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Single-cell RNA sequencing of peripheral 
blood links cell-type-specific regulation  
of splicing to autoimmune and  
inflammatory diseases
 

Alternative splicing contributes to complex traits, but whether this differs  
in trait-relevant cell types across diverse genetic ancestries is unclear.  
Here we describe cell-type-specific, sex-biased and ancestry-biased 
alternative splicing in ~1 M peripheral blood mononuclear cells from 
474 healthy donors from the Asian Immune Diversity Atlas. We identify 
widespread sex-biased and ancestry-biased differential splicing, most of 
which is cell-type-specific. We identify 11,577 independent cis-splicing 
quantitative trait loci (sQTLs), 607 trans-sGenes and 107 dynamic 
sQTLs. Colocalization between cis-eQTLs and trans-sQTLs revealed a 
cell-type-specific regulatory relationship between HNRNPLL and PTPRC. 
We observed an enrichment of cis-sQTL effects in autoimmune and 
inflammatory disease heritability. Specifically, we functionally validated 
an Asian-specific sQTL disrupting the 5′ splice site of TCHP exon 4 that 
putatively modulates the risk of Graves’ disease in East Asian populations. 
Our work highlights the impact of ancestral diversity on splicing and provides  
a roadmap to dissect its role in complex diseases at single-cell resolution.

Genome-wide association studies (GWAS) have identified tens of 
thousands of loci associated with complex traits1. Most GWAS loci lie 
in noncoding genomic regions and their functional mechanisms are 
predominantly elusive. Genetic studies on molecular phenotypes such 
as Genotype-Tissue Expression (GTEx) project2 and the eQTLGen con-
sortium3 have identified expression quantitative trait loci (eQTLs) for 
nearly every gene, yet the proportion of GWAS signals attributable to 
eQTLs has been modest4,5. To identify the genetic effects underlying 
complex diseases, it is important to investigate disease-relevant cell 
types during relevant differentiation stages under pertinent pertur-
bations6. Single-cell RNA sequencing (scRNA-seq) enables unbiased 
examination of cell types7,8 and massively parallel perturbation meas-
urements of transcriptional regulation9.

Splicing QTLs (sQTLs) are a mediator of genetic effects on com-
plex traits. Growing evidence shows that sQTLs and eQTLs exert 
largely orthogonal effects on the genetic risk of complex diseases10,11. 

Cell-type-specific sQTLs are critical for dissecting complex diseases, 
yet they are heavily underexplored compared to eQTLs. FACS has 
enabled cell-type-specific dissection of sQTLs12–14, but they are biased 
toward known cell types defined by established surface markers. 
Genetics-coupled single-cell RNA sequencing (scRNA-seq) studies7,8 
enabled unbiased detection of cell types and cellularly resolved eQTLs 
but did not investigate alternative splicing (AS) due to 3′ bias of their 
scRNA-seq libraries15,16. Full-length single-cell technologies, on the 
other hand, currently suffer from insufficient throughput and elevated 
costs for population-scale profiling17,18.

In this study, we leveraged 5′ library preparation (10x Genomics) 
and stochastic mRNA cleavage and recapping—an endogenous cel-
lular phenomenon that creates multiple 5′ ends per isoform19,20—to 
increase the exon coverage of scRNA-seq. Using ~1 million single-cell 
transcriptomic profiles from 474 donors of Eastern, Southeastern and 
South Asian ancestries, we identified 48 sex-biased differential splicing 
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of cis-sQTL effects in autoimmune and inflammatory disease herit-
ability. Colocalization analysis identified 563 putative effector genes. 
In particular, we functionally validated an Asian-specific sQTL that 
putatively modulated Graves’ disease (GD) risk by disrupting the 5′ 
splice site of TCHP exon 4 in East Asian populations.

