Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual SORT LNPs for multi-organ base editing

Abstract

Alpha-1 antitrypsin (A1AT) deficiency (AATD) is caused by a mutation in the SERPINA1 gene (PiZ allele), where misfolded A1AT liver accumulation leads to liver damage, and A1AT deficiency in the lungs results in emphysema due to unregulated neutrophil elastase activity. Base editing offers a potential cure for A1AT; however, effective treatment is hindered by the absence of dual-target delivery systems that can target key tissues. We developed Dual Selective ORgan-Targeting lipid nanoparticles (SORT LNPs) to deliver base editors to the liver and lungs. Dual SORT LNPs correct the PiZ mutation, achieving 40% correction editing in liver cells and 10% in lung AT2 cells. The liver maintains stable editing for 32 weeks, reducing Z-A1AT levels by over 80% and restoring a normal liver phenotype. In parallel, 89% neutrophil elastase inhibition is achieved in lung bronchoalveolar lavage fluid. Taken together, Dual SORT LNP therapy offers a promising approach for long-lasting genome correction for multi-organ diseases such as AATD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimized Dual SORT LNPs enabled higher transfection of disease-relevant cells in the liver and lung.
Fig. 2: Engineering of ABE system and SORT LNPs improved correction editing results.
Fig. 3: Dual-targeted SORT LNPs achieved base editing correction to address toxic manifestations in the liver and lungs of PiZ mice.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in this paper are present in the main text and the supplementary material. The flow cytometry raw data are available from the corresponding author upon reasonable request.

References

  1. Strnad, P., McElvaney, N. G. & Lomas, D. A. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 382, 1443–1455 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Tejwani, V. & Stoller, J. K. The spectrum of clinical sequelae associated with alpha-1 antitrypsin deficiency. Ther. Adv. Chronic Dis. 12_suppl:2040622321995691 (2021).

  3. Santos, G. F., Ellis, P., Farrugia, D. & Turner, A. M. Nephrotic syndrome secondary to alpha-1 antitrypsin deficiency. BMJ Case Rep. 14, e240288 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Loring, H. S. & Flotte, T. R. Current status of gene therapy for α-1 antitrypsin deficiency. Expert Opin. Biol. Ther. 15, 329–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Hamesch, K. & Strnad, P. Non-invasive assessment and management of liver involvement in adults with alpha-1 antitrypsin deficiency. Chronic Obstr. Pulm. Dis. 7, 260–271 (2020).

    PubMed  PubMed Central  Google Scholar 

  6. Cazzola, M., Stolz, D., Rogliani, P. & Matera, M. G. α1-Antitrypsin deficiency and chronic respiratory disorders. Eur. Respir. Rev. 29, 190073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Packer, M. S. et al. Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Mol. Ther. 30, 1396–1406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Werder, R. B. et al. Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Mol. Ther. 29, 3219–3229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stiles, K. M. et al. Intrapleural gene therapy for alpha-1 antitrypsin deficiency-related lung disease. Chronic Obstr. Pulm. Dis. 5, 244–257 (2018).

    PubMed  PubMed Central  Google Scholar 

  10. Janosz, E. et al. Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Ther. 28, 477–493 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiuchiolo, M. J. & Crystal, R. G. Gene therapy for alpha-1 antitrypsin deficiency lung disease. Ann. Am. Thorac. Soc. 13, S352–S369 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Raevens, S., Boret, M., De Pauw, M., Fallon, M. B. & Van Vlierberghe, H. Pulmonary abnormalities in liver disease: relevance to transplantation and outcome. Hepatology 74, 1674–1686 (2021).

    Article  PubMed  Google Scholar 

  13. Zamora, M. R. & Ataya, A. Lung and liver transplantation in patients with alpha-1 antitrypsin deficiency. Ther. Adv. Chronic Dis. 12_suppl:20406223211002988 (2021).

  14. Conrad, A. et al. Impact of alpha 1-antitrypsin deficiency and prior augmentation therapy on patients’ survival after lung transplantation. Eur. Respir. J. 50, 1700962 (2017).

    Article  PubMed  Google Scholar 

  15. Gulack, B. C. et al. Survival after lung transplantation in recipients with alpha-1-antitrypsin deficiency compared to other forms of chronic obstructive pulmonary disease: a national cohort study. Transpl. Int. 31, 45–55 (2018).

    Article  PubMed  Google Scholar 

  16. van ‘t Wout, E. F., van Schadewijk, A., Savage, N. D., Stolk, J. & Hiemstra, P. S. α1-Antitrypsin production by proinflammatory and antiinflammatory macrophages and dendritic cells. Am. J. Respir. Cell Mol. Biol. 46, 607–613 (2012).

    Article  PubMed  Google Scholar 

  17. Belchamber, K. B. R., Walker, E. M., Stockley, R. A. & Sapey, E. Monocytes and macrophages in alpha-1 antitrypsin deficiency. Int. J. Chron. Obstruct. Pulmon. Dis. 15, 3183–3192 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hurley, K. et al. Deriving type II alveolar cells from pluripotent stem cells to produce a novel model of alpha-1 antitrypsin deficiency pathogenesis. Eur. Respir. J. 48, PA4659 (2016).

    Google Scholar 

  19. Pini, L. et al. The role of bronchial epithelial cells in the pathogenesis of COPD in Z-alpha-1 antitrypsin deficiency. Respir. Res. 15, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abo, K. M. et al. Pulmonary cellular toxicity in alpha-1 antitrypsin deficiency. Chest 166, 472–479 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vieira Braga, F. A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 25, 1153–1163 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong, Y., Siegwart, D. J. & Anderson, D. G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 144, 133–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han, X. et al. Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat. Commun. 14, 75 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, Q. et al. Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Adv. Mater. 30, e1805308 (2018).

    Article  PubMed  Google Scholar 

  26. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alvarez-Benedicto, E. et al. Spleen SORT LNP generated in situ CAR T cells extend survival in a mouse model of lymphoreplete B cell lymphoma. Angew. Chem. Int. Ed. Engl. 62, e202310395 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Q. et al. In situ production and secretion of proteins endow therapeutic benefit against psoriasiform dermatitis and melanoma. Proc. Natl Acad. Sci. USA 120, e2313009120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Han, X. et al. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Nat. Nanotechnol. 18, 1105–1114 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132–143 (2024).

  32. Gong, N. Q. et al. Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery. Nat. Mater. 23, 1736–1747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaudhary, N. et al. Amine headgroups in ionizable lipids drive immune responses to lipid nanoparticles by binding to the receptors TLR4 and CD1d. Nat. Biomed. Eng. 8, 1483–1498 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Petersen, D. M. S. et al. Branched-tail lipid nanoparticles for intravenous mRNA delivery to lung immune, endothelial, and alveolar cells in mice. Adv. Healthc. Mater. 13, e2400225 (2024).

    Article  PubMed  Google Scholar 

  35. Mukherjee, A. et al. Engineered mutant α-ENaC subunit mRNA delivered by lipid nanoparticles reduces amiloride currents in cystic fibrosis-based cell and mice models. Sci. Adv. 6, eabc5911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, S. F. et al. Tumor-tailored ionizable lipid nanoparticles facilitate IL-12 circular RNA delivery for enhanced lung cancer immunotherapy. Adv. Mater. 36, e2400307 (2024).

