostat and onametostat. Middle left panel: apparent
upregulation of SNRPN and SNRPB by several PRMTS inhibitors. Right two
panels: Down-regulation of methylated Argl08 and Arg147 of SNRPB by PRMTS5
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The mass spectrometry proteomics raw data, MQ search results, Prosit output, transcriptomics raw data and results, and dose-response curve fitting outputs (.pdf
and .txt files), as well as the reference databases used for database searching (downloaded from Uniport) have been deposited to the ProteomeXchange
Consortium via the MassIVE partner repository with the data set identifier MSV000093659.

All dose-response curves from this paper can be explored online in ProteomicsDB (www.proteomicsdb.org/decryptE). Additionally, dose-response curves can be
visualized and compared, in a custom-built Shiny App (https://decrypte.proteomics.ls.tum.de/). Addition information on cell morphology, cell metabolic activity,
cytotoxicity, protein half-lives, and protein targets of compounds and drug-target affinity (where available) are provided to help interpreting observed effects.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender T-cells used in this study originated from 2 male donors. Sex- and gender-based analyses were not performed, because of too
small sample number.

Population characteristics Two male donors, both 26 years old, genotype na.

Recruitment Voluntary, healthy donors were recruited for platelet donation and leftover blood was used for T-cells isolation after donors
gave written and informed consent.

Ethics oversight Ethics committee of the University Hospital Minchen rechts der Isar (564/18 S)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed. For the main proteomic screen 144 compounds were analyzed in 5 doses each with 6 DMSO
control samples per 18 compound dose responses. These numbers were chosen to accomodate all 144 compounds on 8 96-well plates,
enabling streamlined processing. Due to the superiority of dose resolved experiments these numbers are sufficient.

Data exclusions  Peptides with g-values >= 0.01 after PROSIT re-scoring were removed. Proteins that matched the contaminant database were treated
likewise, see method section for details.

Replication To determine reproducibility and robustness of the LC-MS/MS setup an endurance cycle consisting of 250 consecutive injections of 10
different samples was conducted prior to the proteomic screen. For the main screen, 48 DMSO controls were included along the entire time-
frame of the 768 LC-MS/MS runs. For three compounds, dose-response profiling was done n = 4 times - see EDF1 for details. Dose-response
compound profiling was done once for each drug for the main screen. All attempts of replication were successful.

Randomization  Compound distribution was randomized across all treatment plates. Different doses of the same compound were arranged sequentially on
one plate in a column-wise fashion. Positions for DMSO controls were distributed across each plate and fixed across all plates. Processing of all

samples on one plate was done in parallel.

Blinding Investigators were not blinded to compound position on the treatment plate. This study would not be affected by blinding or bias.

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms

Clinical data

XXX X0 s
D00 0X X

Dual use research of concern

Antibodies
Antibodies used Antibodies for the T-cell activation assay were purchased from Cell Signaling Technology:
Human Anti-CD3/CD28 T Cell Activation Kit #70976 (CD3¢e Activating Mouse mAb 1:500, CD28 Activating Mouse mAb 1:1000, Goat
Anti-Mouse Kappa Light Chain, F(ab')2 Antibody 1:250)
Antibodies for activation of primary human T-cells were purchased from Invitrogen
Dynabeads™ Human T-Activator CD3/CD28 for T Cell Expansion and Activation (1 ul beads/1x10"5 cells)
Validation All antibodies were validated by the vendor:

Human Anti-CD3/CD28 T Cell Activation Kit #70976: https://www.cellsignal.com/products/cellular-assay-kits/human-anti-cd3-cd28-t-
cell-activation-kit/70976 Validated by CST by Western Blot using Jurkat cells

Dynabeads™ Human T-Activator CD3/CD28 for T Cell Expansion and Activation: https://www.thermofisher.com/order/catalog/
product/11161D Validated by Thermo Fisher Scientific Baltics UAB using functional testing

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Jurkat cells Clone E6.1 were derived from ATCC (TIB-152).

Authentication Cell line authentication was accomplished by single nucleotide polymorphism (SNP) profiling (Multiplexion, Heidelberg,
Germany).

Mycoplasma contamination Cell lines were regularly tested negative for Mycoplasma contamination.

Commonly misidentified lines  no commonly misidentified lines were used.
(See ICLAC register)
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