Results
Quantification of AS across cell types
The Asian Immune Diversity Atlas (AIDA) Data Freeze v.1 contained 
474 Eastern, Southeastern and South Asian donors from Japan, Korea 
and Singapore (Fig. 1a, Extended Data Fig. 1a and Supplementary 
Note). Each donor was sampled to an average of 1,959 single cells  
(Extended Data Fig. 1b). Each cell was sampled to an average of 53,846 
reads, of which 25,228 (46.9%) overlapped at least one splice junction 

events (DSEs) across 32 genes. Specifically, sex-biased splicing of FLNA 
was putatively driven by female-biased expression of the isoform 
ENST00000498491. We also identified 1,031 ancestry-biased DSEs 
affecting a total of 509 genes. In particular, ancestry-biased SPSB2 splic-
ing was probably driven by cross-population allele frequency differ-
ences in rs11064437 that disrupted the 3′ splice site of SPSB2 exon 2. We 
identified 10,874 and 703 cis-sQTLs for protein-coding genes and long 
noncoding RNAs, respectively, many of which were cell-type-specific 
or sex-biased. We also identified 865 dynamic intron use events and 107 
dynamic sQTLs along B cell differentiation. Our analysis revealed 607 
trans-sQTL genes (sGenes) and cell-type-specific genetic coregulation 
between a trans-sQTL for PTPRC, a protein tyrosine kinase critical for 
T cell development, and a cis-eQTL for HNRNPLL, a master regulator of 
T cell activation-induced AS. Finally, we observed strong enrichment 
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Fig. 1 | Population-scale 5′ scRNA-seq identified 21 cell types and thousands of 
alternatively spliced genes per cell type. a, The AIDA cohort and study design.  
b, Profile plot and heatmap showing that read 1 of 5′ scRNA-seq was biased toward 
the transcription start site and read 2 was spread more evenly across the gene 
body. c, The base coverage rate per gene increased with the read count (fraction 
of base coverage = covered bases/all bases). Left, box plot showing the fraction 
of base coverage across different read count bins (n = 4,034, 4,114, 4,803, 4,883 
and 491, from left to right). Outliers are not shown. Right, box plot showing that a 
median of 85.3% of exonic bases (red line) are covered across all expressed genes. 
d, Replication of LeafCutter intron discoveries in GENCODE, PacBio MAS-seq and 
Snaptron. Top, 59.3% of LeafCutter discoveries were annotated in GENCODE and 
85.9% replicated in PacBio long-read sequencing from four individuals. Bottom, 
close to 93% of detected splice junctions appeared in more than 1,000 samples, 
98.8% in more than 100 and 99.5% in more than ten. e, We examined 21 distinct 
PBMC subtypes with sufficient cell counts. Cell types are colored according to 

their hematopoietic lineage. The numbers below the cell type labels indicate 
the sample size for differential splicing analysis and sQTL calling. f, Number of 
alternatively spliced genes detected per cell across 21 cell types at the single-
cell level (see Supplementary Table 1 for the number of cells used (n)). The red 
diamonds indicate the average number of detected genes (NODGs) per cell.  
The dashed blue line indicates the number of AS genes detected using the 
OneK1K dataset. g, NODGs positively correlated with the number of AS genes. 
Linear regression lines (black) are shown for AIDA and OneK1K, respectively. 
h, Number of detected AS genes per pseudobulk cell type (see Supplementary 
Table 1 for the number of cells used (n)). i, Number of detected AS genes scaled 
with the number of cells in a pseudobulk, plateauing at ~11,500 genes. A sigmoid 
curve was fitted to the data and plotted. cDC, conventional dendritic cell; GZMB, 
granzyme B; GZMK, granzyme K; IGHM, immunoglobulin heavy constant Mu; 
pDC, plasmacytoid dendritic cell; RPKM, reads per kilobase of transcript per 
million mapped reads; TES, transcription end site; TSS, transcription start site.
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(Extended Data Fig. 1d,e). Although read 1 was biased toward the 5′ end, 
read 2 was spread more evenly because of normally distributed insert 
lengths21 (Fig. 1b and Supplementary Fig. 1a). Furthermore, incom-
plete reverse transcription, along with stochastic mRNA cleavage and 
recapping—or ‘exon painting’—created multiple 5′ ends per isoform19,20 
(Supplementary Fig. 1b) to extend coverage throughout the gene body. 
The covered bases for each gene increased with its read count, with a 
median of 85.3% (interquartile range (IQR) = 51.8–97.3%; Fig. 1c and 
Extended Data Fig. 1f).

We classified scRNA-seq data into 34 cell types based on their 
gene expression profiles22 and examined AS in 21 peripheral blood 
mononuclear cell (PBMC) subtypes at two levels (Methods, Fig. 1e 
and Extended Data Fig. 1c). At the single-cell level, SpliZ23 detected a 
median of 1,146 AS genes per cell (range of medians = 1,013–2,081; Fig. 1f 
and Supplementary Table 1). Our estimate was 4.3-fold of OneK1K7 
using identical pipelines (1,146 versus 267). The number of AS and 
expressed genes per cell were highly correlated (Pearson’s r = 0.95). An 
average of 66% (ordinary least squares (OLS) 95% confidence interval 
(CI) = 65.8–66.3%) of expressed genes had detectable AS events in 
AIDA, compared to 12.1% in OneK1K (OLS 95% CI = 12.0–12.2%; Fig. 1g), 
suggesting that the difference was not due to sequencing depth but 
rather to exon painting and other factors. At the pseudobulk level, 
LeafCutter24 detected a median of 7,721 AS genes per pseudobulk (range 
of medians = 5,341–9,683; Fig. 1h and Supplementary Table 1). AS gene 
counts scaled sigmoidally with cell counts per pseudobulk, saturating 
at ~11,500 genes (coefficient of determination R2 = 0.92; Fig. 1i).

As a quality control (QC), we compared pseudobulk introns to 
GENCODE (v.32): 59.3% were canonical introns, while 38.9% and 1.8% 
contained one and two new junctions, respectively, which is consistent 
with findings from the Transcriptomic Resource of Immune Cells using 
Long-read Sequencing25. New introns had a higher Gini index, indicating 
cell-type-specific expression, than canonical introns (P < 2.2 × 10−308, 
t = −55.874, d.f. = 40,909; Extended Data Fig. 2a). Furthermore, we 
sequenced complementary DNA (cDNA) from four donors with PacBio 
multiplexed arrays sequencing (MAS-seq); 85.9% of short-read junc-
tions were replicated in long-read data, while 13.9% and 0.17% contained 
one and two new junctions, respectively (Fig. 1d and Extended Data 
Fig. 2b). Lastly, compared with Snaptron26, ~93%, 98.8% and 99.5% 
of pseudobulk junctions appeared in more than 1,000, more than 
100 and more than ten Snaptron samples, respectively (Fig. 1d and 
Extended Data Fig. 2c). For both canonical and new junctions defined 
by GENCODE, 5′ splice sites were highly enriched for the canoni-
cal motif 5′-AG|GU; 3′ splice sites were highly enriched for AG|G-3′  
(Extended Data Fig. 2d).

Cell-type-dependent and context-dependent AS
AS is ubiquitous across immune cells27, so we asked whether AS-based 
clustering recapitulated our current understanding of the hematopoi-
etic lineage. Hierarchical clustering using pseudobulk quantifications 
separated myeloid from lymphoid cells, which further clustered into B, 

cytotoxic T and natural killer (NK), and noncytotoxic T cells (Fig. 2a and 
Extended Data Fig. 3a). To verify the robustness, we repeated hierarchi-
cal clustering using single-cell quantifications and observed congruent 
clustering patterns (Fig. 2a).

We asked whether well-known isoforms were captured using 10x 5′ 
scRNA-seq assays. PTPRC encodes the CD45 transmembrane protein 
tyrosine phosphatase, which is critical in T cell differentiation28. The 
mRNA encoding the CD45RA+ isoform, which included one or more of 
exons 4, 5 and 6, was preferentially expressed in naive T cells to facilitate 
T cell activation. In contrast, the mRNA encoding the CD45RO isoform, 
which skipped exons 4–6, was preferentially expressed in activated and 
memory T cells29. We observed that use of junctions corresponding to 
the CD45RA+ isoform was highest in naive T cells and decreased in acti-
vated and memory T cells, whereas the CD45RO isoform exhibited an 
opposite trend (Fig. 2b). Another example is CD44, which encodes a key 
surface glycoprotein during T cell activation and homing. The mRNA 
encoding the standard CD44 isoform (CD44s) was most abundant in 
naive T cells, whereas isoforms containing exons 2–10 were more likely 
to be expressed after activation30. We observed elevated use of junc-
tions corresponding to the CD44s isoform in naive T cells compared 
to other T cell subtypes (Fig. 2c).

Sexual dimorphism influences a broad range of autoimmune and 
inflammatory diseases. Using LeafCutter, we identified 48 sex-biased 
DSEs in 32 genes across all cell types (false discovery rate (FDR) < 0.05; 
Fig. 2d and Supplementary Table 2). An example of shared sex-biased 
splicing involved filamin A (FLNA), an auto-antigen targeted by 
T and B cells in more than 50% of patients with rheumatoid arthri-
tis (RA)31. Female donors had higher expression of a short isoform, 
ENST00000498491, consisting of exons 44–49 in mature T and NK 
cells (Fig. 2e and Extended Data Fig. 3b).

We next determined the influence of ancestry on AS and identified 
1,031 DSEs affecting 509 genes (Fig. 2f and Supplementary Table 3). 
We observed the smallest difference between Singaporean Chinese 
and Singaporean Malay individuals, potentially because they are more 
genetically similar to each other than they are to Singaporean Indian 
individuals32. We identified an SNP, rs11064437, whose minor allele 
frequency (MAF) decreased from Eastern to Southeastern to South 
Asian individuals in AIDA (EAS = 30.7%; SEA = 13.9%; SAS = 3.4%; Fig. 2g) 
and in the 1000 Genomes Project (Extended Data Fig. 3c). Function-
ally, rs11064437 disrupted the 3′ splice site of SPSB2 exon 2 (5′-AG|C-3′ 
to 5′-AA|C-3′), prompting the use of an alternative 3′ splice site 12-bp 
downstream. Notably, the EAS-biased alternative intron was missing 
from GENCODE, highlighting the lack of ancestral diversity in a widely 
used gene annotation database.

cis-sQTLs are cell-type-specific and context-biased
We followed an established pipeline33,34 to identify cis-sQTL within 
a ± 1-Mb window across 19 cell types (Supplementary Table 1). We 
detected 10,874 and 703 sQTLs for protein-coding and long noncod-
ing RNA genes, respectively (FDR < 0.05), representing 39.9% of all 

Fig. 2 | Cell-type-dependent and context-dependent AS. a, Hierarchical 
clustering of single-cell and pseudobulk quantification of AS recapitulated 
well-known hematopoietic lineages. The heatmap shows the Spearman’s 
rank correlation coefficient. Within the T and NK cluster, two subclusters 
demarcated cytotoxic and noncytotoxic cell types. The cytotoxic cellular 
cluster contained CD4+ T cytotoxic, mucosal-associated invariant (MAIT), γδ T, 
NK and CD8+ T (GZMKhi and GZMBhi) cells, whereas CD4+ T cell (naive, TCM and 
TEM), regulatory T (Treg) cells and CD8+ T naive cells fell within the noncytotoxic 
cluster. b,c, Alternative intron use of PTPRC and CD44 reflected isoform-specific 
roles in T cell development. In b, the mRNA encoding the CD45RO isoform 
(red) was the lowest in naive T cells and was more abundant in activated and 
memory T cells. This trend was reversed for the mRNA encoding the CD45RA+ 
isoforms. log-transformed splicing ratio = log2(CD45RX/CD45RO), where RX 
indicates any isoforms other than RO. For CD45RO, log-transformed splicing 

ratio = log2(CD45RO/ΣCD45RX). In c, the standard CD44 (CD44s) isoform (red) 
was highest in naive T cells and was less abundant in activated and memory  
T cells. d, Discovery and sharing of sex-biased differentially spliced genes (DSGs) 
(FDR < 0.05). e, The sex-biased isoform expression of FLNA was cell-type-specific. 
The ENST00000498491 isoform (red boxes) exhibited strong female bias in 
T cells but not in B cells. f, Ancestry-biased DSGs discovered through pairwise 
comparisons across Eastern, Southeastern and South Asian individuals. Left, 
relative contributions of the three pairwise comparisons to the total number  
of DSGs in each cell type. Right, total number of DSGs across all cell types.  
g, Allele frequency difference in rs11064437 led to ancestry-biased isoform use of 
SPSB2 in CD8+ T GZMBhi. rs11064437 disrupted the canonical splice site, thereby 
promoting use of the new splice site. Black, annotated canonical intron; red, new 
intron missing from GENCODE. Inset, MAF of rs11064437 decreased from Eastern 
to Southeastern to South Asian individuals.
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tested genes (Fig. 3a and Supplementary Table 4). Lead sQTL variants 
(sVariants) were enriched near splice sites, introns and splice regions 
(Fig. 3b,c). Sample size was positively correlated with sQTL discovery 
(Pearson’s r = 0.95; Fig. 3d), but were inversely correlated with sQTL 
effect size (Pearson’s r = −0.95; Extended Data Fig. 4a), indicating that 
large sample sizes were better-powered to detect small-effect vari-
ants33. sQTLs discovery was also positively correlated with pseudobulk 
library size (Pearson’s r = 0.96; Extended Data Fig. 4b). Sample size and 
library size independently contributed to sQTL discovery power (likeli-
hood ratio test; sample size: P = 3.68 × 10−10; library size: P = 1.14 × 10−10). 
Across all cell types, we observed a maximum of 16.1% of sQTL genes 
(sGenes) with two or more regulatory variants (Fig. 3a). We observed 
that allelic heterogeneity scaled with the number of significant sGenes 
to detect sQTLs (Fig. 3e).

To replicate cis-sQTLs with external datasets, we used four publicly 
available PBMC-related bulk RNA-seq datasets: (1) the BLUEPRINT  
dataset13 (n = 197); (2) the DICE dataset12 (n = 91); (3) the GTEx 
whole-blood (n = 670) and lymphoblastoid cell lines (LCLs) (n = 147); 
and (4) ImmuNexUT35 (n = 416) (Extended Data Fig. 5). We used the 
π1 statistics to assess replication between AIDA and matching cell 
types from the aforementioned datasets. π1 estimates ranged from 
0.91 to 0.93 for BLUEPRINT, 0.83 to 0.91 for DICE, 0.70 to 1 for GTEx 
whole-blood (except for cDC2; π1 = 0.48), 0.71 to 0.86 for GTEx LCL 
and 0.70 to 1 for ImmuNexUT (except for CD56+ NK; π1 = 0.42) (Fig. 3f 
and Supplementary Fig. 2), suggesting that AIDA cis-sQTLs replicated 
well. Despite high replication rates, we identified an average of 14.31% 
(range = 4.76–19.32%) new sQTLs compared with ImmuNexUT, the 
largest existing PBMC dataset (Extended Data Fig. 5).

To identify cell-type-specific sQTLs, we quantified sQTL sharing 
in terms of sign and magnitude using mash36. sQTLs tended to have the 
same direction of effects but different effect size magnitudes (Fig. 3g). 
Neighboring cell-type pairs on the hematopoietic lineage shared sQTLs 
more than other pairs (Fig. 3h). For example, myeloid and B cells formed 
two distinct clusters. We identified many cell-type-specific sQTLs 
in known autoimmune risk genes37. One example was CCL4, which 
encodes a cytokine upregulated in systemic lupus erythematosus 
(SLE)-associated autoimmune hemolytic anemia38. Its sQTL effects 
preferentially appeared in T cell subtypes (Extended Data Fig. 6).