    Article  PubMed  Google Scholar 

  37. Li, B. W. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. Engl. 56, 1059–1063 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Tsuchida, C. A., Wasko, K. M., Hamilton, J. R. & Doudna, J. A. Targeted nonviral delivery of genome editors in vivo. Proc. Natl Acad. Sci. USA 121, e2307796121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ely, Z. A. et al. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat. Biotechnol. 42, 424–436 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, C. et al. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 27, 440–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han, J. P. et al. In vivo delivery of CRISPR–Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. Sci. Adv. 8, eabj6901 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, S. L. et al. Harnessing non-Watson–Crick’s base pairing to enhance CRISPR effectors cleavage activities and enable gene editing in mammalian cells. Proc. Natl Acad. Sci. USA 121, e2308415120 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Song, C. Q. et al. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 4, 125–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ryu, S. M. et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 36, 536–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, S. M. et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew. Chem. Int. Ed. Engl. 60, 5848–5853 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Wei, T. et al. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models. Nat. Commun. 14, 7322 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shepherd, S. J., Issadore, D. & Mitchell, M. J. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 274, 120826 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van ‘t Wou, E. F. et al. Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin. Hum. Mol. Genet. 23, 929–941 (2014).

    Article  Google Scholar 

  57. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas ___domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abbasi, S. et al. Co-encapsulation of Cas9 mRNA and guide RNA in polyplex micelles enables genome editing in mouse brain. J. Control. Release 332, 260–268 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Schmidheini, L. et al. Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nat. Chem. Biol. 20, 333–343 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Hoseini, B. et al. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 13, 18012 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Danaei, M. et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10, 57 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. North, T. L. et al. A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for alpha 1-antitrypsin deficiency increases respiratory capacity and height. J. Med. Genet. 53, 280–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Shen, S. et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum. Gene Ther. 29, 861–873 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Carlson, J. A. et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J. Clin. Invest. 83, 1183–1190 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bjursell, M. et al. Therapeutic genome editing with CRISPR/Cas9 in a humanized mouse model ameliorates α1-antitrypsin deficiency phenotype. EBioMedicine 29, 104–111 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Mitchell, E. L. & Khan, Z. Liver disease in alpha-1 antitrypsin deficiency: current approaches and future directions. Curr. Pathobiol. Rep. 5, 243–252 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santos, G. & Turner, A. M. Alpha-1 antitrypsin deficiency: an update on clinical aspects of diagnosis and management. Fac. Rev. 9, 1 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Piccolo, P. et al. Down-regulation of hepatocyte nuclear factor-4α and defective zonation in livers expressing mutant Z α1-antitrypsin. Hepatology 66, 124–135 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Mela, M. et al. The alpha-1 antitrypsin polymer load correlates with hepatocyte senescence, fibrosis stage and liver-related mortality. Chronic Obstr. Pulm. Dis. 7, 151–162 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Strnad, P. et al. Fazirsiran for liver disease associated with alpha1-antitrypsin deficiency. N. Engl. J. Med. 387, 514–524 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Zorzetto, M. et al. SERPINA1 gene variants in individuals from the general population with reduced α1-antitrypsin concentrations. Clin. Chem. 54, 1331–1338 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02437-3 (2024).

  73. Xue, L. et al. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. Nat. Nanotechnol. 20, 132–143 (2025).

    Article  CAS  PubMed  Google Scholar 

  74. Karadagi, A. et al. Systemic modified messenger RNA for replacement therapy in alpha 1-antitrypsin deficiency. Sci. Rep. 10, 7052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dilliard, S. A. et al. The interplay of quaternary ammonium lipid structure and protein corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanoparticles. J. Control. Release 361, 361–372 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Takahashi, Y., Nishikawa, M., Takiguchi, N., Suehara, T. & Takakura, Y. Saturation of transgene protein synthesis from mRNA in cells producing a large number of transgene mRNA. Biotechnol. Bioeng. 108, 2380–2389 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Ogushi, F., Fells, G. A., Hubbard, R. C., Straus, S. D. & Crystal, R. G. Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. J. Clin. Invest. 80, 1366–1374 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Molloy, K. et al. Clarification of the risk of chronic obstructive pulmonary disease in α1-antitrypsin deficiency PiMZ heterozygotes. Am. J. Respir. Crit. Care Med. 189, 419–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sorheim, I. C. et al. α1-Antitrypsin protease inhibitor MZ heterozygosity is associated with airflow obstruction in two large cohorts. Chest 138, 1125–1132 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Piloni, D. et al. Comparison among populations with severe and intermediate alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease. Minerva Med. 115, 23–31 (2024).

