Extended Data Fig. 1: Validation of m6A DIP using synthetic RNA and DNA substrates.
From: N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells

Validation of m6A DIP using synthetic RNA and DNA substrates. See also Supplementary Note. (a) Schematic demonstrating the sequences of synthetic oligonucleotides and RNA:DNA hybrids used for spike in validation experiments. (b) The relative enrichment of DIP/DRIP performed on 0.1 pmol of spike in synthetic m6A-containing RNA:DNA hybrid (81-mer with 46 % GC content) shown in (a) using anti-m6A and S9.6 antibodies along with IGG for IP after the indicated time intervals of heat denaturation. (c) S9.6 DRIP exhibits comparable efficiencies in precipitating non-modified and m6A-containing RNA:DNA hybrids. Relative enrichment of DRIP performed on the m6A-containing RNA:DNA synthetic substrate normalized against that of DRIP done on equivalent amount (0.1 pmol) of non-modified spike in synthetic RNA:DNA hybrid. (d) The results of m6A DIP on 0.1 pmol of the indicated spike in synthetic oligonucleotides and RNA:DNA hybrids. Unlike non-modified RNA:DNA hybrid substrate or single stranded m6A-containing RNA oligonucleotide, m6A-containing RNA:DNA hybrid is efficiently detected by m6A DIP technique. Data are means ± SD, n = 3 independent experiments.