Sex disparities in disease risk might also be attributed to sex-biased 
sQTLs (sQTL)39. For each independent lead cis-sQTL, we performed 
sex-biased sQTL analysis with a linear model to test for genotype-by-sex 
(G × S) interaction. We identified a total of 27 sex-biased sQTLs across 
20 genes (FDR < 0.05; Fig. 3i and Supplementary Table 5). Among these, 
two sex-biased sQTLs had significant effects in only one sex. For exam-
ple, the lead variant rs930090 modulated TECR intron use (chromo-
some 19: 14529711–14562525) in CD16+ NK cells for females 
(P = 6.42 × 10−19; β̂ = 0.359) but not males (P = 0.043; β̂ = 0.125; Extended 
Data Fig. 4d). Another 25 sex-biased sQTLs appeared in the two sexes 
with different effect sizes. The lead sVariant rs17713729 had a significant 
sQTL effect on the SH3YL1 intron (chromosome 2: 253115–264782) in 

CD4+ central memory T (TCM) cells for both males (P = 6.41 × 10−30) and 
females (P = 2.49 × 10−14), but its effect size was larger in males 
( β̂ = 0.523) than in females ( β̂ = 0.319; Extended Data Fig. 4e). Using 20 
GWAS traits conducted in East Asian populations40–44 (Supplementary 
Table 6), we identified a sex-biased colocalization between lymphocyte 
count and CLEC2D sQTL in CD4+ effector memory T (TEM) cells. The 
sQTL had a stronger effect on CLEC2D splicing in females ( β̂ = 0.817, 
P = 5.5 × 10−21) than males ( β̂ = 0.499, P = 3.3 × 10−6) and stronger colo-
calization with lymphocyte count in females (H4 = 0.935) than males 
(H4 = 0.676; Fig. 3j). CLEC2D encodes a transmembrane C-type lectin 
receptor that causes inflammation and tissue injury45. Further experi-
mental evidence is needed to understand its function affecting lym-
phocyte count.

We performed ancestry-biased sQTL detection by stratifying the 
AIDA cohort into East Asian, Southeast Asian and South Asian. We 
observed eight Malay-biased cis-sQTLs and 19 Indian-biased cis-sQTLs 
(Supplementary Table 7). One example of Malay-biased sQTL is the 
lead variant rs492083, which modulates ATP5MPL intron use (chromo-
some 14: 103914633–103915066) in CD16+ monocytes (P = 2.10 × 10−8; 
β̂ = -0.995; Extended Data Fig. 4f). One example of Indian-biased sQTL 
is the lead variant rs6576010, which modulates POLB intron use (chro-
mosome 8: 42338685–42344953) in naive CD4+ T cells (P = 1.31 × 10−7; 
β̂ = −0.946; Extended Data Fig. 4g).

Dynamic intron use and sQTL across B cell development
B cell differentiation is crucial for the immune system46. We focused on 
naive (n = 26,617), IGHMlo memory (n = 16,280) and IGHMhi memory B 
cells (n = 10,067) to explore how splicing regulation correlates with the 
different stages of B cell development (Fig. 4a). We assigned pseudo-
time to each cell along a differentiation trajectory (Fig. 4b) and split the 
population into six quantiles based on pseudotime values (Fig. 4c). In 
this trajectory, memory B cells underwent class switch recombination 
from IgM (IGHMhi) to other isotypes (IGHMlo), in agreement with previ-
ous studies (Fig. 4d)47. We identified 865 introns whose use correlated 
with pseudotime (FDR < 0.05; Supplementary Table 8). Dynamic introns 
showed three distinct modes of pseudotime-dependent use (Fig. 4e). 
The first mode was a stepwise change between naive and memory B 
cells. PAX5 is a B cell-specific transcription factor that has a critical 
role in B cell development (Fig. 4f and Extended Data Fig. 7)48,49. Its two 
isoforms were expressed throughout B cell development, but there 
was no consensus regarding their isoform-specific roles in the current 
literature49–51. We observed PAX5A downregulation and PAX5B upregu-
lation as B cells matured. The second mode showed a steady linear 
change in intron junction use, like the decrease in exon 4 use for PTPRC 
during naive to memory B cell differentiation. The final quadratic mode 
involved transient intron use, such as transient upregulation of exon 1 
in DOCK8 during B cell development (Fig. 4f and Extended Data Fig. 7).

Next, we sought to identify dynamic genetic effects on splicing 
across the B cell differentiation trajectory. We found 107 lead sQTLs 
with significant pseudotime interactions (FDR < 0.05, Fig. 4g and 

Fig. 3 | Single-cell sQTL analysis revealed cell-type-specific and sex-biased 
regulation of splicing. a, Numbers of sGenes (red dots) and proportions of 
sGenes (stacked bars) with various numbers of independent sQTLs across 19 
cell types (adjusted beta-approximated P < 0.05). b, cis-sVariants preferentially 
located near splice junctions and in the affected introns. c, A Bayesian 
hierarchical model revealed that sVariants were enriched in the splice region and 
as missense and synonymous variants. The dot plot shows the mean ± s.e.m. 
 of functional annotations (n of sVariants = 11,577). d, Number of sGenes scaled 
with the number of donors and junction read count across 19 cell types. The 
shaded area on either side of the linear regression line represents the 95% CI.  
e, The proportion of sGenes with more than one independent sVariant increased 
with the power of sGene discovery across 19 cell types. The shaded area on either 
side of the linear regression line represents the 95% CI. f, AIDA cis-sQTLs were well 
replicated in BLUEPRINT, DICE, GTEx LCL, GTEx whole-blood and ImmuNexUT. 

Each dot represents one cell type from AIDA, colored as in a. g, Fractions of lead 
cis-sQTLs shared according to sign and magnitude in one or more cell types. 
Sharing according to sign was defined as a cis-sQTL sharing the same sign with 
the top cis-sQTL across 19 cell types. Sharing according to magnitude was defined 
as the effect size of a cis-sQTL being within a factor of two of the top cis-sQTLs 
across 19 cell types. h, Pairwise sQTL sharing according to magnitude across 
19 cell types. A total of 2,488 sQTLs that were significant (linear feedback shift 
register (LFSR) < 0.05) in at least one cell type were considered to avoid random 
noise in association testing. i, Number of sex-biased sQTLs discovered in 19 
cell types (FDR < 0.05). Cell type coloring as in a. j, CLEC2D sQTLs in CD4+ TEM 
cells colocalized with the GWAS of lymphocyte count. This colocalization was 
primarily driven by a female-biased sQTL. The sQTL lead variant rs3764022 was 
an exonic variant located in the splice region of CLEC2D exon 2. The unadjusted 
two-sided P value was calculated using QTLtools.
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Supplementary Table 9). Of these dynamic sQTLs, the effect sizes of 62 
(57.94%) grew stronger, 37 (35.58%) grew weaker and 11 (10.28%) showed 
transient effects along the differentiation trajectory. Several dynamic 
sGenes were known to be immune-related, including CLEC2D45, CCND3 
(ref. 52) and ORMDL3 (ref. 53). Notably, we found several dynamic sQTLs 
that colocalized with autoimmune disease GWAS loci. For example, the 
dynamic sQTL for CD83, whose effect of lead variant rs6936285 weak-
ened during B cell maturation, strongly colocalized with RA (COLOC 
H4 = 0.980) (Extended Data Fig. 8a). Additionally, the dynamic sQTL for 
BCL2A1, whose effect of lead variant rs16971619 increased during B cell 
maturation, colocalized with lymphocyte count (COLOC H4 = 0.848). 
These findings suggest a functional link between dynamic sQTLs and 
autoimmune diseases (Extended Data Fig. 8b).

trans-sQTLs are highly cell-type-specific
We performed trans-sQTL mapping to identify distal genetic effects on 
splicing (Methods) and identified 607 trans-sGenes (FDR < 0.01; Fig. 5a). 
The number of detected trans-sGenes was positively correlated with 
sample size (Spearman’s ρ = 0.74) and with the number of cis-sGenes 
(Spearman’s ρ = 0.62; Fig. 5b).