    Article  PubMed  Google Scholar 

  81. Raguram, A., Banskota, S. & Liu, D. R. Therapeutic in vivo delivery of gene editing agents. Cell 185, 2806–2827 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He, N. et al. Ferret models of alpha-1 antitrypsin deficiency develop lung and liver disease. JCI Insight 7, e143004 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mandal, P. K. & Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 568–582 (2013).

    Article  PubMed  Google Scholar 

  84. Ryan, D. E. et al. Phosphonoacetate modifications enhance the stability and editing yields of guide RNAs for Cas9 editors. Biochemistry 62, 3512–3520 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Choi, J. et al. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell 27, 366–382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hasegawa, K. et al. Fraction of MHCII and EpCAM expression characterizes distal lung epithelial cells for alveolar type 2 cell isolation. Respir. Res. 18, 150 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bae, S., Park, J. & Kim, J. S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muller, T. & Winter, D. Systematic evaluation of protein reduction and alkylation reveals massive unspecific side effects by iodine-containing reagents. Mol. Cell Proteomics. 16, 1173–1187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Gundry, R. L. et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr. Protoc. Mol. Biol. Chapter 10, Unit10.25 (2009).

Download references

Acknowledgements

This work was supported by a Sponsored Research Agreement with ReCode Therapeutics and the National Institutes of Health (NIH) National Institute of Biomedical Imaging and Bioengineering (NIBIB) (R01 EB025192-01A1). The UT Southwestern Small Animal Imaging Shared Resource is supported, in part, by the National Cancer Institute (P30CA142543) and the Cancer Prevention & Research Institute of Texas (RP210099). The authors would like to thank UT Southwestern Metabolic Phenotyping Core for the analysis of blood biochemicals; UT Southwestern Small Animal Imaging Resource for their shared AMI-HTX; UT Southwestern Tissue Management Shared Resource for helping with histology and H&E staining; UT Southwestern Proteomics Core for the analysis of A1AT isoforms; UT Southwestern Whole Brain Microscopy Facility for helping with slide scanning; the Moody Foundation Flow Cytometry Facility for helping with flow cytometry and providing expertise; and Inotiv histology and digital pathology services. The authors would also like to thank P. Hartono, L. Kahn, S. Sherman, M. Weinberg and J. Couch for their support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.K. and D.J.S. Methodology: M.K. Investigation: M.K., E.S.S., J.C.C., S.C., Y.S., S.M.L., S.W., P.P., Z.T., A.K., B.A.W. and D.J.L. Visualization: M.K. and D.J.S. Resources: D.J.S. Project administration: D.J.S. Supervision: S.C. and D.J.S. Writing—original draft: M.K. and D.J.S. Writing—review and editing: D.J.S. Funding acquisition: D.J.S.

Corresponding author

Correspondence to Daniel J. Siegwart.

Ethics declarations

Competing interests

A provisional patent application covering compositions, methods and uses for targeting cystic fibrosis and related disorders has been filed by UT Southwestern. D.J.S. is a co-founder and member of the scientific advisory board of ReCode Therapeutics, which has licensed intellectual property from UT Southwestern. D.J.S. discloses financial interests in ReCode Therapeutics, Signify Bio, Jumble Therapeutics and Tome Biosciences. J.C.C., A.K., B.A.W. and D.J.L. are employees of ReCode Therapeutics and have stock options in the company. All other authors declare that they have no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Keiichiro Suzuki and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional Supplementary Methods, DNA template sequences of Cas9 and ABEs, Methods-only references, Supplementary Figs. 1–17 and Supplementary Tables 1–5

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Song, E.S., Chen, J.C. et al. Dual SORT LNPs for multi-organ base editing. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02675-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing