Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Improving transparency of computational tools for variant effect prediction

Efforts to integrate computational tools for variant effect prediction into the process of clinical decision-making are in progress. However, for such efforts to succeed and help to provide more informed clinical decisions, it is necessary to enhance transparency and address the current limitations of computational predictors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Richards, S. et al. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Horak, P. et al. Genet. Med. 24, 986–998 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, M. M. et al. J. Mol. Diagn. 19, 4–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pejaver, V. et al. Am. J. Hum. Genet. 109, 2163–2177 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Landrum, M. J. et al. Nucleic Acids Res. 44, D862–D868 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Stenson, P. D. et al. Hum. Genet. 139, 1197–1207 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Whalen, S., Pandey, O. P. & Pandey, G. Methods 93, 92–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. The Critical Assessment of Genome Interpretation Consortium. et al. Genome Biol. 25, 53 (2024).

    Article  Google Scholar 

  9. Riccio, C., Jansen, M. L., Guo, L. & Ziegler, A. Hum. Genet. 143, 625–634 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuksa, P. P. et al. Hum. Mol. Genet. 31, R62–R72 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moult, J., Pedersen, J. T., Judson, R. & Fidelis, K. Proteins 23, ii–v (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abe, S. et al. Cancers 15, 1118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.S. conceptualized the manuscript. D.S. and R.K. wrote the initial draft of the manuscript. All authors participated in the manuscript editing.

Corresponding authors

Correspondence to Rachel Karchin or Dmitriy Sonkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Andreas Ziegler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karchin, R., Radivojac, P., O’Donnell-Luria, A. et al. Improving transparency of computational tools for variant effect prediction. Nat Genet 56, 1324–1326 (2024). https://doi.org/10.1038/s41588-024-01821-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01821-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing