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Perturbational phenotyping of human blood 
cells reveals genetically determined latent 
traits associated with subsets of common 
diseases

Max Homilius    1,2,4,5  , Wandi Zhu    1,2,4,5  , Samuel S. Eddy1, 
Patrick C. Thompson    1, Huahua Zheng1, Caleb N. Warren1, Chiara G. Evans1, 
David D. Kim    1, Lucius L. Xuan    1, Cissy Nsubuga    1, Zachary Strecker1, 
Christopher J. Pettit1, Jungwoo Cho1, Mikayla N. Howie1, Alexandra S. Thaler1, 
Evan Wilson    1, Bruce Wollison1, Courtney Smith1, Julia B. Nascimben    1, 
Diana N. Nascimben1, Gabriella M. Lunati1, Hassan C. Folks1, Matthew Cupelo1, 
Suriya Sridaran1, Carolyn Rheinstein1, Taylor McClennen    1, Shinichi Goto    1,2, 
James G. Truslow    1, Sara Vandenwijngaert1, Calum A. MacRae    1,2,5   & 
Rahul C. Deo    1,2,3,5 

Although genome-wide association studies (GWAS) have successfully 
linked genetic risk loci to various disorders, identifying underlying cellular 
biological mechanisms remains challenging due to the complex nature of 
common diseases. We established a framework using human peripheral 
blood cells, physical, chemical and pharmacological perturbations, and flow 
cytometry-based functional readouts to reveal latent cellular processes and 
performed GWAS based on these evoked traits in up to 2,600 individuals. We 
identified 119 genomic loci implicating 96 genes associated with these cellular 
responses and discovered associations between evoked blood phenotypes 
and subsets of common diseases. We found a population of pro-inflammatory 
anti-apoptotic neutrophils prevalent in individuals with specific subsets of 
cardiometabolic disease. Multigenic models based on this trait predicted 
the risk of developing chronic kidney disease in type 2 diabetes patients. By 
expanding the phenotypic space for human genetic studies, we could identify 
variants associated with large effect response differences, stratify patients and 
efficiently characterize the underlying biology.

Precision medicine strives to reclassify complex heterogeneous 
diseases into distinct biologically defined groups, thereby enabling 
targeted therapies and improved outcomes. Examples include the 
subdivision of common cancers by somatic driver mutations1, the 

discovery of eosinophilic variants of asthma2 and the recognition that 
some presentations of heart failure may arise from the accumulation 
of amyloidogenic proteins, which can be subdivided further based on 
the aggregating protein3. The realization of precision medicine has 
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reflect physiological processes, disease states and environmental 
factors, including active therapies. For example, dysregulation of 
hematopoietic processes can result in disease progression via mecha-
nisms such as the contribution of inflammation to atherosclerosis 
and insulin resistance7–9 or hyperactive coagulation in pathological 
thrombosis10–12. In addition to circulating cells with their repertoire 
of responses, blood plasma contains hormones, secreted proteins, 
metabolites, cell-free DNA, microparticles and extracellular vesicles 
that can carry signals to blood cells or other cell types. Peripheral 
blood may offer a diagnostic window into multiple organ systems 
and integrative physiology13–15.

been hindered by the lack of readily available measures of the activities 
of discrete biological pathways in most common diseases. Historical 
approaches have focused on mining large patient biobanks combining 
archived DNA, RNA and serum or plasma samples with clinical records4. 
Although such strategies have identified common genetic variants 
associated with clinical outcomes, they have typically not been suc-
cessful at capturing the underlying cell biology, limiting their utility 
in producing mechanistic insights into therapeutic implications5,6.

We aimed to establish a framework that bridges genetic vari-
ants and complex diseases through standardized phenotyping 
of primary human cells. We used live human blood cells, as these 
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Fig. 1 | Chemical perturbations expand the phenotypic space of quantitative 
blood profiles, and blood cell responses are associated with clinical 
phenotypes and genetic variants. a, Recruitment setting and application of 
a standard hematological analyzer for CBC together with perturbation agents 
to systematically measure cellular responses in whole-blood samples across 
a clinical cohort. b, Data-driven gating strategy for four Sysmex channels, 
including WDF, WNR, PLT-F, and RET channels. Gates were defined according  
to known and new cellular states in response to perturbation conditions.  
c, Cell gates were used to derive high-dimensional quantitative readouts for 
278 blood cell parameters across 37 environmental conditions including 
inflammatory stimuli (LPS and Pam3CSK4), heat or approved and experimental 

compounds (dapagliflozin, empagliflozin and captopril). Each perturbation 
condition was measured for up to 3,300 individuals (see Supplementary Table 
1 for a description of conditions and Extended Data Fig. 3 for a projection of 
blood-response readouts). d, Blood parameters and response to perturbation 
conditions were associated with clinical phenotypes such as ICD10 diagnostic 
codes and lab measurements. e, The perturbation screening setting yielded many 
genetic associations that were specific to blood cell types and environmental 
stimuli. By comparing similar conditions in the same cohort, detailed 
comparisons between perturbation conditions and specific associated blood 
parameters were possible. LPS, lipopolysaccharide; QTc, corrected QT interval.
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Previous genome-wide association studies (GWAS) on whole blood 
primarily focused on complete blood counts (CBCs); clinical param-
eters describing numbers; volumes and distribution of leukocytes; 
erythrocytes and platelets; and the genetic architecture of hematopoie-
sis and blood diseases have been mapped in detail16–18. A recent study 
expanded measured phenotypes to include flow cytometry-derived 
parameters with the aim of better describing cellular function19. The 
Human Functional Genomics Project profiled cytokine production and 
baseline immune parameters in response to pathogen challenges20. 
Other studies have revealed the genetic basis of platelet aggregation 
in response to known agonists21,22. However, these studies did not 
consider the dynamic responses of blood cells to environmental condi-
tions, which likely contribute to their effects on disease development, 
progression and prevention.

We hypothesized that treating whole blood ex vivo with diverse 
stressors or stimuli would enable the identification of latent differential 
cellular responses and new disease-associated endophenotypes. We 
anticipated that this expansion of phenotypic space would evoke traits 
determined by large effect size common alleles, enabling efficient 
target identification and improving the prediction of incident events. 
Moreover, given that biological pathways are reused across diverse 
tissues and organ systems, insights into whole blood may be relevant 
to a range of conditions originating in different tissues. By identifying 
intermediate cellular phenotypes, we sought to define subcategories 

of disease and specific pathophysiologic mechanisms that can be 
targeted more directly.

Results
Chemical perturbations expand the phenotypic space of 
blood profiles
In clinical settings, whole blood cytometry is used to quantify circulating 
cells as part of standardized diagnostic tests. We adapted a widely-used 
whole-blood cytometry analyzer (Sysmex XN-1000) to systematically 
profile peripheral blood from over 4,700 study participants (donors) 
under 37 conditions (36 perturbations and baseline), genotyped more 
than 2,600 donors and performed GWAS for all blood perturbation 
profiles (Fig. 1a). We recorded side scatter (SSC), forward scatter (FSC) 
and side fluorescence (SFL) of blood cells using four fluorescence dyes 
(white cell differential channel by fluorescence (WDF), white count 
and nucleated red blood cells (WNR), reticulocyte (RET) and platelet 
F (PLT-F)) that quantify morphological and intracellular properties. 
Chemical stressors evoked distinct cellular states for blood cells that 
were not typically observed under baseline conditions, enabling the 
detection of new cell populations in three-dimensional cytometry meas-
urements (Extended Data Fig. 1). We determined cellular gates based 
on empiric distributions of blood cells under perturbation conditions 
and defined parameter sets for all observed cell populations (Fig. 1b and 
Extended Data Fig. 2). The perturbation conditions represented discrete 
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Fig. 2 | Whole-blood perturbational profiling yields a wide range of genetic 
associations for specific conditions and cell types. a, Genome-wide significant 
associations with P < 5 × 10−8 colored by perturbation condition (left) and cell 
type (right). Two-sided P values are based on t tests in linear regression models 
and are not adjusted for multiple testing. Circle size is proportional to −log10 
(P value). Nearby genes are annotated based on proximity. For clarity, only  
a subset of readouts is shown for loci with many significant associations  
(see Table 1 for an overview of traits, cell types, candidate genes and previously 
reported blood-trait associations and Supplementary Data 1 for a full listing 

of associations). b, Comparison of β coefficients for six of the most significant 
variants across multiple traits and genes. For these readouts, perturbation 
conditions led to large effect size changes that were not observed at baseline. For 
our study, the variants shown are rs644592 (RHCE, n = 943), rs3811444 (TRIM58, 
n = 1,410), rs12513029 (ACSL1, n = 1,296), rs34538474 (PFKP, n = 1,339), rs6480404 
(HK1, n = 1,378) and rs67760360 (BCL2A1, n = 1,424). For the studies in refs. 17,18, 
which included over 400,000 individuals, the variants shown are the reported 
variants with the lowest P value for each gene. Data are presented as absolute 
estimated β coefficient ±s.e.m.
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Table 1 | Genetic regions associated with whole-blood perturbation response traits

Lead SNP rsID P value Candidate genes CADD consequence Top trait Obs. Previous 
association

1:20032226:G:A rs10917522 3.09 × 10−9 TMCO4 Intron WDF Empa 1.5 h NE3 CV SFL 380 –

1:25703156:C:T rs644592 5.58 × 10−18 RHCE Intron RET rotenone 6 h ov. RET1 
CV SFL

943 RBCa

1:89840389:T:C rs7550358 1.55 × 10−8 GBP6 Intron RET captopril 5.5 h  
RET2 Count

353 –

1:103361529:A:C rs72683260 3.22 × 10−9 COL11A1 Intron RET TMAO 3.5 h RBC2  
Med SFL

361 –

1:225579918:A:T rs41268717 6.90 × 10−9 DNAH14, LBR Intron WNR water 15 h WBC2  
Med FSC

1,423 RBCa

1:248039451:C:T rs3811444 1.37 × 10−11 TRIM58 Missense RET KCl 17 h RET1 SD SSC 1,410 RBCa, PLTb

2:203226371:G:A rs72925015 1.24 × 10−8 BMPR2 Upstream WDF water 15 h MO2  
Med SSC

1,392 RBCa

3:16551213:C:G rs2881513 3.78 × 10−8 RFTN1 Regulatory, intron WNR nigericin 0.5 h UK1  
CV FSC

327 –

3:49774658:G:A rs73077175 1.01 × 10−13 CDHR4-UBA7, IP6K1 Intron WDF baseline NE2 Med SFL 1,629 RBCa

3:50255663:C:T rs35926495 8.32 × 10−25 SLC38A3 Intron WDF baseline NE2 Med SFL 1,664 RBCa

