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GWAS have led to the discovery of tens of thousands of genetic 
variants associated with human complex traits (including dis-
eases)1,2. However, most of the trait-associated variants are of 

uncharacterized function and the mechanisms through which genetic 
variants exert their effects on traits are largely elusive. Considering 
that most of the GWAS signals are located in noncoding regions 
of the genome, one hypothesis is that genetic variants affect traits 
through genetic regulation of gene expression3,4. The effects of genetic 
variation on messenger RNA abundance (also known as eQTLs) have 
been studied for more than a decade5–7 and nearly all genes have been 
found with one or more genetic variants associated with their mRNA 
abundance6,8. These advances have propelled the development of 
methods9–13 to integrate eQTL data with GWAS data to prioritize the 
genes responsible for GWAS signals. However, only a moderate pro-
portion of GWAS signals have been attributed to cis-eQTLs14–18, likely 
because of various reasons, including limited power, spatiotemporal 
eQTL effects that occur in specific tissues or cell types at specific 
developmental stages, focus on genomic regions in cis and mecha-
nisms beyond the genetic control of mRNA abundance.

Genetic control of pre-mRNA splicing (also called sQTLs) is 
another fundamental mechanism of gene regulation but is heavily 
underexplored compared to eQTLs. Currently, there is no consen-
sus in the literature regarding the relationship between eQTLs and 
sQTLs. For example, there are observations showing that sQTLs are 
largely independent of eQTLs6,19,20 and hypothesized to be one of 
the major contributors to genetic risk of disease20, whereas a recent 
study showed that the contribution of sQTLs to trait heritability is 
not statistically significant conditional on eQTLs21. These results 
motivated us to investigate the role of sQTLs in complex traits using 
a larger dataset. Depending on how alternative splicing variation 
is quantified, sQTL mapping strategies can be broadly classified 
into two categories22, that is, transcript-level23–27 or event-level28–31, 
each favoring different types of splicing events (Section 1 of the 
Supplementary Note).

In this study, we aimed to investigate the genetic control of 
RNA splicing by generating the largest collection of sQTLs to date 
and describing their role in complex trait variation. We focused 
our study on the brain because of data availability and the con-
siderable links of sQTLs to neurodegenerative diseases such as 
Alzheimer’s disease (AD)32, schizophrenia33 and Parkinson’s disease 
(PD)34,35 reported recently. Recognizing the differences between 
transcript- and event-level sQTL mapping strategies (Section 1 of 
the Supplementary Note), we intended to combine the two strate-
gies with state-of-the-art tools, that is, RSEM36 and sQTLseekeR27,37 
for transcript-level analysis and LeafCutter31 and QTLtools38 for 
event-level analysis, to increase the yield of sQTLs. Nevertheless, the 
limited number of sQTLs detected by sQTLseekeR motivated us to 
develop a more powerful transcript-level sQTL method, THISTLE. 
We applied THISTLE together with LeafCutter and QTLtools to the 
largest publicly available brain transcriptomic data (n = 2,865) with 
genotype data to detect sQTLs and integrated the sQTL summary 
statistics into GWAS for 12 brain-related traits (including diseases) 
of large sample sizes (n = 51,710–766,345) to prioritize genes asso-
ciated with the traits through genetic regulation of splicing. We 
benchmarked the role of sQTLs in complex trait variation by the 
eQTLs identified using the same data.

Results
Calibration of THISTLE. Details of the THISTLE method can be 
found in the Methods, with the schematics of the method illustrated 
in Fig. 1. We calibrated THISTLE using simulations in comparison 
with three existing sQTL methods in the same category, namely 
sQTLseekeR v.2 (ref. 37), DRIMSeq v.1.18 (ref. 39) and multivariate 
analysis of variance (MANOVA) (implemented in rrcov v.1.5.5). 
We first performed simulations with mRNA abundances gener-
ated from multivariate normal or Poisson distributions (Section 2 
of the Supplementary Note) and focused on the comparison with 
sQTLseekeR. There was no inflation in false positive rate (FPR) 
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under the null hypothesis of no sQTL effect for both THISTLE and 
sQTLseekeR, in either the absence or presence of an eQTL effect 
(Supplementary Fig. 1). The statistical power of a method is often 
measured by the true positive rate (TPR). We also used the area 
under the receiver operating characteristic curve (AUC) to mea-
sure power to account for potential inflation in FPR. Although the 
overall AUC for THISTLE was only slightly (4.7% on average) larger 
than that for sQTLseekeR, the difference in TPR between the meth-
ods increased with the −log10(P) threshold (Extended Data Fig. 1). 
Next, we compared all four methods using more comprehensive 
simulations, with mRNA abundances generated by sampling RNA 
sequencing (RNA-seq) reads40 in a broader range of scenarios with 
varying sample sizes, sQTL effect sizes, degree of overdispersion of 
transcription abundance and number of isoforms per gene (Section 
2 of the Supplementary Note). All methods except DRIMSeq 
showed well-calibrated test statistics under the null hypothesis 
(Supplementary Fig. 2); THISTLE was more powerful than sQTL-
seekeR, DRIMSeq and MANOVA in most scenarios, including 
those in which genes were simulated with a large number of iso-
forms (Extended Data Fig. 2). In line with the observation above, 
the difference in TPR between THISTLE and sQTLseekeR increased 
with a more stringent P threshold (Extended Data Fig. 2e).

An increase of difference in power between THISTLE and sQTL-
seekeR with the increased −log10(P) threshold was also observed 
(even more prominently) in the real-data analysis. For instance, in 
the analysis of the Religious Orders Study and Memory and Aging 
Project (ROSMAP) data (n = 832), 6,358 genes with 795,592 unique 
sQTL SNPs (no linkage disequilibrium (LD) clumping) were dis-
covered by THISTLE versus 3,077 genes with 390,497 sQTL SNPs 
by sQTLseekeR using a P threshold of 5 × 10−8 (Methods, Extended 
Data Fig. 3b and Section 3 of the Supplementary Note), a 2.1- 
and 2.0-fold difference in the number of sGenes and sQTL SNPs, 

respectively. In this article, we refer to genes with a significant 
sQTL as sGenes. The ratio decreased to 1.9 at P < 1 × 10−6, to 1.2 at 
P < 1 × 10−4 and eventually to nearly 1 at P < 1 × 10−3 (Extended Data 
Fig. 3d). Analysis of the ROSMAP data without covariate adjust-
ment led to a decreased number of sGenes for both methods but 
the ratio of THISTLE to sQTLseekeR was 1.7 at P < 5 × 10−8. Despite 
the differences, there was a strong overlap between the sQTLseekeR 
and THISTLE sQTL results (Extended Data Fig. 3e), the splicing 
events captured by THISTLE were similar to those by sQTLseekeR 
(Supplementary Fig. 3) and the THISTLE P values computed from 
the saddlepoint approximation41 were remarkably consistent with 
those from the Davies method42 used in the latest version of sQTL-
seekeR (Supplementary Fig. 4). Moreover, benchmarked on a com-
puting platform with 16 GB memory and 16 central processing unit 
cores, the overall runtime of THISTLE (including the time to esti-
mate the isoform-eQTL effects) in the analysis of the ROSMAP data 
with 382 genes and 109,853 SNPs on chromosome 22 was 1.05 min 
(averaged from 10 repeats), approximately 7.6 times faster than 
sQTLseekeR (Extended Data Fig. 4). In addition, the performance 
of THISTLE using individual-level SNP genotype and RNA-seq 
data was similar to that using summary-level isoform-eQTL data 
(Supplementary Fig. 5).

Identifying cis-sQTLs in the brain. We applied THISTLE to ten 
brain transcriptomic datasets from seven cohorts. After quality 
control (Methods, Extended Data Fig. 5, Supplementary Figs. 6 
and 7 and Section 4 of the Supplementary Note), we included in 
the analysis RNA-seq data of 2,865 samples from 2,443 unrelated 
individuals of European ancestry and genetic data of approximately 
12 million variants with a minor allele frequency (MAF) > 0.01 
(Supplementary Table 1). In total, we identified 1,342,073 unique 
cis-sQTL SNPs with PsQTL < 5 × 10−8 for 9,305 genes (Supplementary 
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Fig. 1 | Schematics of the THISTLE sQTL analysis. In this toy example, a genetic variant with two alleles, G and A, is associated with a splicing event (for 
example, exon skipping) in a gene with two transcript isoforms, T1 and T2. a,b, Schematics of the THISTLE sQTL analysis in the absence of an eQTL effect. 
In this scenario, individuals with the G allele show higher mean abundance of T1 than T2 and individuals with the A allele show higher mean abundance of 
T2 than T1 (a), meaning that the genetic variant is associated with the difference in abundance between isoforms. In other words, there is a difference in the 
isoform-eQTL effect between T1 and T2 (b). However, there is no difference in overall gene expression between individuals with different alleles, meaning 
that this genetic variant is not an eQTL. c,d, Schematics of the THISTLE sQTL analysis in the presence of an eQTL effect. In this scenario, individuals with 
the G allele show similar abundance between T1 and T2 and individuals with the A allele show lower abundance of T1 than T2 (c). The isoform-eQTL effect 
for T1 is different from that for T2 albeit in the same direction (d). In this case, there is a difference in overall gene expression between alleles G and A, 
meaning that this genetic variant is also an eQTL.
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Table 2). We focused most of the subsequent analyses on the sQTLs 
with PsQTL < 5 × 10−8 for two reasons: (1) it is the most commonly 
used genome-wide significance threshold in GWAS and the default 
threshold used in summary-data-based Mendelian randomization 
(SMR) to select instrument SNPs11 (see below); (2) it was more 
stringent than the permutation-based P threshold in all the 10 data-
sets and the sQTLs with PsQTL < 5 × 10−8 represented a large propor-
tion of the sQTLs with a false discovery rate (FDR) < 0.05 (Section 
5 of the Supplementary Note and Supplementary Table 3). Of the 
9,305 sGenes detected at PsQTL < 5 × 10−8, 220 (2.4%) were lowly 
expressed in the brain with median transcripts per million (TPM) 
<0.1 (Supplementary Fig. 8b). Moreover, by comparing the number 
of sGenes identified above (based on GENCODE v.37) with those 
based on three other transcriptome references (RefSeq, GENCODE 
v.37 Basic, which includes only a subset of representative transcripts 
for each gene, and de novo assembly), we showed that GENCODE 
v.37 substantially outperformed RefSeq and GENCODE v.37 Basic 
and that de novo assembly gave rise to only approximately 4% more 
sGenes (Extended Data Fig. 6). Considering the small gain and 
potential errors in de novo assembled transcripts, we opted to use 
the GENCODE v.37 results in the following analyses.

Next, we used LeafCutter to detect splicing events that might not 
be well captured by transcript-level analysis (Methods, Extended 
Data Fig. 5 and Supplementary Fig. 7). Overall, we identified 
1,371,483 unique cis-sQTL SNPs for 15,136 intron clusters in 
8,602 genes at PsQTL < 5 × 10−8 (Supplementary Table 2) and 203,889 
unique cis-sQTL SNPs for 1,148 intron clusters with unknown asso-
ciated genes. Of the 8,602 sGenes detected at PsQTL  < 5 × 10−8, 174 

genes (2.1%) were lowly expressed in the brain (Supplementary Fig. 
8c). As above, the P threshold of 5 × 10−8 was more stringent than 
the permutation-based P threshold at an FDR < 0.05 in all 10 datas-
ets (Supplementary Table 3).

Combining the sQTL results from THISTLE and LeafCutter 
and QTLtools, there were 1,864,200 unique cis-sQTL SNPs for 
12,794 sGenes at PsQTL < 5 × 10−8 compared with 462,722 unique 
sQTL SNPs for 7,296 sGenes from the largest previous study43,44 
(Section 6 of the Supplementary Note, Supplementary Fig. 9 and 
Supplementary Table 4). There were 4,192 and 3,489 sGenes unique 
to THISTLE and LeafCutter and QTLtools, respectively, and 5,113 
common sGenes for both (Extended Data Fig. 7a). For 2,858 of the 
5,113 common sGenes, the THISTLE sQTL signal was distinct from 
the LeafCutter and QTLtools sQTL signal as indicated by a COLOC9 
PP3 value >0.8 (Supplementary Fig. 10), in line with many common 
sGenes for which the lead sQTL SNPs from the 2 methods were 
in low-to-moderate LD (Extended Data Fig. 7b). Together with the 
large proportions of method-specific sGenes, this result suggests 
that most sQTL signals detected by THISTLE and LeafCutter and 
QTLtools were distinct, demonstrating the benefit of using a com-
bination of the two sQTL mapping strategies.

Quantifying the relationship between sQTLs and eQTLs. To 
assess the relationship between sQTLs and eQTLs, we performed an 
eQTL analysis using the same data as above (Methods and Extended 
Data Fig. 5) and identified 1,962,048 unique cis-eQTL SNPs with 
PeQTL < 5 × 10−8 for 16,704 genes (Supplementary Table 2). Similarly, 
we refer to genes with a significant eQTL as eGenes. We found that 

sGene eGene

3,405
(17%)

7,315
(36%)

9,389
(47%)

a

0

0.25

0.50

0.75

1.00

COLOC PP3 COLOC PP4 LD (r 2)

b

0

2,500

5,000

7,500

300 900600

Sample size

N
um

be
r 

of
 s

/e
G

en
es

sGene
eGene

c

0

2 × 105

4 × 105

6 × 105

300 900600

Sample size

N
um

be
r 

of
 s

/e
Q

T
Ls

sQTL
eQTL

d

0.2

0.4

0.6

300 900600

Sample size

O
ve

rla
p 

pr
op

or
tio

n

sGene–eGene
sQTL–eQTL

e

Fig. 2 | Relationship between sQTLs and eQTLs. a, Overlap between sGenes and eGenes. b, COLOC PP3 and PP4 values between the cis-sQTL and 
cis-eQTL signals and LD r2 between the lead cis-sQTL and cis-eQTL SNPs for the 9,389 overlapping genes. The line inside each box indicates the median 
value, the notches indicate the 95% confidence interval (CI), the central box indicates the interquartile range (IQR) and the whiskers indicate data up 
to 1.5 times the IQR. c, The number of sGenes (or eGenes) discovered as a function of sample size. d, The number of sQTLs (or eQTLs) discovered as 
a function of sample size. e, The overlap between sGenes and eGenes (or between sQTLs and eQTLs) as a function of sample size, where sQTL–eQTL 
overlap is defined as the proportion of sGenes for which the lead sQTL SNP is a significant eQTL SNP for the same gene.

Nature Genetics | VOL 54 | September 2022 | 1355–1363 | www.nature.com/naturegenetics 1357

http://www.nature.com/naturegenetics


Articles Nature Genetics

73% (9,389 out of 12,794) of the sGenes were also eGenes (Fig. 2a), a 
proportion much higher than that (50%) reported in a recent study 
using transcriptomic data from the fetal brain19. We hypothesized 
that the difference is due to the larger sample size (n) used in our 
study than that in the fetal brain study (n = 233). To test this hypoth-
esis, we used a downsampling strategy to assess the sGene–eGene 
overlap in several subsets of data with n ranging from 100 to 1,073. 
The result showed that the power of either sGene or eGene discov-
ery was proportional to n and that the difference in discovery power 
between sGene and eGene increased with increasing n (Fig. 2c,d), in 
line with the observation from previous work6. We also found that 
the sGene–eGene overlap was positively correlated with n (Fig. 2e), 
which is expected if most genes have both eQTLs and sQTLs. Of the 
9,389 overlapping genes, there were 4,377 genes for which the sQTL 
signal was distinct from the eQTL signal as indicated by a COLOC 
PP3 value >0.8, in line with a large proportion of overlapping genes 
for which the lead sQTL SNP was in low-to-moderate LD with the 
lead eQTL SNP (Fig. 2b). The result was largely unchanged when we 
performed the colocalization analysis with eCAVIAR12 that accounts 

for multiple causal variants at a locus (Supplementary Fig. 11). In 
summary, although a large proportion of sGenes are expected to be 
eGenes with large n and this proportion increases with increasing n, 
most sQTLs are distinct from eQTLs (an estimate of approximately 
61%, (4,377 + 3,405)/12,794 in this study, with 3,405 being the num-
ber of genes that are sGenes only).

sQTLs are enriched for splicing and RNA-binding protein bind-
ing sites. Having shown that sQTLs were largely distinct from 
eQTLs (Fig. 2), we then asked whether sQTLs and eQTLs show dif-
ferent patterns of functional enrichment. To do this, we annotated 
the lead SNP for each of the 12,794 sGenes and 16,704 eGenes using 
SnpEff45, functional annotation data of 113 RNA-binding protein 
(RBP) binding sites46, 7 histone marks47 and 15 chromatin states47 
(Methods). The fold enrichment was computed as the proportion 
of sQTLs or eQTLs in a functional category divided by the mean 
of a null distribution generated by resampling ‘control’ SNPs with 
MAF and distance to the transcription start site (TSS) matched to 
the SNPs in question (Methods and Section 7 of the Supplementary 
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Note). The results showed that sQTLs were more enriched in splic-
ing sites (for example, splice acceptors and splice donors) and RBP 
binding sites than eQTLs (Fig. 3b,d). eQTLs were more enriched 
in the TSS than sQTLs (for example, active TSS and bivalent TSS; 
Fig. 3a), which is consistent with our observation that eQTLs were 
located much closer to the TSS than sQTLs (Fig. 3e). Both sQTLs 
and eQTLs tended to be enriched at both ends of gene bodies, 
exons and introns (Supplementary Fig. 12) and were significantly 
enriched in the histone marks H3K4me3, H3K9ac, H3K27ac, 
H3K36me3 and H3K4me1 (Fig. 3c) but depleted in noncoding 
regions (Fig. 3b). Compared to that of eQTLs, the enrichment of the 
sQTLs was higher in H3K36me3 but lower in H3K4me3, H3K9ac or 
H3K27ac (Fig. 3c). The functional enrichment patterns were largely 
unchanged whether we stratified the sQTLs by mapping strategy 
(Extended Data Fig. 8) or performed the enrichment analysis with 
TORUS48 using the full summary statistics without SNP selection 
(Supplementary Fig. 13).

Enrichment of sQTLs for trait heritability. We next tested whether 
the brain cis-sQTLs are enriched for genetic variants associated 
with complex traits and disorders related to the brain. We acquired 
GWAS summary statistics for 12 brain-related traits from previ-
ous work49–60 (Methods and Supplementary Table 5). Both sQTLs 
and eQTLs showed more inflated GWAS test statistics compared 

to the other SNPs for all 12 traits (Supplementary Fig. 14) and 
the levels of inflation were indistinguishable between sQTLs and 
eQTLs (Supplementary Fig. 15). We then performed a stratified 
LD score regression61,62 analysis to quantify the enrichment of the 
lead cis-sQTL SNPs for heritability in comparison with that of the 
lead cis-eQTL SNPs when fitted together with 53 other functional 
categories in the ‘baseline-LD model’61 (Methods). The results 
showed that the sQTLs were significantly enriched for heritability 
for most traits and the fold enrichment of sQTLs was comparable 
to (even appeared to be higher than) that of eQTLs on average 
across traits (Supplementary Fig. 16 and Fig. 4a). Considering that 
the lead SNPs were ascertained in the cis-regions known to explain 
disproportionately more trait variation than intergenic regions63, 
we adjusted the heritability enrichment by the control SNPs men-
tioned above (Methods). Under this stringent definition, the overall 
levels of enrichment decreased but the fold enrichment of sQTLs 
was comparable to that of eQTLs on average across traits (Fig. 4b). 
We further performed sensitivity analyses to quantify the heritabil-
ity enrichment at all the significant, LD-clumped or fine-mapped 
cis-sQTL (or cis-eQTL) SNPs21; the results consistently showed 
comparable levels of heritability enrichment between sQTLs and 
eQTLs (Supplementary Figs. 17b, 18b and 19b). We showed that 
the τ estimates for the cis-sQTLs and cis-eQTLs were significant 
for most traits (Methods, Fig. 4c and Supplementary Figs. 17c, 18c 
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and 19c), indicating their distinct contributions to trait heritability. 
We also attempted to estimate the proportion of heritability medi-
ated by the cis-sQTLs and cis-eQTLs (h2med/h2SNP) by the mediated 
expression score regression18 method and observed a median esti-
mate of h2med/h2SNP of 0.09 and 0.11 across traits for the cis-sQTLs 
and cis-eQTLs, respectively (Fig. 4d), where the estimate for the 
cis-eQTLs was similar to that reported previously18. Overall, the 
analyses above suggest a unique role of sQTLs in complex trait 
variation, at a level comparable to that of eQTLs (see below for  
further discussion).

Identifying complex trait genes using cis-sQTL data. To leverage 
the cis-sQTLs to prioritize functional genes for the 12 brain-related 
traits, we applied the SMR approach11 to test if an sGene is associ-
ated with a trait through sQTL and the COLOC9 PP4 statistic to 
assess whether the sGene-trait association is driven by the same 
set of causal variants. SMR testing is typically followed by the het-
erogeneity in dependent instruments (HEIDI) test to distinguish 
whether the gene-trait association is because of shared or distinct 
causal variants11. However, the HEIDI test requires signed SNP 
effect estimates, which are unavailable for the THISTLE sQTLs. 
Instead, we used COLOC PP4, which requires only GWAS and 
xQTL P values as a replacement (Supplementary Fig. 20). We iden-
tified 773 sGene-trait associations (585 unique genes) in total for 

the 12 traits at a genome-wide significance level (PSMR < 1.1 × 10−6 
for the LeafCutter and QTLtools sQTLs and PSMR < 5.7 × 10−6 for 
the THISTLE sQTLs), 270 (244 unique genes) of which showed a 
COLOC PP4 value >0.8 (Fig. 4e and Supplementary Table 6), which 
is consistent with a plausible mechanism that genetic variants affect a 
trait through genetic control of splicing. We also included the eQTL 
data in the SMR analysis and identified 805 eGene-trait associa-
tions (577 unique genes; PSMR < 3.2 × 10−6), 246 (226 unique genes) 
of which reached PP4 >0.8 in COLOC (Fig. 4e and Supplementary 
Table 6). Between the two sets of trait-associated genes discovered 
through sQTLs and eQTLs, respectively, 96 genes were in com-
mon, meaning that we identified 148 more genes through sQTLs 
on top of the 226 genes identified through eQTLs (Fig. 4e), an 
approximate 65% increase. One of the examples is DGKZ (Fig. 5), 
the functional relevance of which to schizophrenia (SCZ) has been 
implicated in previous work64,65. In this study, DGKZ was associated 
with SCZ using the sQTL data, implying a possible mechanism that 
the SNP effects on SCZ are mediated by genetic regulation of RNA 
splicing of DGKZ. Notably, no genome-wide-significant eQTL was 
associated with the overall expression level of DGKZ in our dataset  
(Fig. 5d), meaning that DGKZ would have been missed if we 
had analyzed the eQTL data only. In addition, the analysis with 
FOCUS66 prioritized 298 sGenes for the traits, approximately 80% 
of which were not identified through eQTLs (Supplementary Fig. 21  

ENST00000318201.12
ENST00000454345.5
ENST00000456247.6
ENST00000524869.1
ENST00000527211.5
ENST00000528173.5
ENST00000529660.5
ENST00000529698.1
ENST00000532941.1
ENST00000534215.5

–0.50 –0.25 0 0.25

isoform-eQTL effect (rs7936413)

–2

0

2

CC CT TT
rs7936413

N
or

m
al

iz
ed

 in
tr

on
ex

ci
si

on
 r

at
io

chr11:46391100:46392863:clu_288873_ (DGKZ)

–2

0

2

CC CT TT

rs7936413

N
or

m
al

iz
ed

 g
en

e
ex

pr
es

si
on

ENSG00000149091.15 (DGKZ)

46.0 46.2 46.4 46.6 46.8

Chromosome 11 Mb

0

4

7

10
–l

og
10

(P
 G

W
A

S
)

chr11:46391100:46392863:clu_288873_ (DGKZ )

0

9

17

26

THISTLE_ENSG00000149091.15 (DGKZ )

0

9

17

26

eQTL_ENSG00000149091.15 (DGKZ )

0

9

17

26

–l
og

10
(P

 e
Q

T
L 

or
 s

Q
T

L)

LOC101928894
DGKZ

MIR3160–1
ARHGAP1

CTD–2589M5.5
MDK

MIR3160–2
ZNF408

CTD–2589M5.4
MIR4688

AMBRA1
F2

CREB3L1
CHRM4

HARBI1
MIR5582

RP11–425L10.1 ATG13

14
SCZ

a

d

c

b

Fig. 5 | Association of DGKZ with SCZ through alternative splicing rather than overall mRNA abundance. a, GWAS, sQTL and eQTL P values. The top 
track shows −log10(P) of SNPs from the SCZ GWAS. The second, third and fourth tracks show −log10(P) from the LeafCutter and QTLtools sQTL (intron 
11:46391100:46392863:clu_288873_), THISTLE sQTL and eQTL analyses, respectively, for DGKZ. The THISTLE sQTL P values were computed using  
a one-sided sum of chi-squared test and the eQTL and LeafCutter and QTLtools sQTL P values were computed using a one-sided chi-squared test.  
b, Isoform-eQTL effects for DGKZ in the whole dataset (n = 2,865), with ENST00000318201.12 and ENST00000534125.5 at the 2 extremes with opposite 
isoform-eQTL effects. Each dot represents an estimate of the isoform-eQTL effect with an error bar indicating the 95% CI of the estimate. c,d, Association 
of rs7936413 (the lead LeafCutter and QTLtools sQTL SNP) with an excision ratio of 11:46391100:46392863:clu_288873_ and overall mRNA abundance 
of DGKZ, respectively, in the ROSMAP data. Each box plot shows the distribution of intron excision ratios (c) or mRNA abundances (d) in a genotype class, 
that is, CC (n = 21), CT (n = 218) or TT (n = 593). The line inside each box indicates the median value, the notches indicate the 95% CI, the central box 
indicates the IQR, the whiskers indicate data up to 1.5 times the IQR and the outliers are shown as separate dots.

Nature Genetics | VOL 54 | September 2022 | 1355–1363 | www.nature.com/naturegenetics1360

http://www.nature.com/naturegenetics


ArticlesNature Genetics

and Supplementary Table 7). In summary, approximately 61% (148 
out of 244) of the trait-associated sGenes were not detected using 
eQTL data, which again suggests the distinct role of sQTLs in com-
plex traits. This proportion was similar (approximately 62%) in 
the analysis with 7 additional traits67–69 (not limited to the brain) 
for which summary statistics from large GWAS (n > 600,000) were 
available (Supplementary Fig. 22).

For each of the 96 trait-associated genes that could be identi-
fied by using either the sQTL or eQTL data (Fig. 4e), we further 
performed a COLOC analysis to test whether the sQTL and eQTL 
signals were driven by the same or distinct causal variants. We 
found 80 genes with PP4 >0.80. One typical example is SETD6, for 
which the COLOC analysis (PP4 = 0.98) suggested that the sQTL, 
eQTL and SCZ GWAS signals are all driven by the same causal 
variant(s) (Extended Data Fig. 9). On the other hand, there were 8 
genes with PP3 > 0.8, indicating multiple GWAS signals at a locus 
mediated through distinctive genetic regulatory mechanisms (see 
Supplementary Fig. 23 for a typical example). Note that fewer genes 
with distinctive sQTL and eQTL signals were linked to the traits 
than those with a shared sQTL/eQTL signal because it was less 
likely to link the distinct signals consistently to multiple GWAS sig-
nals at a locus. Taken together, our results show the distinctiveness 
of most sQTLs in mediating the polygenic effects for complex traits 
and demonstrate the substantial gain of power in gene discovery for 
complex traits by integrating sQTL data into GWAS.

Identifying complex trait genes using trans-sQTL data. We fur-
ther performed trans-sQTL and trans-eQTL analyses, focusing on 
SNPs >5 megabases (Mb) apart or on a different chromosome. After 
cross-mapping filtering70, we identified 1,161 unique trans-sQTL 
SNPs with P < 1.72 × 10−10 for 53 trans-sGenes by THISTLE and 
2,716 trans-sQTL SNPs with P < 2.75 × 10−11 for 186 trans-sGenes 
by LeafCutter and QTLtools at 5% FDR, with an overlap of 16 genes 
(Supplementary Fig. 24a). Of the 223 trans-sGenes, 164 were also 
cis-sGenes (Extended Data Fig. 10a). We also identified 15,799 
trans-eQTL SNPs with P < 1.72 × 10−10 for 230 trans-eGenes at 5% 
FDR (Supplementary Fig. 24b), 33 of which were trans-sGenes 
(Extended Data Fig. 10a). Integrating the trans-sQTL/eQTL data 
with the GWAS data as above, we prioritized 6 sGenes and 11 
eGenes, with only 2 genes in common (see Extended Data Fig. 10c,d 
for one example).

Discussion
In this study, we generated a comprehensive catalog of genetic vari-
ants associated with a broad spectrum of alternative splicing events 
in the human brain, significantly expanding our understanding 
of genetic control of RNA splicing. We demonstrated the benefit 
of using transcript- and event-level sQTL mapping strategies in 
combination for sQTL detection (Section 8 of the Supplementary 
Note). By comparing sQTLs with the eQTLs identified in this study, 
we showed that approximately 61% of sQTLs are distinct from 
eQTLs, suggesting that sQTL mapping warrants more attention 
in future research. By integrating sQTLs with GWAS data for 12 
brain-related traits, approximately 61% of the trait-associated genes 
identified through sQTLs could not be discovered through eQTLs, 
demonstrating the distinct contribution of sQTLs to the genetic 
architecture underpinning complex trait variation. Moreover, 
the trait-associated genes identified through sQTLs in this study 
provide important leads for further mechanistic work to eluci-
date their functions in the development of the brain-related traits  
and disorders.

We developed an online tool (https://yanglab.westlake.edu.cn/
data/brainmeta) to visualize or download the sQTL and eQTL 
summary statistics generated in this study. These datasets may 
be helpful for future studies to understand the molecular mecha-
nisms underpinning the genetic regulation of splicing in the brain,  

identify functional genes and variants for other brain-related pheno-
types and improve genomic risk prediction. Our study also informs 
future analyses to quantify the relationship between sGenes and 
eGenes, between sQTLs and eQTLs or more generally between any 
two types of molecular QTLs. We showed that the low-to-moderate 
sGene–eGene overlap as observed in previous studies6,20 is due to 
small n because the overlap is a function of n (Fig. 2). For example, 
only approximately 8% of sGenes are eGenes when n = 100 and this 
proportion increases to 64% as n increases to 1,073. Nevertheless, 
even for overlapping genes, the underlying sQTL and eQTL causal 
variants can be distinct. In this study, we estimated that the sQTL 
and eQTL causal variants were shared (PP4 > 0.8) for only approxi-
mately 42% (= 3980/9389) of the overlapping genes (Fig. 2b). This 
42% may even be an overestimation because of the limited power 
of the COLOC PP4 statistic in distinguishing close linkage from 
sharing, especially when n is not sufficiently large. In an extreme 
scenario where sQTL and eQTL causal variants are in perfect LD, 
there is no power to distinguish linkage from sharing.

By integrating the sQTLs with GWAS data, we confirmed that 
the sQTLs were enriched for genetic variants associated with com-
plex traits, as in previous studies19,20,32–34. We note that a previous 
study by Hormozdiari et al.21. showed that sQTLs do not have a 
significant contribution to disease heritability in a joint analy-
sis of five BLUEPRINT molecular QTLs, namely eQTL, sQTL, 
H3K27ac histone QTL, H3K4me1 histone QTL and DNA meth-
ylation QTL, which is not consistent with our result. The discrep-
ancy is likely due to the small sample sizes of the molecular QTL 
data in Hormozdiari et al. (n = approximately 200 per cell type). 
In the present study, we provided multiple lines of evidence that 
the role of sQTLs in complex trait variation is largely distinct from 
that of eQTLs. First, approximately 61% of the sQTL and eQTL 
signals were distinct (Fig. 2). Second, sQTLs contributed signifi-
cantly to trait heritability conditional on eQTLs (Fig. 4c). Third, 
approximately 61% of the trait-associated genes detected by inte-
grating GWAS data with sQTLs were not detected by using eQTLs 
(Fig. 4e). Our results also imply that the contribution of sQTLs 
in mediating polygenic effects was comparable to that of eQTLs. 
For example, we observed that the inflation in GWAS test statis-
tics at the sQTLs was indistinguishable from that at the eQTLs 
(Supplementary Fig. 15), that heritability enrichment of sQTLs 
was similar to that of eQTLs (median fold enrichment of 2.4 for 
sQTLs versus 1.8 for eQTLs across traits), that the proportion 
of mediated heritability for the traits through cis-sQTLs was on 
a par with that through cis-eQTLs (median h2med/h2g  of 0.09 for 
sQTLs versus 0.11 for eQTLs across traits) and that the number of 
trait-associated genes identified through sQTLs was also similar 
to that through eQTLs (244 versus 226). Hence, large-scale sQTL 
studies in blood and other tissues or specific cell types are urgently 
needed to discover more sQTLs to improve our understanding of 
genetic regulation of RNA splicing and facilitate the translation of 
GWAS signals into mechanisms.

Despite the potential limitations (Section 9 of the Supplementary 
Note), our study developed a powerful and flexible sQTL mapping 
method, generated a comprehensive set of sQTL summary data 
(with an online tool for data query), demonstrated an analysis 
paradigm to assess the relationship between two types of molecular 
QTLs and provided multiple lines of evidence that most sQTLs are 
distinct from eQTLs, including their roles in complex trait variation.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
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author contributions and competing interests; and statements of 
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Methods
Ethical approval. This study was approved by the Ethics Committee of Westlake 
University (approval no. 20200722YJ001) and the University of Queensland 
Human Research Ethics Committee B (approval no. 2011001173).

THISTLE. For ease of understanding, let us take a gene with two transcript 
isoforms as an example. If a genetic variant is associated with a splicing event, 
the variant is expected to be associated with the difference in mature mRNA 
abundance between the two transcript isoforms (Fig. 1). Hence, an sQTL test 
can be performed by assessing the association of the variant with the difference 
in mRNA abundance between the isoforms, which is equivalent to a test of 
heterogeneity in isoform-eQTL effect between isoforms. Without loss of generality, 
let m be the number of transcript isoforms for a gene, yj be a vector of mRNA 
abundances across n individuals for isoform j and x be a vector of genotypes 
of a variant. If we define ˆb = {ˆb1, …ˆbj, …, ˆbm} with ˆbj being the estimated 
isoform-eQTL effect for isoform j, we have ˆb ∼ MVN (b, S) with S being the 
variance-covariance matrix of ˆb. The difference between ˆbj and ˆbk ( j ̸= k) can be 
estimated as:

ˆdjk =
ˆbj − ˆbk

If we define ˆd = {ˆdjk}j,k∈{1,…,m},j<k, we have ˆd ∼ MVN(d, V) with V being 
the variance-covariance matrix of ˆd. The variance of ˆdjk over repeated experiments 
(that is, a diagonal element of V) can be written as:

var
(

ˆdjk
)

= var
(

ˆbj − ˆbk
)

= var
(

ˆbj
)

+ var
(

ˆbk
)

− 2cov
(

ˆbj,ˆbk
)

The covariance between ˆdjk and ˆdgh over repeated experiments (that is, an 
off-diagonal element of V) can be written as:

cov
(

ˆdjk, ˆdgh
)

= cov
(

ˆbj − ˆbk,ˆbg − ˆbh
)

= cov
(

ˆbj,ˆbg
)

− cov
(

ˆbj, ˆbh
)

− cov
(

ˆbk, ˆbg
)

+ cov
(

ˆbk,ˆbh
)

The covariance between ˆbj and ˆbk can be estimated as cov
(

ˆbj,ˆbk
)

= θjkSjSk, 
where S2j  and S2k are the variances of ˆbj and ˆbk, respectively and θjk is the 
correlation between ˆbj and ˆbk. Since the isoform abundances are measured on 
the same set of individuals, ˆbj and ˆbk are likely to be correlated (that is, θjk ̸= 0). 
We know from previous studies11,71 that θjk ≈ rpρ, where ρ =

ns√njnk  measures 
the sample overlap with nj and nk is the sample sizes of isoforms j and k, 
respectively, ns is the number of overlapping individuals between two isoforms 
and rp is the Pearson correlation of mRNA abundances between two isoforms 
in the overlapping sample. If the individual-level data are unavailable, θjk can be 
approximated by the Pearson correlation of the estimated isoform-eQTL effects 
between two isoforms across the ‘null’ SNPs (for example, Pisoform-eQTL > 0.01)11,71. 
Under the null hypothesis of no sQTL effect (that is, d = 0), there is no 
heterogeneity in isoform-eQTL effect between isoforms. In this case, we 
have a vector of standard normal variables zd = {zd(jk)}j,k∈{1,…,m},j<k with 

zd(jk) =
ˆdjk/

√

var
(

ˆdjk
)

 and zd ∼ MVN(0, R), where R is the correlation matrix 

with cor(zd(jk), zd(gh)) = cov
(

ˆdjk, ˆdgh
)

/
√

var
(

ˆdjk
)

var
(

ˆdgh
)

. To test against 
the null hypothesis (d = 0), we constructed a test statistic TTHISTLE = zdIzTd  with 
I being an identity matrix. This statistic is a quadratic form in multivariate normal 
variables with no explicit distribution, which, however, can be well approximated 
by the saddlepoint method41 as in the R4.0.3 function pchisqsum(). We 
implemented the THISTLE analysis pipeline in the OSCA v.0.45 (ref. 72) software 
(https://yanglab.westlake.edu.cn/software/osca/#THISTLE).

Data used in this study. We used the genotype and RNA-seq data in brain 
cortex tissue from seven cohorts, namely BrainGVEX, the Lieber Institute for 
Brain Development, the CommonMind Consortium and the CommonMind 
Consortium’s National Institute of Mental Health Human Brain Collection Core, 
Mount Sinai Brain Bank (including four cortex regions: BM10, BM22, BM36 
and BM44), Mayo Clinic and ROSMAP. Data generation has been detailed 
elsewhere43,44,73. RNA-seq data from the Mount Sinai Brain Bank cohort were 
from four brain cortex regions: BM10 (Brodmann area 10; part of the frontopolar 
prefrontal cortex); BM22 (Brodmann area 22; part of the superior temporal 
gyrus); BM36 (Brodmann area 36; part of the fusiform gyrus); and BM44 
(Brodmann area 44; opercular part of the inferior frontal gyrus). Generation of 
the genotype and RNA-seq data and imputation of the genotype data have been 
detailed elsewhere43,44. In each cohort, RNA-seq FASTQ data were cleaned using 
FASTQC and then aligned to the GRCh37 genome assembly by STAR v.2.7.8a74. 
All the transcripts including those of long noncoding RNAs were included in the 
analysis. Gene-level transcriptional abundances (as measured by read counts) 
were quantified using RNA-SeQC v.2.3.5 (ref. 75) and isoform-level transcriptional 

abundances (as measured by TPM) were quantified using RSEM v.1.3.1 (ref. 36) 
using transcript annotation from GENCODE v.37. Next, RNA-seq data were 
filtered with a standard quality control process, for example, retaining individuals 
with more than 10 million total reads and RNA integrity number > 5.5. Genotyped 
and imputed SNP data were filtered with standard quality control criteria in each 
cohort using PLINK2 (ref. 76), that is, genotyping rate >0.95, Hardy–Weinberg 
equilibrium test P > 1 × 10−6, MAF > 0.01 and imputation information score >0.3. 
We excluded individuals with non-European ancestry as inferred from principal 
component analysis (Section 4 of the Supplementary Note and Supplementary 
Fig. 6) because their sample sizes were too small to conduct a cross-ancestry 
meta-analysis and removed one of each pair of individuals with SNP-derived 
genetic relatedness >0.05. After quality control, RNA-seq data from 2,865 brain 
cortex samples from 2,443 individuals of European ancestry with genetic data of 
approximately 12 million genotyped or imputed common SNPs were retained for 
further analysis (Extended Data Fig. 5).

We also included in this study summary statistics from the latest GWAS in 
samples of European ancestry for 12 brain-related phenotypes, namely intelligence 
(IQ) (n = 269,867)49, educational attainment (EA) (n = 766,345)50, smoking 
initiation (311,629 cases and 321,173 controls)51, neuroticism (n = 449,484)59, 
age at menarche (AAM) (n = 370,000)52, schizophrenia (SCZ) (69,369 cases and 
236,642 controls)53, AD (71,880 cases and 315,120 controls)54, PD (33,674 cases 
and 449,056 controls)55, insomnia (109,402 cases and 277,131 controls)56, bipolar 
disorder (BIP) (41,917 cases and 371,549 controls)57, amyotrophic lateral sclerosis 
(ALS) (27,205 cases and 110,881 controls)60 and major depression (MD) (170,756 
cases and 329,443 controls)58. IQ was assessed using various neurocognitive tests, 
primarily gauging fluid domains of cognitive functioning49. EA was measured 
as the number of years of schooling that individuals completed50. AAM is a 
female-specific trait, referring to the age when periods start. Neuroticism was 
measured with 12 dichotomous items of the Eysenck Personality Questionnaire 
Revised-Short Form77.

Identification of cis-sQTLs using THISTLE and LeafCutter. The workflow 
of the sQTL and eQTL analyses is illustrated in Extended Data Fig. 5, which 
largely follows the standard pipeline for cohort-based RNA-seq data analysis 
in the literature6. To identify sQTLs using THISTLE, we filtered out isoforms 
with low expression (that is, isoform-level TPM < 0.1 in more than 80% of 
the samples) and performed quantile normalization of TPM values across all 
transcripts in each brain cortex sample. VariancePartition78 was employed to 
decompose the variation in isoform abundance into components attributable 
to multiple known biological and technical factors such as study, RNA quality 
(RNA integrity number) and age at death; probabilistic estimation of expression 
residuals (PEER)79 was used to generate a set of latent covariates (also known as 
PEER factors) that can capture variation due to hidden factors. The isoform-level 
transcriptional abundance after adjusting for the factors identified by 
VariancePartition and the PEER factors was standardized by a rank-based inverse 
normal transformation (RINT). Note that as in the GTEx study6, the number 
of PEER factors used for the adjustment was determined based on the sample 
size (n) of each dataset: 15 for n < 150; 30 for 150 ≤ n < 250; 45 for 250 ≤ n < 350; 
and 60 for n ≥ 350. Isoform abundance after adjustment for selected biological/
technical factors and PEER factors was used for a linear regression analysis 
to detect isoform-eQTLs in each RNA-seq dataset, with the first five genetic 
principal components fitted as covariates. The isoform-eQTL summary statistics 
from the ten datasets were meta-analyzed by MeCS71, which can account for 
correlations of estimation errors of the isoform-eQTL effects between datasets, 
followed by an sQTL analysis with THISTLE. We excluded genes with only 
one isoform and limited the cis-sQTL test to SNPs within 2 Mb of each gene on 
either side. To identify eQTLs, we applied a similar quality control and covariate 
adjustment pipeline as above to gene-level expression data, that is, excluding 
genes with TPM < 0.1 or read count <6 in more than 80% of the samples, 
trimmed mean of the M-values normalization, preadjusting for covariates 
identified by VariancePartition and PEER factors, and RINT (Extended Data 
Fig. 5). A linear regression model was applied to the standardized gene-level 
expression data to test for eQTLs, with the first five genetic principal components 
fitted as covariates, followed by a meta-analysis of the eQTL summary statistics 
across the ten datasets by MeCS.

To identify sQTLs with LeafCutter v.0.2.9 (ref. 31), we aligned the RNA-seq 
reads of each sample to GRCh37 by STAR v.2.7.8a74, with the wasp flag to 
leverage SNP genotype data to remove mapping biases caused by allele-specific 
reads80. The alignment results from all the samples across datasets were 
used as input for LeafCutter to identify excised intron clusters, with default 
parameters. In each dataset, the intron excision ratio (the ratio of the reads 
defining an excised intron to the total number of reads of an intron cluster) 
was quantile-normalized within each sample and then standardized across 
samples. In total, 273,051 excised introns in 47,600 intronic excision clusters 
were identified with 43,774 clusters (92.0%) uniquely mapped to 14,085 genes 
(using the R function map_clusters_to_genes() provided by LeafCutter based 
on transcript annotation from GENCODE v.37), 2,060 clusters (4.3%) mapped 
to more than 1 gene and 1,766 unmapped clusters (3.7%). The proportions 
of variance in intron excision ratio explained by the known biological/
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technical factors were much smaller than those for isoform abundance above 
(Supplementary Fig. 7), probably because the biological/technical factors 
affected both the numerator and denominator of the intron excision ratio so 
that their effects largely canceled out each other. As above, the intron excision 
ratio after adjustment for known biological and technical factors identified by 
VariancePartition and 15 PEER factors and RINT was tested for associations with 
SNPs within 2 Mb of each intron in each RNA-seq dataset using linear regression 
models implemented in QTLtools, with the first 5 genetic principal components 
fitted as covariates, followed by a meta-analysis of the sQTL summary statistics 
across the 10 RNA-seq datasets by MeCS.

Enrichment of sQTLs and eQTLs for functional annotations. To test if sQTLs 
and eQTLs are functionally enriched, we annotated the lead cis-sQTL or cis-eQTL 
SNPs using annotation data from SnpEff45 (for example, splice region, intronic 
and upstream), eCLIP peaks of 113 RBP46 binding sites from the HepG2 and 
K562 cell lines from the ENCODE project81, chromatin immunoprecipitation 
followed by sequencing peaks for 7 histone modifications (that is, H3K4me1, 
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) and 15 
chromatin states (for example, active TSS and enhancer) from the brain cortex 
sample (E073) of the Roadmap Epigenomics Mapping Consortium (REMC)47. 
More specifically, we annotated 12,578 and 16,086 unique lead cis-sQTL and 
cis-eQTL SNPs, respectively in different functional annotation categories based 
on their physical positions and quantified the proportion of sQTL or eQTL SNPs 
in each category. To ameliorate ascertainment bias, we sampled at random the 
same number of cis-SNPs (that is, SNPs included in the sQTL or eQTL analysis) 
as ‘control SNPs’, with their MAF and distance to TSS matched with the SNPs in 
query. This sampling procedure was repeated 1,000 times. We computed the fold 
enrichment in each functional annotation category as the ratio of the proportion 
of sQTL (or eQTL) SNPs in a functional category over the mean proportion of the 
control SNPs in the category across 1,000 replicates. The sampling variance of the 
fold enrichment can be calculated approximately by the Delta method82 (Section 7 
of the Supplementary Note).

Enrichment of sQTLs and eQTLs for trait heritability. The stratified LD score 
regression61,62 was used to quantify the enrichment of heritability attributable to 
sQTLs and eQTLs (when fitted together with 53 other functional categories in 
the ‘baseline-LD model’) for the 12 brain-related traits. Details of the baseline-LD 
model can be found elsewhere61. We created a binary annotation for sQTLs and 
eQTLs, respectively. In brief, we assigned an annotation value of 1 for the most 
significant sQTL (or eQTL) SNP for each gene and a zero value for the remaining 
SNPs, resulting in an sQTL annotation category with 10,416 SNPs and an eQTL 
annotation category with 14,118 SNPs with an overlap of 1,455 SNPs. The LD 
scores of the SNPs were computed using SNP genotype data of the individuals of 
European ancestry from the 1000 Genomes Project (phase 3)83 with a window size 
of 1 cM. Heritability enrichment of a category was computed as the proportion 
of heritability explained by the category divided by the proportion of SNPs in 
the category. Considering that SNPs in or near genes explain disproportionately 
more trait variation than intergenic SNPs63, we also computed the fold enrichment 
of heritability as the per-SNP heritability for the lead cis-sQTL (or cis-eQTL) 
SNPs divided by a mean of a distribution generated by resampling MAF- and 
TSS-matched cis-SNPs. Sampling variance of the fold enrichment of heritability 
can be calculated approximately by the Delta method82 (Section 7 of the 
Supplementary Note). Note that both the per-SNP heritability and parameter τ 
reported by stratified LD score regression were used to quantify the relevance of a 
functional category to the trait variation62 and the main difference between the two 
metrics lies in how the overlapping annotations were dealt with. More specifically, 
τ is the partial regression coefficient for an annotation category when fitted jointly 
with the other annotation categories in an LD score regression model. If all the 
annotation categories are disjoint (no overlapping SNP among categories), τ can be 
interpreted as the per-SNP heritability of the corresponding annotation category. 
In the presence of overlaps among the annotation categories, the interpretation 
of τ is complicated. However, it can still be used to quantify the contribution of 
an annotation category to the overall SNP-based heritability, conditioning on the 
other categories.

Statistics and reproducibility. The THISTLE and sQTLseekeR P values were 
computed using a one-sided sum of chi-squared test (approximated by the 
saddlepoint algorithm) and pseudo-F test (approximated by the Davies algorithm), 
respectively. The eQTL and LeafCutter and QTLtools sQTL P values were 
computed using a one-sided chi-squared test. We used 2,443 unrelated individuals 
of European ancestry for real-data analysis. The sample size was determined by the 
maximum number of unrelated individuals of European ancestry with both SNP 
genotype and RNA-seq data. We excluded individuals of non-European ancestry, 
with <10 million total reads or with an RNA integrity number <5.5 and 1 of 
each pair of individuals with genetic relatedness >0.05. Standard quality control 
criteria were applied to clean genetic variants to avoid the inclusion of low-quality 
variants in the association analyses. We did not use any study design that required 
randomization or blinding. The scripts to reproduce the main results of this paper 
are available at Zenodo84.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PsychENCODE data are available at https://www.synapse.
org/#!Synapse:syn4921369. The AMP-AD data are available at https://www.
synapse.org/#!Synapse:syn5550382. The online tool for querying the sQTL  
and eQTL summary statistics is available at https://yanglab.westlake.edu.cn/ 
data/brainmeta. The full summary statistics from the sQTL, eQTL, SMR and 
COLOC analyses are available at https://yanglab.westlake.edu.cn/pub_data.html. 
The GRCh37 genome assembly is available at https://www.ncbi.nlm.nih.gov/
genome/guide/human. The GENCODE-v37 transcriptome reference is available 
at https://www.gencodegenes.org/human/release_37lift37.html. Source data are 
provided with this paper.

Code availability
The computer code and documentation of THISTLE are available at https://
yanglab.westlake.edu.cn/software/osca/#THISTLE, with source code available at 
https://github.com/jianyangqt/osca. All custom codes used to perform the data 
analysis relevant to this paper, including RNA-seq data cleaning, sQTL and eQTL 
mapping, functional enrichment analyses and SMR and COLOC analyses, are 
available at Zenodo84.
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Extended Data Fig. 1 | Comparison of statistical power between THISTLE and sQTLseekeR by simulation with transcription abundances generated 
from a multivariate distribution. Transcription abundance was simulated from either a multivariate normal distribution (panels a and c) or a multivariate 
Poisson distribution (panels b and d) with (scenario 4) or without an eQTL effect (scenario 3) in a sample of 500 unrelated individuals (Section 2 of 
the Supplementary Note). The THISTLE and sQTLseekeR p-values were computed from a one-sided sum of chi-squared test (approximated by the 
Saddlepoint algorithm) and pseudo-F test (approximated by the Davies algorithm), respectively.
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Extended Data Fig. 2 | Comparison of statistical power between DRIMSeq, MANOVA, sQTLseekeR, and THISTLE by simulation with transcription 
abundances generated from RNA-seq reads. Panels a, b, c and d show the results from 500 simulation replicates to quantify the power, measured by 
AUC truncated at FPR = 0.05 or 0.001, for DRIMSeq, and MANOVA, sQTLseekeR, and THISTLE. Panel e shows the result from 500 simulation replicates 
to quantify the power, measured by TPR at different levels of p-value threshold, for sQTLseekeR and THISTLE. Transcriptional abundance data of 500 
unrelated individuals were generated by sampling RNA-seq reads to mimic real RNA-seq data using Polyester (Section 2 of the Supplementary Note). 
The simulations were performed with varying a) sample size, b) sQTL effect size, c) the degree of overdispersion of transcription abundances, and d) 
the number of isoforms per gene. When one simulation parameter was fixed (for example, n = 300 in panel a, all the other parameters were randomly 
sampled from the specified categories, for example, the sQTL effect size from {small, median, or large}, the number of isoforms per gene from {2, 5, 10, 
15, or 20}, and the degree of over-dispersion of transcriptional abundance from {600, 900, 1200, or 1500}. The DRIMSeq, MANOVA, sQTLseekeR, and 
THISTLE p-values were computed using a one-sided likelihood ratio test, F test, pseudo-F test, and sum of chi-squared test, respectively.
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Extended Data Fig. 3 | Comparison between sQTL results from the sQTLseekeR, THISTLE, and LeafCutter & QTLtools analyses of real data. The 
analyses were performed with the ROSMAP data (n = 832). Panel a shows the numbers of overlapping sGenes between THISTLE and sQTLseekeR. Panel 
b shows the numbers of overlapping sGenes considering only the SNP-gene pairs tested in common between THISTLE and sQTLseekeR. Panel c shows 
the number of sGenes discovered at different p-value thresholds for THISTLE and sQTLseekeR. Panel d shows the ratio of the number of sGenes identified 
by THISTLE to that by sQTLseekeR at different p-value thresholds. Panels e and f show the replication rates of the lead cis-sQTL SNPs at PsQTL < 0.05 and 
PsQTL < 0.05/m (where m is the number of SNPs taken forward for replication for each method), respectively. Each row represents an analysis from which 
the lead cis-sQTL SNPs (one SNP per gene) were identified (P < 5× 10−8), and each column represents an analysis in which the SNPs were replicated. 
The THISTLE, sQTLseekeR, and LeafCutter & QTLtool p-values were computed using a one-sided sum of chi-squared test, pseudo-F test, and chi-squared 
test, respectively.
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Extended Data Fig. 4 | Comparison of runtime between THISTLE and sQTLseekeR. We benchmarked the runtime of THISTLE (implemented in OSCA) on 
a computing platform with 16 GB memory and 16 CPU cores, in comparison with sQTLseekeR2-nf, using the ROSMAP data (n = 832) with 382 genes and 
109,853 SNPs on chromosome 22. We repeated each analysis with 10 replicates.
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Extended Data Fig. 5 | Workflow of the sQTL and eQTL analyses in this study. RINT: rank-based inverse normal transformation. * Note: we have 
implemented the QTLtools QTL mapping method (linear regression) in OSCA and used the two tools interchangeably, for example, OSCA for real data 
analysis to save the sQTL or eQTL mapping results in SMR BESD format and QTLtools for eQTL or Leafcutter sQTL permutation analysis.
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Extended Data Fig. 6 | Number of sGenes identified by THISTLE based on four different transcriptome references. The four transcriptome references are 
RefSeq, GENCODE-Basic (v37), GENCODE (v37), and de novo assembly (constructed from the RNA-seq data using StringTie based on GENCODE). Panel 
a shows the comparison in the number of sGenes in the MSBB cohort (n = 183), and panel b shows the comparison in the whole dataset (n = 2,865).

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNature Genetics

Extended Data Fig. 7 | Comparison between the sQTLs results from THISTLE and LeafCutter & QTLtools. a) Comparison between the sGenes identified 
by THISTLE and LeafCutter & QTLtools. b) COLOC PP3 and PP4 values between the THISTLE and LeafCutter & QTLtools sQTL signals, and LD r2 between 
the lead THISTLE and LeafCutter & QTLtools cis-sQTL SNPs for 5,113 overlapping sGenes. In panel b, the bold line inside each box indicates the median 
value, notches indicate the 95% confidence interval (CI), the central box indicates the interquartile range (IQR), and whiskers indicate data up to 1.5 times 
the IQR.
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Extended Data Fig. 8 | Enrichment of the lead THISTLE or LeafCutter & QTLtools cis-sQTL SNPs in functional annotation categories. The annotation 
categories were defined by the chromatin state annotation data from REMC (a), histone marks from REMC (b), predicted variant functions by SNPEff 
(c), or eCLIP peaks of 113 RBPs binding sites from ENCODE (d). The fold enrichment was computed by dividing the percentage of lead cis-sQTL SNPs in 
a category by the mean percentage observed in 1,000 sets of control SNPs sampled repeatedly at random (Methods). Each column represents a point 
estimate with an error bar indicating the 95% CI of the estimate. The grey dashed line represents no enrichment. The numbers in the parentheses are 
the numbers of THISTLE/LeafCutter & QTLtools sQTL SNPs in each functional category. In panel d, a violin plot shows the distribution of fold enrichment 
estimates across 113 RBPs binding sites. The line inside each box indicates the median value, notches indicate the 95% CI, the central box indicates the 
IQR, whiskers indicate data up to 1.5 times the IQR, and outliers are shown as separate dots.
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Extended Data Fig. 9 | Association of SETD6 with schizophrenia identified using either sQTL or eQTL data. a) The top track shows −log10(p-values) 
of SNPs from the schizophrenia GWAS. The second and third tracks show −log10(p-values) from the THISTLE sQTL and eQTL analyses, respectively. 
The THISTLE sQTL and eQTL p-values were computed using a one-sided sum of chi-squared test and chi-squared test, respectively. b) Association 
of rs7198594 (the lead eQTL SNP) with the overall mRNA abundance of SETD6 in the ROSMAP data (n = 832). Each boxplot shows the distribution 
of mRNA abundances in a genotype class, that is, CC (n = 288), CT (n = 392), or TT (n = 152). The line inside each box indicates the median value, 
notches indicate the 95% CI, the central box indicates the IQR, whiskers indicate data up to 1.5 times the IQR, and outliers are shown as separate dots. 
c) Isoform-eQTL effects for SETD6 in the whole dataset (n = 2,865), with ENST00000310682.6 and ENST00000219315.9 at the two extremes with 
opposite isoform-eQTL effects. Each dot represents an estimate of isoform-eQTL effect with an error bar indicating the 95% CI of the estimate.
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Extended Data Fig. 10 | Trans-sQTL analysis. a) Overlaps between trans-sGenes, cis-sGenes, and trans-eGenes. b) Overlap of the trait-associated 
trans-sGenes and trans-eGenes identified by SMR & COLOC PP4. c) Association of SYTL2 with major depression (MD) through both the trans-sQTLs and 
trans-eQTLs. The top track shows −log10(p-values) of SNPs from the MD GWAS. The second and third tracks show −log10(p-values) from the THISTLE 
trans-sQTL and trans-eQTL analyses, respectively, for SYTL2. d) Manhattan plot of p-values from genome-wide THISTLE sQTL analysis for SYTL2. The blue 
arrow indicates the genomic position where SYTL2 is located. The GWAS and eQTL p-values in panel c were computed using a one-sided chi-squared test, 
and the THISTLE sQTL p-values in panels c and d were computed using a one-sided sum of chi-squared test.
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