3:50374293:A:G rs2073499 9.63 × 10−9 HYAL3, RASSF1 Regulatory, intron WDF baseline NE2/NE4 ratio 1,565 BASOa

3:51406862:A:G rs111614418 2.29 × 10−8 DOCK3 Intron WNR LPS 18 h WBC Med SSC 1,416 EOb

3:56849749:T:C rs1354034 7.23 × 10−10 ARHGEF3 Intron RET KCl 17 h PLT Med SFL 1,397 PLT, RBC, LYb

3:94702472:C:T rs1432474 1.92 × 10−8 LINC00879 Intron WDF water 23 h MO2 CV FSC 1,415 –

4:38677227:A:C rs34089598 7.94 × 10−12 KLF3, KLF3-AS1 Regulatory, intron WNR Pam3CSK4 19 h  
WBC CV FSC

1,310 WBCb

4:38798648:C:A rs5743618 8.20 × 10−103 TLR1, TLR6, TLR10 Missense WDF Pam3CSK4 19 h NE1 
Med FSC

1,300 –

4:178716833:T:C rs10030190 4.08 × 10−8 LINC01098 Intron WNR baseline UK1 CV FSC 1,486 –

4:185602707:G:A rs72703519 2.92 × 10−20 CASP3-ACSL1 Intron WDF KCl 17 h NE2/NE4 ratio 1,336 –

4:185665118:G:A rs12513029 1.55 × 10−13 CASP3-ACSL1 Intergenic WDF colchicine 20 h  
NE4 SD SFL

1,296 PLTa

6:25719210:T:C rs9358870 3.71 × 10−9 SCGN Intergenic RET DMSO 4.5 h RBC1 SD FSC 355 PLTb

6:25878848:A:G rs55925606 2.97 × 10−9 HFE-TRIM38 Upstream and downstream RET DMSO 4.5 h RBC1 CV FSC 381 RBC, PLTb

7:18398911:C:T rs62450075 9.82 × 10−9 HDAC9 Intron RET KCl 17 h RBC1 SD FSC 1,381 –

7:24832308:A:G rs4719781 2.50 × 10−18 DFNA5, OSBPL3 Downstream WNR ciprofloxacin 22 h BASO 
Med SSC

1,260 –

7:28773957:A:C rs73075771 1.19 × 10−8 CREB5 Intron WNR TMAO 3.5 h UK1 CV SSC 325 WBCb

7:92408370:C:T rs445 2.30 × 10−14 CDK6 Regulatory, intron WDF baseline EO1 Med SSC 1,698 WBC, RBCb

7:128371246:C:T rs41274144 6.64 × 10−9 GARIN1B 3′ UTR WNR TMAO 3.5 h PLT CV SSC 327 –

8:4096691:T:C rs28522529 2.87 × 10−10 CSMD1 Intron WDF captopril 5.5 h MO2 
CV SFL

343 –

8:6828115:G:T rs2615764 1.89 × 10−17 DEFA10P Upstream PLT-F baseline WBC1  
Med SSC

1,662 WBCb

9:7015133:A:G rs10975974 3.39 × 10−10 KDM4C Intron WDF baseline MO2 Med SSC 1,688 RBCa

9:9744225:A:C rs80353904 3.10 × 10−8 PTPRD Intron WDF nigericin 7.5 h EO2  
CV SSC

351 –

10:3139540:A:G rs34538474 6.55 × 10−15 PFKP Intron WDF KCl 17 h NE2/NE4 ratio 1,339 PLTa

10:71109406:T:C rs6480404 4.03 × 10−13 HK1 Regulatory, intron WDF Alhydrogel 21 h  
NE4 SD SFL

1,378 RBCb

11:972270:C:T rs7933889 1.03 × 10−8 AP2A2 Intron WNR ciprofloxacin 22 h 
WBC2 SD SFL

1,358 –

11:11548147:A:G rs10831631 3.19 × 10−9 GALNT18 Intron WDF LiCL 4 h NE1 CV FSC 369 –

11:56806558:C:T rs12421419 4.11 × 10−9 OR5AK2, OR5AK4P Downstream WDF colchicine 20 h LY  
SD SSC

1,338 –

11:57159189:T:C rs548854 1.81 × 10−12 PRG2, SLC43A3 Upstream, intron WDF colchicine 20 h EO1 
Med FSC

1,383 –

11:87048905:G:A rs4536247 9.81 × 10−9 TMEM135 Intergenic WDF water 15 h NE2% 1,358 –
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classes of exposure likely to contribute to blood cell responses as fol-
lows: (1) simulated physiological stressors; (2) chemical stressors; (3) 
gut microbiome metabolites; and (4) drugs with known mechanisms of 
action (Supplementary Table 1). We recorded up to 37 condition-specific 
blood responses for each donor and calculated quantitative profiles 
characterizing each cell population using cell counts, as well as median 
and s.d. for SSC, FSC and SFL parameters for each blood cell popula-
tion (Fig. 1c and Supplementary Table 2). Compared to the baseline, 
each perturbation evoked particular changes in the characteristics of 
different blood lineages, resulting in a series of distinct cellular pro-
files (Extended Data Figs. 1 and 2 and Supplementary Fig. 1). With these 
chemical perturbations, we expanded quantification for each donor 
from 278 parameters to more than 4,000 parameters on average, greatly  
expanding the phenotypic space that could be interrogated.

Across the 36 perturbations, we collected measurements from 
650 to 3,300 donors per condition. We then associated blood-response 
profiles with clinical traits, including quantitative lab values and diag-
nostic codes, to identify clinical endpoints and disease syndromes 
reflected in the evoked blood-response readouts (Fig. 1d). We also 
identified genetic loci associated with blood perturbation responses, 
which were often specific to perturbation conditions, cell populations 
and physical readouts (Fig. 1e). When comparing blood-response 
profiles, the perturbation conditions, readouts and associated genetic 
loci formed clusters of related conditions and cell types (Extended 
Data Fig. 3), suggesting the evoked blood profiles are informative for 
specific biological processes.

Perturbational conditions yield new genetic associations
To determine genetic variants associated with perturbation blood 
cell responses, we tested linear, univariate associations of 278 cellular 
phenotypes in 37 different conditions against >3.5 million imputed 
variants in 260–2,200 donors. We clumped variants with high linkage 
disequilibrium (LD) to identify more than 100 genomic loci that were 
significantly associated with at least two blood perturbation readouts 
(Supplementary Data 1). We identified 48 unique, nonoverlapping 
regions with nearby candidate genes (Fig. 2a and Table 1). Approxi-
mately half of the identified associations (25 of 48 genetic regions with 

candidate genes) had previously been described as blood biomarker 
associations under baseline conditions with parameters that are part 
of CBC studies encompassing 170,000 to over 700,000 individuals16–18. 
We observed new associations in previously unreported cell types for 
many previously reported loci (12 of 25), such as white blood cell (WBC) 
responses associated with SLC83A3, whereas only RET-based associa-
tions had previously been described17. Additionally, we identified 23 
new regions associated with blood cell responses to perturbations that 
have not been described, for example, the response to empagliflozin 
associated with variants in TMCO4. This gene had previously been 
associated with chronic inflammatory diseases23. Most associations 
we observed were specific to a particular blood lineage, such as RET 
readouts associated with TRIM58 or neutrophil-specific associations 
with PFKP and ACSL1.

Chemical stressors increased response differences among 
donors (Extended Data Figs. 1 and 2 and Supplementary Fig. 1), mak-
ing it possible to identify robust genetic associations with small sample 
sizes. For example, neutrophil and other WBC responses induced by 
inflammatory stimuli such as Pam3CSK4 or lipopolysaccharide (LPS) 
showed strong associations with a missense variant in TLR1 (for exam-
ple, rs5743618, WDF_Pam3CSK4_19h_NE1_Med_FSC; P = 8.2 × 10−103, 
n = 1,300). This association between TLR1 and WBC traits was not 
described previously in cohorts studying CBC parameters with over 
half a million individuals. The same SNP has previously been associated 
with asthma and allergic diseases through unclear mechanisms24. Our 
results suggest a potential role for neutrophils as mediators in these 
disease phenotypes. Comparing β coefficients for six genes that were 
previously identified in blood-trait GWAS showed that perturbation 
conditions greatly increased observed effect sizes compared to base-
line conditions (Fig. 2b).

Blood perturbation responses reflect organ-specific  
disease traits
To assess whether perturbation-based blood cell traits reflect indi-
viduals’ disease status, we tested for associations between 327 blood 
readouts (top three traits with the lowest GWAS P value were selected 
for each unique locus) and a collection of structured phenotypes based 

Lead SNP rsID P value Candidate genes CADD consequence Top trait Obs. Previous 
association

11:93862020:C:T rs4753126 3.58 × 10−12 HEPHL1, PANX1 Regulatory, upstream WDF colchicine 20 h EO2 
Med SFL

1,319 RBCa

11:112971545:C:T rs11214488 2.16 × 10−8 NCAM1 Intron WDF cholic acid 6.5 h NE3 
CV SSC

360 –

12:75695577:A:G rs10785185 2.62 × 10−8 CAPS2 Intron PLT-F isobutyric 3 h IPF SD 
FSC

370 –

12:122399173:C:A rs11615667 1.24 × 10−9 WDR66 Intron PLT-F ciprofloxacin 22 h IPF 
SD SFL

1,284 PLTa

14:21347966:G:T rs74034667 1.88 × 10−10 RNASE3 Upstream WDF baseline MO2 CV SFL 1,700 –

14:21423790:G:C rs2013109 8.60 × 10−12 RNASE2 Intron WDF baseline MO CV SFL 1,651 –

14:55654183:T:C rs2094103 1.01 × 10−8 DLGAP5 Intron PLT-F ciprofloxacin 22 h PLT-F 
SD FSC

1,399 –

15:80260872:G:A rs67760360 6.95 × 10−21 BCL2A1 Regulatory, intron WDF LPS 18 h NE4 CV SFL 1,430 WBCb

20:4157072:C:G rs6084653 3.94 × 10−10 SMOX Intron RET baseline RET2 CV SFL 1,605 RBCb

20:57569860:C:G rs1043219 4.09 × 10−10 NELFCD Downstream, 3′UTR RET colchicine 20 h PLT CV 
SFL

1,334 PLTb

20:57597970:A:C rs463312 1.19 × 10−19 TUBB1 Missense, downstream PLT-F baseline IPF SD SFL 1,681 PLTb

Associations for blood traits and perturbation conditions were clumped to produce unique genomic regions across multiple conditions. Two-sided P values are based on t tests in linear 
regression models and are not adjusted for multiple testing. Variants with the lowest P value for each clumped region were selected as lead SNPs. The trait names contain the channel, 
condition and readout; for example, WDF Empa 1.5 h NE3 CV SFL indicates a readout in the WDF channel, with empagliflozin treatment, quantifying the SFL CV of a neutrophil subpopulation 
(NE3). This table contains a subset of regions with nearby candidate genes (see Supplementary Data 1 for a complete listing of associations). CV, coefficient of variation. aThe previous 
association identified in ref. 17, which analyzed over 560,000 individuals. bThe previous association identified in ref. 16, which analyzed over 173,000 individuals.

Table 1 (continued) | Genetic regions associated with whole-blood perturbation response traits
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on electronic health record (EHR) data. Diagnostic status for multiple 
common disorders was significantly associated with variation in blood 
perturbation readouts (Fig. 3a,b, Supplementary Fig. 2 and Supplemen-
tary Data 2). Notably, perturbations elicited unique disease associations 
absent at baseline. For example, neutrophil variability in SFL at baseline 
(WDF_Baseline_NE4_SD_SFL) showed no significant association with 
disease. However, the same parameter under 21 h Alhydrogel pertur-
bation (WDF_Alhydrogel_21h_NE4_SD_SFL) showed negative associa-
tions with multiple cardiometabolic diseases, including heart failure 
(cases = 532, t = −2.98, Padj = 0.014), type 2 diabetes (T2D; cases = 685, 
t = −6.43, Padj = 5.4 × 10−9) and chronic kidney disease (CKD; cases = 546, 
t = −3.48, Padj = 3.45 × 10−3). Certain blood readouts showed associations 

with very specific disease phenotypes; for example, platelet variabil-
ity in SFL under KCl 17 h perturbation was positively associated with 
purpura and hemorrhagic conditions (RET_KCl_17h_PLT_CV_SFL: 
cases = 225, t = 8.16, Padj = 4.89 × 10−14) and negatively associated with 
venous thrombosis (RET_KCl_17h_PLT_CV_SFL: cases = 220, t = −3.78, 
Padj = 1.3 × 10−3).

In addition to diagnostic codes, quantitative lab values com-
monly used to assess various physiological parameters also demon-
strated robust associations with blood perturbation responses. For 
example, red blood cell (RBC) median SSC under 18 h LPS condition 
(RET_LPS_18 h_RBC_Med_SSC) showed strong positive associations 
with serum albumin (n = 2,494, t = 11.75, Padj = 3.89 × 10−28) and eGFR 
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Fig. 3 | Blood readouts under perturbation conditions are associated with 
clinical traits. a, Distribution of raw blood readouts with associated clinical 
diagnoses. Each point shows readout for one study participant, stratified by 
sex and disease status, with color indicating age at blood draw. The gray area 
illustrates the normalized density of readouts for each subgroup. b, Pairwise 
association between quantile-transformed blood readouts and clinical lab 
values or diagnostic codes. Association effect sizes were estimated using 
linear and logistic regression models for quantitative lab measurements and 
binary traits, respectively. Positive associations are shown in red; negative 
associations are shown in blue. Only associations for a subset of blood traits are 
shown (see Supplementary Fig. 2 for all blood traits that have significant genetic 
associations). P values were adjusted for FDR to account for multiple testing 

across 327 perturbational blood readouts and 50 clinical outcomes, including 
20 lab values and 30 diagnoses. Points indicate significant associations with 
adjusted P value thresholds as follows: one point signifies 0.001, two points 
signify 0.001 and three points signify 0.0001 (see Supplementary Table 4 for 
clinical trait definitions using diagnostic codes and Supplementary Data 2 for 
all association results with FDR < 0.1). c, ICA of the t score matrix of associations 
between blood readouts and clinical endpoints. Shown is a subset of diagnoses 
and lab values projected onto the first two independent components together 
with mixing matrix loadings of selected blood readouts. FDR, false discovery 
rate; ICA, independent component analysis; T2DM, type 2 diabetes mellitus; 
T1DM, type 1 diabetes mellitus.
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(n = 2,569, t = 3.26, Padj = 6.66 × 10−3), which corresponds with its nega-
tive association with CKD status. Significant associations included clini-
cal traits that are not directly measurable in blood, such as a positive 
correlation between corrected QT interval on an electrocardiogram 
and RBC size variability under 18-h LPS perturbation (RET_LPS_18h_
RBC1_SD_FSC; n = 1,946, t = 10.22, Padj = 3.01 × 10−21), indicating that 
latent blood phenotypes may reflect physiological changes occurring 
in other tissues.

To explore the associations between blood traits and clinical 
phenotypes, we employed independent component analysis (ICA) to 
identify maximally uncorrelated components in the association matrix 
(Fig. 3c). ICA effectively grouped clinical endpoints and lab values into 
meaningful clusters, for example, one encompassing obesity, T2D 
and glucose measurements, and another comprising asthma, chronic 
obstructive pulmonary disease and venous thrombosis (Fig. 3c). We 
plotted the loadings of seven example blood traits onto the same IC 
space (Fig. 3c, arrows), demonstrating how each blood trait carries 
unique information related to clinical phenotypes. We found that many 
perturbation conditions elicited new clinical associations not observed 
at baseline, suggesting perturbations evoked unique previously latent 
blood cell responses that are disease-relevant.

A neutrophil population is negatively associated with 
cardiometabolic phenotypes
Multiple chemical stimuli, when studied with long exposure durations, 
elicited a distinct population of neutrophils (NE2) in the Sysmex WDF 
channel, exhibiting high SSC and fluorescence measurements, which 
were absent under baseline conditions (Fig. 1b). As an exemplar, we 
investigated this phenotype and functionally characterized this neu-
trophil population.

The ratio of NE2 neutrophils to the total neutrophil count  
(NE2/NE4) under multiple chemical perturbations showed asso-
ciations with a complex aggregate of cardiometabolic diseases, 
specifically chronic ischemic heart disease, heart failure and T2D. 
For example, the NE2/NE4 ratio with an inflammatory stimulus 
(WDF_Pam3CSK4_19h_NE2/NE4) had negative associations with 
T2D (cases = 685, t = −5.4, Padj = 1.51 × 10−6), obesity (cases = 1,202, 
t = −4.37, Padj = 1.47 × 10−4) and related lab values (serum triglycerides: 
n = 2,248, t = −5.6, Padj = 7.64 × 10−7; serum glucose: n = 2,657, t = −3.7, 
Padj = 1.72 × 10−3). This blood readout also exhibited a positive correla-
tion with total high-density lipoprotein cholesterol levels (n = 2,259, 
t = 6.32, Padj = 1.24 × 10−8). These results suggest that a low NE2/NE4 ratio 
is associated with cardiometabolic disease phenotypes.

The NE2 population represents apoptotic neutrophils
Because the NE2 population was only observed with perturbations at 
later time points, we hypothesized that it was related to neutrophil 
death. To evaluate the biological processes occurring in this popu-
lation, we developed protocols to label purified neutrophils with 

the Sysmex WDF dye to visualize NE2 using regular flow cytometry  
(Fig. 4a). We found that the cells that represent the NE2 population, 
showing elevated WDF dye fluorescence and SSC, exhibited increased 
signals in Annexin V and Sytox, compared to the NE1-like population 
that mirrors the normal neutrophil profile at baseline (Fig. 4b,c). 
Annexin V is a marker for early apoptosis, while Sytox is indicative of 
cell death. Furthermore, we observed that blood samples with higher 
NE2/NE4 ratios exhibited higher percentages of Sytox and Annexin 
V-positive neutrophils (Fig. 4d). These results suggest that the NE2 
population elicited by various chemical perturbations represents a 
subset of neutrophils actively undergoing apoptosis.

Pro-inflammatory responses delay neutrophil apoptosis
Delayed apoptosis and impaired clearance of neutrophils can lead 
to non-resolving inflammation and subsequent tissue damage25,26. 
Neutrophils have short lifespans27, which can be prolonged by 
pro-inflammatory and pro-survival signals26. Patients with aggregated 
cardiometabolic diseases exhibited a decreased NE2/NE4 ratio, suggest-
ing reduced neutrophil apoptosis. We hypothesized that the reduction 
in neutrophil apoptosis results from their increased pro-inflammatory 
responses. We examined neutrophil activation and generation of reac-
tive oxygen species (ROS) at an earlier time point (4.5 h post-treatment) 
that is within the normal range of neutrophil half-life in vivo and com-
pared it with the Sysmex NE2/NE4 readout at a later time point (17 h 
post-treatment; Fig. 4e). Neutrophil activation has been previously 
associated with the upregulation of CD11b on the cell membrane and 
shedding of CD62L28,29. Using these two surface markers, three dis-
tinct neutrophil populations are defined, such as CD11bhigh CD62Llow, 
CD11bmedium CD62Lhigh and CD11blow CD62Llow (Fig. 4f). High expression of 
CD11b and shedding of CD62L indicate activated neutrophils, while high 
surface expression of CD62L suggests quiescent neutrophils, and loss 
of both surface markers is indicative of cell death. We observed a robust 
anticorrelation between neutrophil activation and NE2/NE4 in donors 
(Fig. 4g). In addition, we assessed ROS generation using CellROX and 
quantified the percentage of ROS-positive neutrophils for each donor 
(Fig. 4h). Similar to neutrophil activation, we observed an anticorrela-
tion between ROS generation and NE2/NE4 in donors (Fig. 4i). These 
results suggest that individuals with an increase in pro-inflammatory 
neutrophils show a reduced NE2 population in the Sysmex readout. 
We then tracked individual neutrophil trajectories with time-lapse 
imaging using CellROX and Sytox. We observed that neutrophils that 
survived until 15 h exhibited higher ROS and extended duration with 
elevated ROS compared to those that died earlier (Fig. 4j–l). Together, 
these results demonstrate that neutrophil pro-inflammatory responses, 
including activation and ROS generation, delay their apoptosis, which is 
in turn reflected as a reduced NE2 population in Sysmex measurements.

Consistent with our finding that pro-inflammatory neutrophil 
responses determine the NE2/NE4 readout, our GWAS also revealed 
an SNP rs5743618 in the TLR1/6/10 region associated with NE2/NE4 

Fig. 4 | NE2/NE4 measures neutrophil death and anti-correlates with 
neutrophil pro-inflammatory responses. a, Flow cytometry analysis of isolated 
neutrophils stained with the Sysmex WDF dye (WDF-APC). NE2-like population 
is defined as the cells showing elevated SSC and WDF dye intensity. NE1-like 
population is defined as the main neutrophil population with lower SSC and WDF 
dye intensity. b, Distribution of Sytox-green intensity comparing the NE1- and 
NE2-like populations. c, Distribution of intensities of PE-conjugated Annexin 
V, comparing NE1- and NE2-like populations. d, Relationship between Sysmex 
NE2/NE4 readout and the percentage of Sytox-green and Annexin V-positive 
neutrophils from blood samples incubated at 39 °C for 17 h. Each data point 
represents one donor (n = 11). e, Schematics of experimental workflow for 
comparing neutrophil activation and ROS content at the 4.5 h time point and 
Sysmex readout at the 17 h time point for the same blood sample. The illustration 
was created with BioRender. f, Flow cytometry analysis of isolated neutrophils 
stained with Alexa 488 conjugated CD62L and Pacific blue conjugated CD11b 

from two representative patient samples. g, Relationship between the 
percentage of activated neutrophils at 4.5 h and the Sysmex NE2/NE4 readout  
at 17 h for the same donors. Each data point indicates one donor (n = 24).  
h, Histogram of the intensity of CellROX deep red of isolated neutrophils from 
two representative patient samples. i, Relationship between the percentage of 
ROS-positive neutrophils at 4.5 h and the Sysmex NE2/NE4 readout at 17 h for the 
same donors. Each data point represents a donor (n = 24). j,k, Time-dependent 
transient of CellROX deep red (ROS) and Sytox green (cell death) of neutrophils 
that survived till 15 h (j) (n = 27) and died before 15 h (k) (n = 20). Error bars 
indicate s.e.m. l, Time of neutrophils become ROS-positive comparing cells 
that survived till 15 h (n = 27) and died before 15 h (n = 20). Error bars indicate 
s.d. Unpaired two-sided t test was used to calculate P value. P = 1.7 × 10−8. Each 
data point indicates an individual neutrophil. In d, g and i, R indicates Pearson 
correlation coefficient. Two-sided P values are shown.
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ratio (Fig. 5). This variant has been previously demonstrated to 
enhance TLR1 trafficking and expression on the plasma membrane and 
account for interindividual variability in Pam3CSK4-induced cytokine 
responses30,31. To simulate this gain of function in TLR1, we used the 
TLR1/2 ligand Pam3CSK4. We found a dose-dependent decrease in the 
NE2/NE4 profile in whole blood treated with Pam3CSK4 compared to 
untreated control (Extended Data Fig. 4a,b). As expected, stimulating 
neutrophils with Pam3CSK4 also increased neutrophil activation and 
ROS generation (Extended Data Fig. 4c–f). Furthermore, tracking indi-
vidual neutrophil trajectories revealed that Pam3CSK4-treated cells 
exhibit prolonged durations of ROS elevation compared to untreated 
controls (Extended Data Fig. 4g). Pam3CSK4 also greatly increased 
neutrophils’ glycolytic adenosine triphosphate (ATP) production 
(P < 0.001; Extended Data Fig. 4h), suggesting that the neutrophils 
undergo metabolic reprogramming after TLR stimulation, as previ-
ously observed in macrophages32. These results further support the 
role of elevated neutrophil pro-inflammatory responses underlying 
the decreased NE2/NE4 ratio measured with Sysmex.

Common variants in metabolic genes regulate neutrophil 
activation and apoptosis
Besides TLR1 and several genes previously reported to regulate cell 
death (for example, CASP3 and BCL2A1)33,34, we also identified three 
metabolic genes, HK1, PFKP and ACSL1, associated with NE2/NE4 ratio 
at genome-wide significance (Figs. 5 and 6a). HK1 and PFKP encode 
hexokinase 1 and phosphofructokinase, respectively, two key enzymes 
regulating the rate-limiting steps in glycolysis, converting glucose 
into pyruvate and generating low levels of ATP35,36 (Fig. 6a). The lead 
SNPs we identified for HK1 and PFKP were previously associated with 
their increased expression (rs6480404 expression quantitative trait 
loci (eQTLs) for HK1 in neutrophils: β = 0.178, P = 4 × 10−16; rs34538474 
eQTL for PFKP in blood: β = 0.457, P = 3.3 × 10−310)37,38. The two SNPs were 
associated with a decreased NE2/NE4 ratio, suggesting reduced neu-
trophil apoptosis. Neutrophils are typically thought to use anaerobic 
glycolysis as their primary energy source. However, recent studies sug-
gest that neutrophils use diverse metabolic pathways, including fatty 
acid oxidation (FAO), to provide energy for specific functions35,36,39. 

Acyl-CoA synthetase long-chain family member 1, encoded by ACSL1, 
converts fatty acid into acyl-CoA, which is then transported into mito-
chondria for oxidation (Fig. 6a). To investigate the effects of HK1 and 
PFKP manipulations in neutrophils, we used a subsaturation dose of 
2-deoxy-d-glucose (2-DG; 10 mM) to inhibit glycolysis and HK1. We 
used an ACSL1 inhibitor, triacsin C40, to study ACSL1 function. We 
first assessed ATP production from neutrophils using the Seahorse 
metabolic analyzer. Consistent with the literature, we observed that 
unstimulated neutrophils are highly glycolytic (Fig. 6b). As expected, 
2-DG decreased glycolytic ATP production (P = 0.03). In contrast, triac-
sin C ablated mitochondrial ATP production (P = 0.002) and increased 
glycolytic ATP (P = 4.7 × 10−6; Fig. 6b). As ACSL1 modulates FAO, we fur-
ther analyzed triacsin C’s effect on FAO using exogenous palmitate as a 
long-chain fatty acid substrate. Compared to the DMSO control, triacsin 
C decreased both mitochondrial respiration and maximal respiration 
in response to FCCP, suggesting reduced FAO in neutrophils (Fig. 6c).

We next examined how 2-DG and triacsin C modulate neutro-
phil function. We found that both treatments increased the NE2/NE4 
ratio in whole blood compared to controls, suggesting an increase in 
neutrophil death (Fig. 6d), and reduced ROS production in neutro-
phils (Fig. 6e,f). 2-DG also decreased neutrophil activation (Fig. 6e,g). 
Unexpectedly, we observed the upregulation of neutrophil activation 
induced by triacsin C (Fig. 6e,g). This increase is potentially caused by 
the metabolic shift from FAO to glycolysis in neutrophils. The bidirec-
tional effects on neutrophil activation and ROS generation of triacsin 
C underlie the smaller effect on neutrophil death observed when com-
pared to 2-DG (Fig. 6d).

Lastly, to investigate whether inhibiting HK1, PFKP or ACSL1 pro-
motes neutrophil apoptosis and clearance in vivo, we used a transgenic 
zebrafish model expressing GFP under the myeloperoxidase (mpo) 
promoter Tg (mpo:GFP)41 to track neutrophil behaviors. We stimulated 
inflammatory responses by performing tail transection. Within 4 h 
post tail transection, we observed that neutrophils were recruited 
to the injury site, followed by resolution at around 30 h under con-
trol conditions (Fig. 6h,i). Adding a subsaturation dose of 2-DG did 
not alter this response (Fig. 6h,i). In contrast, under hyperglycemic 
conditions, at 30 h post tail transection, neutrophils continuously 
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accumulated at the injury site, suggesting delayed resolution of inflam-
mation (Fig. 6h,i). Inhibiting glycolysis with a subsaturation dose of 
2-DG effectively resolved prolonged neutrophil inflammation at the 
injury site under hyperglycemic conditions (Fig. 6h,i). In addition to 
pharmacological modulation, we used CRISPR–Cas9 to knockdown 
zebrafish orthologs hk1, pfkpa/pfkpb and acsl1a/acsl1b. Under control 
conditions, these knockdowns did not affect neutrophil recruitment 
or clearance (Extended Data Fig. 5). However, under hyperglycemic 
conditions, all three individual knockdowns promoted the resolu-
tion of neutrophil accumulation at the injury site, with acsl1a/acsl1b 
knockdown exhibiting the most pronounced effect and hk1 knockdown 
showing the weakest effect (Extended Data Fig. 5).

These results suggest that HK1, PFKP and ACSL1 interact to regulate 
neutrophil inflammatory responses by modulating their metabolic 
profiles. Pharmacological inhibition of HK1 and PFKP effectively pre-
vents sustained inflammation related to hyperglycemia and promotes 
neutrophil clearance. We found that SNPs leading to increased HK1 
and PFKP expression reduced the NE2/NE4 ratio, which is prevalent in 
cardiometabolic disease. Patients with these common alleles appear 
to exhibit delayed inflammation resolution, potentially contributing 
to disease pathophysiology. Thus, modulation of HK1 and PFKP could 
serve as a mechanism-driven therapeutic strategy for such patients.

Polygenic scores for diverse blood cell readouts predict 
disease outcomes
As we observed correlations between blood-response readouts and 
clinical traits, we sought to test whether polygenic scores (PGSs) 
based on blood-response summary statistics can be used to stratify 
patient populations and improve the predictions of clinical events. 
We calculated PGSs for perturbation blood responses spanning dif-
ferent cell types and conditions, using clumping and thresholding 
with fixed parameters, for participants in the Mass General Brigham 
(MGB) Biobank and the UK Biobank (UKBB). We first computed Cox pro-
portional hazard models for 30 clinical outcomes, using blood-based 
PGSs derived from the selected 327 blood readouts, adjusting for sex 
and the first two genetic principal components. Then, we performed 
meta-analyses to identify blood traits and clinical outcomes with robust 
associations in both MGB Biobank and UKBB datasets.

The PGSs calculated from different blood readouts exhibited 
unique associations with specific diseases. We stratified participants 
into quartiles according to their PGS and plotted the time to first diag-
nosis for a subset of diseases and blood traits (Fig. 7a), which showed 
clear separation among different quartiles. For example, the first quar-
tile based on PGS calculated from variability in RBC FSC under 17 h KCL 
perturbation (RET_KCL_17h_RBC1_SD_FSC) showed delayed onset of 
heart failure compared to the last three quartiles (Fig. 7a), suggest-
ing the genetic basis underlying this blood cell trait might be used to 
predict risk for heart failure and explore the mechanisms leading to its 

development. Because there are differences in the cohort character-
istics and prevalence of outcomes between MGB Biobank and UKBB, 
we focused on associations that were significant in the meta-analysis 
of both cohorts (Fig. 7b).

We identified significant associations in both cohorts for mul-
tiple cardiometabolic conditions (Fig. 7b, Supplementary Fig. 3 and 
Supplementary Data 3), for example, obesity (RET_LPS_18h_RBC2_
Med_SSC, Padj = 3.74 × 10−6, MGB cases = 9,499, UKBB cases = 41,893), 
T2D (RET_KCl_17h_RET1_%, Padj = 1.5 × 10−4, MGB cases = 6,226, 
UKBB cases = 34,941), CKD (WNR_Water_15h_WBC2_Med_FSC, 
Padj = 1.7 × 10−5, MGB cases = 5,627, UKBB cases = 23,771) and heart fail-
ure (RET_KCl_17h_RBC1_SD_FSC, Padj = 6.4 × 10−3, MGB cases = 4,421, 
UKBB cases = 15,811). We also observed strong associations with 
immune-related conditions such as type 1 diabetes (PLTF_LPS_18h_PLT_
Med_SFL, Padj = 8.6 × 10−5, MGB cases = 530, UKBB cases = 4,207), asthma 
(WNR_LPS_18h_WBC_Med_SSC, Padj = 8.7 × 10−5, MGB cases = 6,176,  
UKBB cases = 62,009) and systemic lupus erythematosus  
(WDF_Alhydrogel_21h_NE2-NE4_ratio, Padj = 4.5 × 10−3, MGB cases = 532, 
UKBB cases = 804). Conducting ICA based on the meta-analysis results 
(Fig. 7c) revealed meaningful clusters of clinical phenotypes, such as 
a group involving lipidemia, chronic ischemic heart disease and heart 
failure. These findings suggest that genetic factors influencing various 
blood traits can effectively stratify different disease outcomes.

Multigenic models of ACSL1, PFKP and HK1 predict CKD risk in 
patients with T2D
We further investigated blood readouts associated with variants in 
ACSL1, PFKP and HK1 in detail. As demonstrated above, these metabolic 
genes regulate neutrophil activation and clearance, particularly in 
hyperglycemia. Thus, we sought to test whether PGSs calculated based 
on these blood cell traits predict the time to CKD onset and progres-
sion in individuals with prediabetes and diabetes (HbA1C > 5.7). We 
categorized CKD stages 3a, 3b, 4 and 5, based on estimated glomeru-
lar filtration rate (eGFR) thresholds (eGFR = 45–59, 30–44, 15–29 and 
<15 ml min−1/1.73 m2). We found that the PGSs for RBC variability in 
SFL under 21 h Alhydrogel, 20 h colchicine, 17 h KCL and 18 h LPS per-
turbations were positively associated with CKD progression, whereas 
the NE2/NE4 ratio under 17 h KCL, 20 h colchicine and 19 h Pam3CSK4 
conditions was negatively associated with CKD development  
(Fig. 7d). These results suggest that PGSs based on cellular readouts 
can be used to identify subpopulations of disease at increased risk of 
discrete complications, such as accelerated progression of CKD in T2D.

Discussion
Over 3,300 traits have been investigated using GWAS in more than 1 
million participants, with current studies continuing to increase sample 
sizes to improve statistical power. While the techniques are robust, it 
remains difficult to identify underlying biological effects6. One major 

Fig. 6 | HK1, PFKP and ACSL1 regulate neutrophils’ metabolic profile and 
inflammatory responses. a, Schematics showing the regulatory function of 
HK1, PFKP and ACSL1 in neutrophil metabolic pathways. The lead SNPs identified 
are associated with upregulated expression of HK1 and PFKP and unknown 
directionality for ACSL1 (OpenTargets Genetics database). The illustration 
was created with BioRender.com. b, Seahorse analysis of isolated neutrophils 
showing ATP produced from the mitochondria and the anaerobic glycolysis 
pathways in conditions of water control, 2-DG, DMSO control and triacsin C.  
Five replicates were performed for the same donor. Error bars shown indicate 
s.e.m. of measurements from four donors’ blood samples. c, Seahorse analysis 
long-chain FAO rate in neutrophils treated with triacsin C and DMSO control.  
Five replicates were performed for the same donor. Error bars shown indicate 
s.e.m. of measurements from four donors’ blood samples. d, Sysmex NE2/ 
NE4 readout of blood treated with 2-DG, compared to water as control, and 
triacsin C, compared to DMSO as control. Measurements were performed after  
17 h incubation at 39 °C. Each data point represents a donor (n = 15). Error bars  

indicate s.d. e, Flow analysis of isolated neutrophils stained with Alexa 488 
conjugated CD62L, Pacific blue conjugated CD11b and CellROX. Shown are 
representative dot plot and histogram from one representative sample, 
comparing water control, 2-DG, DMSO control and triacsin C conditions.  
f,g, Percentage of ROS-positive (f) and activated (g) neutrophils at 4.5 h post-
treatment of water control, 2-DG, DMSO control and triacsin C. Each data 
point represents a donor (n = 16 for control and 2-DG, n = 8 for DMSO control 
and triacsin C). Error bars indicate s.d. h, Visualization of neutrophils in Tg 
(mpo:GFP) zebrafish at 4 h and 30 h post tail transection, comparing control, 
2-DG, hyperglycemia and 2-DG under hyperglycemia conditions. Images show 
four representative zebrafish. Scale bars indicate 200 µm. i, Quantification of 
GFP+ cells at the tail transection site at 4 h and 30 h under control (n = 5), 2-DG 
(n = 4), hyperglycemia (n = 7) and 2-DG under hyperglycemia (n = 5) conditions. 
Each data point indicates an individual zebrafish. Paired two-sided t test was used 
to test statistical significance shown in d, f, g and i. **P < 0.01, ***P < 0.001 and 
****P < 0.0001.
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bottleneck is a generalizable strategy to move from a locus to a genetic 
target and mechanistic insights, limiting translation toward thera-
peutic development. We outline an approach that combines cellular 
phenotyping with GWAS to uncover previously latent, large effect-size 
genetic loci with direct implications for cell biology. Using multigenic 

models based on selected cellular phenotypes, we then identified clini-
cal phenotypes with substantially altered disease risks related to these 
intermediate phenotypes.

We focused on cellular responses in peripheral blood, as such sam-
ples are highly accessible and have long been used as a diagnostic tool in 
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clinical settings, and technologies are broadly available for subsequent 
scaling of any useful findings. In addition to clinically available assays 
of cross-sectional cellular counts, we assessed blood cell properties 
under 36 perturbation conditions, aiming to elicit phenotypes that 
are latent at baseline, and thus likely to be previously unmeasured. We 
chose this approach to favor the identification of new disease-related 
endophenotypes, from which we could select those associated with 
large effect size common alleles that might represent rigorous drug 
targets. We expanded the phenotypic space from 29 blood parameters 
used in previous studies to over 4,000 cell readouts. We were able to 
identify alleles associated with key cellular processes, such as neutro-
phil activation and apoptosis, which have roles in common complex 
diseases beyond hematopoietic disorders. Evoked cellular response 
traits in peripheral blood offer a complementary approach to existing 
phenotyping with the potential to identify genes and pathways with 
translational and clinical relevance.

To validate that risk genes identified using our framework are 
linked to disease-relevant biology, we conducted functional studies of 
genes associated with the evoked NE2 population. Although the Sysmex 

measurements are not tailored to characterize neutrophil function, we 
found that WDF (a nucleic acid dye) used to distinguish blood cell line-
ages is reflective of neutrophil apoptosis. We further elucidated that the 
delay in neutrophil apoptosis was due to a neutrophil pro-inflammatory 
response. The perturbation-based assays we developed enabled the 
efficient identification and experimental validation of genes (HK1, PFKP 
and ACSL1) involved in metabolic pathways affecting neutrophil ROS 
generation and lifespan, revealing cell metabolism as a potential thera-
peutic target for inflammation in various cardiometabolic diseases.

Our approach reveals common genetic variants with large effect 
sizes. Notably, several genes we identified have been previously dem-
onstrated to underlie specific Mendelian diseases. For example, we 
identified common coding variants in TUBB1 that affect platelet traits, 
while rare variants in TUBB1 were previously linked to inherited throm-
bocytopenia42,43. BMPR2, which is linked to hereditary pulmonary arte-
rial hypertension (PAH)44, was associated with monocyte responses in 
this study. As monocytes and macrophage abnormalities have been 
implicated in the pathophysiology of PAH45, this finding suggests a 
monocytic contribution to the vascular inflammation observed in 
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Fig. 7 | PGSs calculated from perturbation-based blood responses are 
associated with differences in time to onset of diseases. a, Survival curves and 
meta-analysis for diagnoses stratified by blood-response PGSs in MGB Biobank 
and UKBB. Time to first diagnostic code or diagnosis date in medical problem  
list was modeled using sex, first two genetic principal components and scaled 
blood-response scores in MGB and UKBB using Cox PH models with delayed 
entry. Meta-analysis panels show estimated log HR and 95% CI. Two-sided  
P values for MGB and UKBB were obtained from Cox PH models, and from z 
scores in a random-effect model for the meta-analyses. All P values are corrected 
for multiple testing using FDR. b, Hazard ratio estimates derived from time-to-
event models for various clinical outcomes, using PGS of blood readouts under 
perturbation conditions. These estimates were based on a meta-analysis of data 
from the MGB Biobank and UKBB. Time to first diagnostic code or diagnosis 
date in medical problem list was modeled using sex, first two genetic principal 
components and scaled blood-response scores using Cox PH models with 
delayed entry. A meta-analysis was conducted to derive two-sided P values, using 
z scores in random-effect models that combined data from both cohorts. Points 

indicate significant associations after multiple testing correction using FDR 
across all tested diseases and blood traits (30 clinical outcomes and 327 blood 
readouts) with adjusted P value thresholds as follows: one solid square signifies 
0.05, two solid squares signify 0.01 and three solid squares signify 0.001 (see 
Supplementary Fig. 3 for an overview of all PGS-disease associations). c, ICA of 
the association score matrix between blood readout PGSs and clinical endpoints. 
A subset of diagnoses and lab values projected onto the first two components 
together with mixing matrix loadings of selected blood readouts is shown.  
d, Hazard ratio estimates for the progression to different CKD stages in 
individuals with prediabetes and diabetes using PGS of blood traits that had 
significant associations with ACSL1, PFKP or HK1 in the MGB Biobank. Cox PH 
models were applied to analyze time until the initial diagnosis of each CKD 
stage, using two-sided tests for statistical evaluation. Points indicate significant 
associations after multiple testing correction using FDR with adjusted P value 
thresholds as follows: one solid square signifies 0.05, two solid squares signify 
0.01 and three solid squares signify 0.001.
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BMPR2-linked PAH but also offers a window into potential somatic 
contributions to other forms of PAH. These examples support the util-
ity of latent phenotypes to define cellular mechanisms that can bridge 
common genetic variation and complex diseases.

PGSs calculated from a subset of blood cell traits associated with 
metabolic genes showed utility in risk prediction for renal complica-
tions of diabetes. Emerging evidence supports the involvement of 
innate immunity in CKD initiation and progression in diabetes, but stud-
ies have typically focused on macrophages46. Our results reveal a role 
for genetically determined variation in the genesis of pro-inflammatory 
neutrophils in CKD development in diabetic patients. The PGS models 
based on blood readouts were able to stratify patients with distinct risks 
for developing various cardiometabolic, vascular and inflammatory 
diseases, revealing subgroups that might benefit from therapeutics 
targeting related biological pathways.

Our study has several limitations. Firstly, we used a conventional 
significance threshold of P < 5 × 10−8 for genetic association without 
adjusting for the number of phenotypes tested, which may result in 
false positives. We estimated that approximately 350 traits were inde-
pendent among the phenotypes tested. To reduce the false discovery 
rate (FDR), we reported significant associations only when at least two 
independent traits were linked to the clumped region. In practice, the 
evoked cellular traits and their genetics are efficiently validated in 
scalable in vivo models. Secondly, we had varying sample sizes across 
different perturbations, which could reduce statistical power for condi-
tions with fewer samples, potentially resulting in false negatives. Fur-
thermore, while our phenotypic associations are derived from multiple 
ancestry groups, the genetic associations are based on individuals of 
European ancestry due to limited representation of other ancestry 
groups in our cohort. We performed GWAS analyses for a subset of 
blood cellular traits across multiple ancestry groups, which revealed 
consistent trends in effect directions, albeit with notable disparities 
for several lead SNPs (Extended Data Fig. 6). Future investigations are 
needed to unravel the trans-ancestry genetic basis governing evoked 
blood responses. Lastly, for PGSs related to clinical traits based on EHR, 
we employed Cox proportional hazard models (time-to-event analy-
ses). However, EHR data inherently present limitations, because they do 
not capture the entire medical history and there can be misalignment 
of the age of disease onset versus diagnosis. To address these issues, 
we used Cox models with delayed entry to handle incomplete observa-
tions. Nevertheless, the time of disease onset could be misrepresented 
due to the inherent constraints of EHR data.

In summary, we performed perturbational blood cell phenotyping 
using a widely available cytometry device that is primarily designed 
for robust whole-blood cell counts. This framework incorporating 
human genetic data, primary cellular phenotyping and deep clinical 
traits enables the iteration of genetic risk locus discovery, systematic 
target validation and subsequent drug discovery. Implementing such 
a method in routine clinical settings will facilitate the development of 
refined clinical trajectories and identification of large effect size com-
mon variants contributing to human disease and clinical outcomes.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01600-x.
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Methods
Human study participants
Study participants were recruited in accordance with IRB 2019P003155 
from multiple phlebotomy clinics in the MGB hospital system. Sample 
sizes of measured blood profiles and genotyped subjects per pertur-
bation condition are listed in Supplementary Table 1. Demographic 
information such as age and sex are provided in Supplementary Table 
3. Written informed consent was obtained from all individuals. The 
MGB Institutional Review Board approved the analyses of the UKBB 
(application 55482).

Zebrafish
All zebrafish studies were carried out under the protocols approved by 
the Brigham and Women’s Hospital Standing Committee on Animals.

Reagents
Details of reagents used in this study are included in Supplementary 
Table 5.

Whole-blood perturbation screening
Physiologically relevant doses and time points were determined for 
each perturbation to elicit reproducible effects on blood analyzed 
on a Sysmex XN-1000 hematology analyzer (see Supplementary 
Table 1 for perturbation condition descriptions including dose and 
exposure times, and Supplementary Table 5 for the details of chemi-
cal agents). Compounds dissolved in DMSO or chloroform were 
prepared such that the percent by volume of solvent is <0.5%. Each 
condition was assigned a three-digit identifier (for example, −007) 
that was paired with a patient ID for each treated sample (for exam-
ple, AA-00100-007). This standardized label scheme allowed for the 
preparation of barcoded sample tubes and batch-wise automated 
measurements using the hematology analyzers. Sysmex XN-1000 
was calibrated each day using Sysmex XN Check levels 1–3. New QC 
lots were acquired every 28 d as recommended by the manufacturer’s 
guidelines.

Up to 40 individuals per day were recruited from multiple phle-
botomy clinics and donated up to 50 ml of blood in addition to their 
clinical blood draw. Whole blood was collected in 8.5 ml ACD tubes 
(BD 364606). Barcoded sample tubes with patient and perturbation 
identifiers were aligned and prepared batch-wise, by aliquoting 700 μl 
of whole blood into a grid of 5 ml round bottom tubes. All perturbation 
compounds were added to blood at specific time points and transferred 
to incubator shakers (39 °C, 200 RPM). After incubation, tubes were 
placed in automated sampling racks and profiled using the Sysmex 
XN-1000. Both Sysmex-derived blood parameters (for example, CBC) 
and raw cytometry data were exported as .csv and .fcs files.

Genotyping, quality control and imputation in  
screening cohort
Before aliquoting patient blood samples, a portion of freshly drawn 
blood was set aside for whole-blood DNA extraction. DNA was extracted 
from 3 ml of whole blood using Qiagen Puregene Blood Core Kit C 
(158389). DNA was quantified and checked for quality using NanoDrop 
One and Qubit, diluted to 75 ng μl−1 and stored at –80 °C. Samples were 
aliquoted into 96-well barcoded plates and quantified using Cytation 
Take3 Trio before genotyping. Internal genotyping for quality control 
was performed using Advanta Sample ID Genotyping Panel (Fluid-
igm, 101-7773). Aliquots were shipped to Northwell Health Genomics 
Alliance and the University of Miami Genotyping Core in 96-well bar-
coded plates with one empty well for controls. Samples were quantified 
using Nanodrop and Qubit to identify plates with high numbers of 
low-concentration samples, which could be replaced before genotyp-
ing. Genotypes were called from genomic DNA in batches of approxi-
mately 500 samples using the Illumina GSAv3 Beadchip and Illumina 
Genome Studio.

Computational analyses used Python 3.9 and R 4.2. Genotype 
data were processed using PLINK1.9 and PLINK2 (ref. 47). Samples 
were excluded from participants who had high missingness of variants 
(>10%), had sex mismatches from genotyped data or had withdrawn 
from the study. In addition, for samples failing Advanta fingerprint-
ing (concordance of at least 0.75 in at least 20 SNPs), genotyping was 
repeated, or the samples were removed. Variants with high missing-
ness across individuals (>10%) or deviations from Hardy–Weinberg 
equilibrium at P < 1 × 10−50 were filtered. Structural or multi-allelic 
variants were removed. A local instance of Michigan Imputation Server 
v1.5.7 (ref. 48) with Eagle2 and Minimac4 was used to impute genotypes 
with the 1000G Phase3 v5 reference panel. After imputation, variants 
with minor allele frequency of <0.0001 were removed. The first ten 
principal components were estimated using PLINK2. Relatedness was 
estimated using PLINK2 with the KING-robust kinship estimator49 and 
five individuals with a kinship greater than 0.177 (first-degree relations 
or closer) were removed. In total, after these exclusions, genotype data 
were available for 2,685 individuals on >3.5 million imputed variants. 
Based on self-reported ancestry at study entry, our cohort consisted 
primarily of individuals with European ancestry, preventing robust 
multi-ancestry analyses due to low numbers of individuals in other 
ancestry groups. Therefore, we calculated and reported genetic asso-
ciations for the subset of participants with self-reported European 
ancestry only (discovery cohort). For cross-ancestry validation of the 
lead variants, we used the following self-reported ancestry groups: 
AFR, ASIAN and OTHER (including Other, Pacific Islander and Native 
American) for separate GWAS analyses. Genotyped individuals in the 
self-reported HISPANIC group were not included in the cross-ancestry 
analyses due to insufficient numbers.

Genotyping, quality control and imputation in MGB  
Biobank cohort
MGB Biobank samples were genotyped in batches using three related 
Illumina arrays (MEGA, MEGA Ex and MEG), as well as the Illumina 
GSAv3 array. Imputation was performed using the Michigan Imputation 
Server with the 1000G Phase3 v5 reference panel for each batch. We 
merged batches using the intersection of variants present in all batches 
and applied the same QC filtering as above. In short, individuals with 
high missingness (>10%) or sex mismatches were removed. Variants 
with high missingness across individuals (>10%) or deviations from 
Hardy–Weinberg equilibrium at P < 1 × 10−50 were filtered. Structural 
or multi-allelic variants were removed. Principal component analysis 
(PCA) was calculated using PLINK2, and individuals with a kinship 
greater than 0.177 as well as individuals with non-European ancestry 
(distance greater than 3× radius of 1000G EUR reference samples in 
joint PCA) were removed using plinkQC50. Individuals who were part 
of the screening cohort were removed from the MGB Biobank cohort. 
In total, after these exclusions, genotype data were available for 44,705 
participants on >6.7 million imputed variants. For PGS applications, we 
further filtered variants to have a minimum minor allele count of 100 
and missingness <2%, leaving 1.8 million variants.

Genotyping, quality control and imputation in UKBB cohort
The UKBB samples were genotyped on two Affymetrix arrays, UK 
BiLEVE and UKBB Axiom. The genotyping data underwent stringent 
quality control procedures described elsewhere51, including exclusion 
of individuals based on missingness, heterozygosity, sex mismatch, 
relatedness and non-British ancestry. Imputation was carried out 
using a two-step prephasing/imputation process using SHAPEIT and 
IMPUTE2 software, using the Haplotype Reference Consortium and 
UK10K haplotype resources. Post-imputation quality control included 
the removal of variants with minor allele frequency <1%, minor allele 
count >100, variants with an imputation quality score (Minimac r2) < 0.4 
and those not in Hardy–Weinberg equilibrium (P < 1 × 10−15). We used 
the White ethnic background cohort based on the self-reported UKBB 
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data field f21000. After these quality control steps, data for approxi-
mately 424,000 participants with clinical outcomes were available. 
PCA was performed on the non-imputed genotype data of the same 
individuals using PLINK2.

Phenotype measurements and quality control
We measured a total of 278 blood-based cellular phenotypes using a 
blood flow cytometer (Sysmex XN-1000) under 37 different conditions. 
The blood cell parameters can be categorized into indices related to 
membrane/intracellular structure measured using SSC, nucleic acid 
and membrane lipid content measured using SFL, and cell shape/
volume measured using FSC, as well as parameters such as cell counts 
and percentages within defined regions (gates). For each parameter, 
we calculated robust estimators such as median, robust s.d. and robust 
coefficient of variation using FlowJo v10.8. Gates were empirically 
defined based on densities of measured cells under baseline and per-
turbation conditions and included additional regions for subpopula-
tions that were typically not observed under baseline conditions. We 
defined a total of 15 WBC-related gates, 7 RBC gates, 4 platelet-related 
gates and 4 gates for debris or unknown cell types. All samples were 
measured within 36 h of blood draw, with baseline measurements 
occurring within 3 h for 80% and 7 h for 95% of samples.

We performed thorough quality control to identify sources of 
technical variation as well as biological covariates. For this, we assessed 
the effect of the time between blood draw and flow cytometry meas-
urement, drift over the course of the study (study month) and bio-
logical covariates such as age, sex and race (Supplementary Fig. 4). We 
removed outlier samples where a single phenotype was outside of four 
median absolute deviations from the median measurement of all sam-
ples under the same conditions. We also computed a two-dimensional 
ICA projection for all blood measurements from a single fluorophore 
under a single perturbation condition and removed samples that were 
further than 2.5 median absolute deviations from the median sample. 
Finally, we quantile-transformed the phenotypic measurements. The 
final numbers of blood measurements as well as genotyped individu-
als passing QC across conditions are shown in Supplementary Table 3.

Estimation of the number of independent traits
During the study, multiple batches of perturbations were administered 
across different time periods, each involving mostly nonoverlapping 
groups of individuals. Due to the distinct cohorts and perturbation con-
ditions across batches, the data consisted of several mostly complete 
blocks of measurements (apart from missing values in individual meas-
urements). We approached each of these blocks separately to estimate 
the effective number of independent traits. To estimate the effective 
number of independent traits, we used quantile transformation fol-
lowed by PCA on each of these blocks of blood readouts separately. 
We used the R package ‘PCAtools’ v2.12.0 to determine the count of 
PCA components that cumulatively explained 90% of the variance in 
the data for each block. This number varied from 243 to 349 across the 
blocks. However, the blocks also shared a subset of perturbation condi-
tions, and we observed recurrent genetic associations under different 
perturbations, suggesting an overlap of underlying structure. Based 
on these analyses, we estimate the presence of over 350 independent 
traits (Supplementary Fig. 5).

Flow cytometry
Flow cytometry analyses were performed on neutrophils isolated from 
patients’ whole-blood samples, using the EasySep Direct Human Neu-
trophil Isolation Kit (STEMCELL, 19666). After isolation, neutrophils 
were resuspended in Tyrode’s solution as described previously. To 
characterize the NE2-like cell population using flow cytometry, neutro-
phils were isolated from whole-blood samples that were incubated at 
37 °C for 17 h and then labeled with apoptosis indicators, Sytox green 
(Thermo Fisher Scientific, S7020) and R-PE conjugated Annexin V 

(Thermo Fisher Scientific). The labeled neutrophils were then sub-
jected to permeabilization using Sysmex WDF Lysercell (Sysmex) and 
staining with Fluorocell WDF dye (Sysmex). The samples were analyzed 
for 5 min after the addition of Fluorocell WDF dye.

To characterize neutrophil activation and ROS, isolated neutro-
phils were labeled with Pacific Blue anti-human CD11b antibody (Bio-
Legend, Clone ICRF44, 1:100 dilution) and Alexa Fluor 488 anti-human 
CD62L antibody (BioLegend, Clone DREG-56, 1:100 dilution). Cells were 
then subsequentially labeled with CellROX Deep Red Reagent (Thermo 
Fisher Scientific, C10422) at 37 °C for 30 min. Cells were washed and 
resuspended in staining buffer before flow cytometry analyses.

Seahorse metabolic analysis
For the real-time ATP rate assay, a DMEM assay medium containing 
10 mM glucose, 1 mM pyruvate and 2 mM glutamine was used. Extracel-
lular acidification rate and oxygen consumption rate were measured 
from neutrophils isolated from patients’ whole blood pretreated with 
or without 2-DG (10 mM) or triacsin C (5 µg ml−1), using a Seahorse 
XFe96 analyzer. Neutrophils were resuspended in DMEM medium and 
seeded (1 × 106 per well) in a Seahorse 96-well plate coated with CellTak 
(Corning, 354240) for 20 min. Cell attachment was visually confirmed 
before the assay. The assay was performed according to manufacturer 
instructions. Here 1.5 µM oligomycin, 1 µM FCCP and 0.5 µM rotenone/
antimycin A were used.

For the long-chain fatty acid stress test, neutrophils isolated 
from untreated whole blood were first resuspended and incubated 
for 2 h at 37 °C in a substrate-limited medium containing 0.5 mM 
glucose, 1 mM glutamine, 0.5 mM l-Carnitine, and 1% FBS. Cells were 
then pelleted and resuspended in an assay medium containing 2 mM 
glucose and 0.5 mM l-Carnitine. Cells were seeded (1 × 106 per well) 
in a Seahorse 96-well plate coated with CellTak (Corning, 354240) for 
20 min. After visually confirming cell attachment, cells were treated 
with triacsin C (5 µg ml−1) or DMSO control for 30 min. Palmitate-BSA 
FAO substrate was added before the assay. The assay was performed 
according to the manufacturer’s instructions. Also, 4 µM etomoxir, 
1.5 µM oligomycin, 1 µM FCCP and 0.5 µM rotenone/antimycin A were 
used. Normalization for both assays was performed based on direct 
cell counting.

Zebrafish tail transection and hyperglycemia induction
Zebrafish larvae at 54 h postfertilization were anesthetized by immer-
sion in E3 water with 4.2% tricaine. Tail transections were performed 
with a sterile scalpel at the distal end of the notochord. Brightfield 
and fluorescence images were acquired with a Cytation 5 at 4 h, and 
24 h or 30 h post-transection at 28 °C. A neutrophil count within the 
tail region was performed using ImageJ. We induced hyperglycemia in 
zebrafish larvae by ablating β-cells as previously described12. Briefly, 
48 hpf embryos were treated with 500 µM alloxan for 30 min, followed 
by incubation in E3 water containing 30 mM glucose.

Zebrafish genetic knockdowns
The hk1, pfkpa/pfkpb and acsl1a/acsl1b knockdown zebrafish lines 
were generated using CRISPR–Cas9. Two-part guide RNAs were used 
to knockdown each gene. The guide RNAs were designed using CHOP-
CHOP52, targeting the sequences shown in Supplementary Table 6. 
CRISPR RNAs (crRNAs) were synthesized (Integrated DNA Technol-
ogy) and then annealed with trans-activating crRNA (tracrRNA) and 
incubated with Alt-R Cas9 Nuclease to form the ribonucleoprotein 
complex. Here 1.5 nl of the complex was injected into Tg (mpo:GFP) 
embryos at the one-cell stage.

Genome-wide association tests and model selection
After genetic and phenotypic QC, blood phenotypes were retained for 
4,723 individuals and genotypes for 2,685 individuals. We excluded 
debris, ghost and NRBC cell-type gates from genetic association tests 
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because they yielded non-normally distributed phenotypes after quan-
tile transformation. We performed an univariable GWAS for each of 
the remaining 278 traits under 37 different conditions. Specifically, we 
used PLINK2 to compute association statistics for a linear regression 
of phenotype on the allele dose for >3.5 million imputed variants with 
minor allele frequency >0.05, minor allele count >10, covariate variance 
standardization and the covariates age, sex, time from blood draw to 
analysis, month of study, genotyping chip and batch and the first ten 
genotype principal components.

We used P < 5 × 10−8 as a significance threshold for each phenotype 
and did not correct for multiple testing at the level of association P 
values. Many of our measured phenotypes were correlated across 
similar gate/cell types (for example, subpopulations of neutrophils), 
phenotypic dimensions (for example, SSC and FSC) or conditions 
(for example, TLR ligands Pam3CSK4 and LPS). Given the large num-
ber of tests and limited number of study participants, we sought to 
identify a concise set of variants that are associated with the strong-
est observed cellular responses. For this, we clumped all significant 
variants using PLINK1.9 with LD r2 > 0.50, physical distance <250 kb 
between clumped variants and at least two independent hits from 
different traits for each clumped region. We used the variant with the 
smallest association P value across all measured traits for a given region 
as the lead variant. The following command was used for clumping and 
gene range annotations: plink --clump-range glist-hg19 --clump-p1 
0.00000005 --clump-p2 0.00000005 --clump-r2 0.50 --clump-kb 250 
--clump-replicate --clump {trait_files}. This command also annotated 
associated regions using gene range lists provided by PLINK2 (https://
www.cog-genomics.org/static/bin/plink/glist-hg19). If multiple genes 
were present for a given location, we used the locus-to-gene model from 
OpenTargets Genetics to identify likely candidates53. We prioritized 
candidate genes in the following order: coding variants, variants in 
introns and distance to transcription start sites. If there was no clear 
evidence for a subset of candidates, we reported the full list from 
the PLINK gene annotation step. We also annotated each region with 
associations previously reported for blood cell traits based on the 
supplementary material of ref. 17.

Association with clinical phenotypes in the screening cohort
We defined 30 binary clinical phenotypes using ICD10 diagnostic codes 
(Supplementary Table 4). We also collected 20 quantitative measure-
ments available across our entire cohort such as the comprehensive 
metabolic panel, lipid panel and structured electrocardiographic data. 
We fitted logistic or linear models associating binary and continuous 
traits with 327 blood phenotypes (top three traits with the lowest 
GWAS P value were selected for each unique locus). Blood readouts 
were quantile transformed and models included the covariates age, 
sex, race and time from blood draw to measurement. For categorical 
outcomes, we used the ‘glm’ function in ‘statsmodels’ 0.13.2 with the 
formula ‘diagnosis~blood_readout+age+race+sex+draw_time’ and 
binomial family linkage. For continuous outcomes, we used the ‘ols’ 
function in ‘statsmodels’ with the same formula. Models for categorical 
and continuous outcomes were tested using z test and t test, respec-
tively. Subsequently, to control the FDR in the presence of multiple 
comparisons, we computed q values using the ‘qvalue’ package v2.4.2 
in R. The q values provided an estimate of the minimum FDR at which 
each test may be considered significant. A listing of clinical associations 
including covariates, case counts, β coefficients and adjusted P values 
is provided in Supplementary Data 2.

PGSs and disease associations in the MGB and UKBB cohorts
For 327 traits with significant genetic associations, we used summary 
statistics from the screening cohort to calculate PGSeters to calcu-
late PGSs. Specifically, we used the command plink --clump-p1 0.5 
--clump-r2 0.5 --clump-kb 100 for clumping and a P value threshold of 
0.1 for the scoring step.

Our survival analyses model the time to first observed diagnosis 
after birth, considering the age at the first available diagnosis for any 
diagnostic code as the start of the observation or ‘delayed entry’ into 
the model. We use the framework of counting processes to account 
for this delayed entry, and the corresponding survival models are fit 
using Cox’s proportional hazards regression. Counting process models 
allow us to consider each individual’s date of birth as the starting point 
while acknowledging that our observation period for each individual 
only starts at their first hospital or outpatient visit that is documented 
in the EHR.

There are two settings in which we define events as having 
occurred between birth and the beginning of the observation 
period. Cases where previous medical history (only available in MGB 
cohort) contains the diagnoses of interest, but without a specific 
diagnosis date, were treated as the disease onset occurring at some 
unknown time in the interval between birth and start of observation 
period (for example, before the first hospital encounter). In addi-
tion, if the time between the start of the observation period and the 
event date in the EHR system is less than 1 year, we assume that the 
true event date most likely occurred between birth and the first visit 
in the healthcare network and was only reported in the EHR with 
delay. In these cases, we consider it an ‘instant event’ and encode 
it as having occurred in the interval between birth and start of the 
observation period.

We used the same disease definitions as above (Supplementary 
Table 4) to define case status, as well as the age at first diagnostic code 
or first mention in the medical problem list as event date. We calculated 
Cox proportional hazard models for the time to onset of 30 clinical 
outcomes with the variables sex, first two genetic principal compo-
nents and PGS for 327 blood traits using the R package (‘survival’ 3.5-
3), which provides support for survival analyses based on counting 
processes including delayed entry. For a visual comparison of study 
participants, we also stratified individuals into PGS quartiles and plot-
ted Kaplan–Meier curves.

Meta-analyses of MGB and UKBB disease associations
To integrate the results from the MGB Biobank and the UKBB, we con-
ducted a meta-analysis on each blood PGS—clinical endpoint model 
using the ‘rma’ function from the ‘metafor’ package in R. We fitted 
a random-effect model using the restricted maximum likelihood 
method, which allows for the potential heterogeneity of effects across 
datasets. We used the estimated log hazard ratios and their standard 
errors from each dataset as inputs to this model and visualized the 
results with forest plots. To control the FDR in the presence of multiple 
comparisons, we computed q values using the ‘qvalue’ package v2.4.2 
in R. Listings of PGS associations at the meta-analysis stage as well as 
in MGB and UKBB are provided in Supplementary Data 3–5.

ICA of blood traits and clinical endpoints
To visualize the multivariate structure between blood traits and clini-
cal endpoints, we used an ICA of the association t scores calculated 
for blood readouts in the screening cohort, as well as blood-trait PGS 
association t scores calculated in the meta-analysis step. The matrix of 
t scores thus represented the pattern of association between all pairs 
of blood traits and clinical endpoints across our data. We conducted 
ICA using the ‘fastICA’ R package v1.2–3. This computational method 
separates a multivariate signal into additive subcomponents that are 
maximally independent. Applying the ICA to our matrix resulted in 
the following two outputs: a set of independent components and a 
mixing matrix. The independent components represented dimensions 
of variation within the data, while the mixing matrix showed how each 
original variable (blood readout or blood-based PGS) contributed to 
these dimensions. To visualize our results, we plotted the first two 
independent components, which gave us a projection of clinical end-
points into a two-dimensional space. We also used the weights from 

http://www.nature.com/naturegenetics
https://www.cog-genomics.org/static/bin/plink/glist-hg19
https://www.cog-genomics.org/static/bin/plink/glist-hg19


Nature Genetics

Article https://doi.org/10.1038/s41588-023-01600-x

the mixing matrix to indicate the direction of association for a subset 
of blood traits within this space.

Additional statistical analysis
We first assessed the normality of the data with the Kolmogorov–
Smirnov test. If the distribution was normal, for comparisons between 
the two groups, we used an unpaired two-tailed Student’s t test. For 
comparisons between treatments for the same donor, we performed 
paired two-tailed Student’s t tests. When the data were not normally dis-
tributed, we used the nonparametric Mann–Whitney test for compari-
son between two groups and the Wilcoxon matched-pair signed-rank 
test for comparison between different treatments for the same donors. 
To assess statistical significance in difference across more than two 
groups, we used an ordinary one-way analysis of variance test followed 
by Dunnett’s multiple comparison test.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Individual-level data are subject to restrictions imposed by 
patient consent and local ethics review boards. GWAS summary 
statistics have been deposited in the GWAS catalog database 
(GCST90257015-GCST90257105). PGSs as used for the UKBB anal-
yses have been deposited in Figshare (https://doi.org/10.6084/
m9.figshare.24354235). Clumped significant variants are listed in 
Supplementary Data 1. Clinical outcomes and quantitative lab meas-
urements associated with blood readouts with Padj < 0.1 are listed in 
Supplementary Data 2. Clinical outcomes associated with polygenic 
models derived from blood readouts with Padj < 0.1 are listed in Sup-
plementary Data 3 for the meta-analyses, and Supplementary Data 
4 and 5 for the MGB and UKBB cohorts, respectively. Other datasets 
generated or analyzed during the current study can be made available 
upon reasonable request to the corresponding authors.

Code availability
The custom code used in this study is available at https://doi.
org/10.5281/zenodo.10041992 (ref. 54). For proprietary or commer-
cial software/tools used in this study, please refer to the materials 
and methods section for details on how to access them or contact the 
corresponding author for more information.
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Extended Data Fig. 1 | Blood cell distributions under baseline and 
perturbation conditions. Distribution of blood cytometry readouts under 
baseline and three perturbation conditions. Aggregate counts for each bin were 
calculated across all samples for each condition and normalized to the number of 

cells measured in each channel. Each channel records three dimensions (forward 
scatter, side scatter and side fluorescence). Plots show the two dimensions used 
for gating cell types in each channel.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Blood cell distribution and gates in WDF Channel for 
technical replicates from the same blood draw and measurements from the 
same individuals over time. a, Examples of blood cell distributions in the WDF 
channel for three technical replicates of four randomly selected donors under 
baseline and Pam3CSK4 19 h conditions. Replicates were performed on samples 
collected from the same blood draw. b, Examples of blood cell distributions in the 
WDF channel for three longitudinal replicates of four randomly selected donors 
under baseline and Pam3CSK4 19 h conditions. Replicates were performed on 
the same donor from samples collected at different time points that are months 

apart. c, Examples of three blood traits calculated from our flow cytometry gates 
(NE2/NE4 ratio, RBC1 Med SSC, and PLT-F CV SFL) under baseline and Pam3CSK4 
19 h conditions for data collected over the course of four months. The black dots 
shown indicate all study participants. The time-dependent trajectories of four 
donors (same individuals as shown in b) were plotted in colors. Boxplots for daily 
measurements represent the interquartile range (IQR) between the first and 
third quartiles as the box, the median as the line inside the box, and the whiskers 
extend from the box to the largest and smallest values within 1.5× IQR, with any 
points outside of this range shown as individual outliers.
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Extended Data Fig. 3 | Blood readouts with significant genetic associations 
form clusters based on cell type, readout, perturbation condition and 
associated genetic loci. Distance correlations between all pairs of blood 
trait readouts with significant genetic associations were projected into a 

2-dimensional embedding using UMAP. Each trait is assigned a color by the cell 
type, the type of readout, associated candidate genes at the GWAS locus and the 
perturbation condition.
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Extended Data Fig. 4 | Neutrophil response to TLR1/TLR2 ligand Pam3CSK4. 
a, NE2/NE4 ratio from Sysmex readout at 17 h in blood incubated with Pam3CSK4, 
compared to control. n = 15 donors’ blood samples were examined. Error bars 
indicate s.d. b, Dose-dependent effect of Pam3CSK4 on NE2/NE4 ratio at 17 h post 
incubation. n = 9 donors’ blood samples were tested. c, Flow cytometry analysis 
of isolated neutrophils stained with Alexa 488 conjugated CD62L and Pacific 
blue conjugated CD11b under untreated and Pam3 conditions. d, Histogram of 
CellRox in neutrophils isolated from blood with or without Pam3CSK4 treatment. 
e, Percentage of neutrophil activation under control (n = 15 donors’ blood 
samples) or Pam3CSK4 conditions (n = 14 donors’ blood samples). Error bars 
indicate s.d. f, Percentage of ROS+ neutrophils under control (n = 15 donors’ 

blood samples) and Pam3CSK4 (n = 14 donors’ blood samples) conditions. Error 
bars indicate s.d. g, Time of neutrophils stay ROS positive under control (n = 20 
neutrophils from 3 donors) and Pam3CSK4 (n = 27 neutrophils from 3 donors) 
conditions. Error bars indicate s.d. h, Seahorse analysis of isolated neutrophils 
showing ATP produced from the mitochondria and the anaerobic glycolysis 
pathways in conditions of control and PAM3CSK4 treated. Five replicates were 
performed for the same donor. Error bars shown indicate s.e.m. of measurements 
from four donors’ blood samples. Paired two-sided t-test was used to determine 
statistical significance in a, e, and f. Unpaired two-sided t-test was used in g. 
**P < 0.01, and ****P < 0.0001.
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Extended Data Fig. 5 | CRISPR-Cas9 knockdown of hk1, pfkpa/pfkpb, and 
acsl1a/acsl1b in zebrafish promotes neutrophil clearance after tail injury 
in hyperglycemia. a-d, Quantification of GFP+ cells at the tail transection 
site at 4 h and 24 h under control, and hyperglycemia conditions for control 
Tracer RNA injected (a, control n = 12, hyperglycemia n = 15), hk1 (b, control 

n = 7, hyperglycemia n = 12), pfkpa/pfkpb (c, control n = 8, hyperglycemia 
n = 9), and acsl1a/acsl1b (d, control n = 9, hyperglycemia n = 8) gRNA injected 
zebrafish. Each data point indicates an individual zebrafish. Paired two-sided 
non-parametric test (Wilcoxon test) was used to determine P values. *P < 0.05, 
**P < 0.01, and ***P < 0.001.
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Extended Data Fig. 6 | Genetic associations for selected traits across different 
ancestry groups. Forest plots of ancestry-specific associations for selected 
lead SNPs. Each plot shows estimated log HR and 95% CI across distinct ancestry 
groups after harmonizing the effect allele. Genotype counts are shown in 
parentheses. Asterisks next to each ancestry group denote levels of significance 

reached: *P < 0.05, **P < 0.01, ***P < 0.001. The size of the squares represents 
the weight of each study in the meta-analysis. The diamond at the bottom of 
each forest plot represents the combined effect size and its confidence interval 
from the multi-ancestry meta-analysis. The SNPs shown are rs644592 (RHCE), 
rs67760360 (BCL2A1), rs6480404 (HK1) and rs5743618 (TLR1).
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