Most detected trans-sGenes were cell-type-specific. Out of all 
trans-sGenes, 393 (64.7%) appeared in only one cell type, which was 
similar to the OneK1K estimate (63.6%). Trans-sQTLs π1 replication 
between cell types was significantly lower than cis-sQTLs (two-sided 
t-test P = 2.91 × 10−79, t = −28.1, d.f. = 250; Fig. 5c). Additionally, we 
noticed that the effect size differences between discovery and repli-
cation cell types were larger for trans-sQTLs than cis-sQTLs (two-sided 
t-test P = 2.81 × 10−91, t = −31.4, d.f. = 250; Supplementary Fig. 3). This 
suggests that trans-sQTLs are more cell-type-specific than cis-sQTLs.

We asked whether the cis-effects on RNA-binding proteins could 
underlie trans-sQTLs. We identified 17 colocalization events between 
AIDA cell-type-specific cis-eQTLs and trans-sQTLs (COLOC H4 > 0.75; 
Fig. 5d and Supplementary Table 10). Notably, PTPRC trans-sQTLs 

exhibited T cell-biased colocalization with HNRNPLL cis-eQTLs 
(Fig. 5e,f and Extended Data Fig. 9a,b). Furthermore, single-cell quan-
tifications also suggested that higher HNRNPLL expression led to 
shorter PTPRC isoforms (two-sided t-test P = 3.07 × 10−197, t = −30.0, 
d.f. = 81578.31; Fig. 5g).

Notably, we observed a lead switch across CD4+ T cell subtypes. In 
naive CD4+ T cells, rs6751481 was the lead SNP for HNRNPLL cis-eQTLs 
and PTPRC trans-sQTLs (H4 = 1.00). However, the lead SNP rs74258942 
in CD4+ TEM cells (H4 = 0.998) was 36,158 bp away and in modest link-
age disequilibrium (LD) with rs6751481 (r2 = 0.28). Fine-mapping with 
SuSiE54 confirmed that both lead SNPs were the most likely causal 
SNPs for their respective cell types (Fig. 5j). We observed that both 
lead SNPs overlapped functional elements on HaploReg: rs6751481 
overlapped a blood-specific promoter region, while rs74258942 over-
lapped a blood-specific enhancer region. In addition, we also replicated 
rs6751481 in OneK1K. It was the lead SNP for HNRNPLL in CD4+ naive 
T cells (FDR < 0.15) but not in CD4+ TEM cells (FDR > 0.9). The variant 
rs74258942 was Asian-biased (OneK1K MAF = 0.07; AIDA MAF = 0.32; 
1KG_EUR = 0.07; 1KG_EAS = 0.29) and was not significant in OneK1K 
(FDR > 0.99).

Isoform-specific expression of PTPRC (CD45) is associated with 
naive CD4+ T cell differentiation. Because rs6751481 was associated 
with the CD45RA+ and RO isoform ratios in CD4+ T naive cells, we tested 
whether it would be associated with CD4+ T cell proportions and 
observed a modest but significant association ( β̂ = 0.043; P = 0.027; 
Fig. 5h). As an orthogonal validation, we leveraged a previous GWAS 
study on T cell proportions55 and conducted summary-based Mende-
lian randomization (SMR)56. We observed strong pleiotropy between 
HNRNPLL expression and the proportion of memory CD4+ T cells 
(P = 9.21 × 10−7; Fig. 5i) without significant linkage effect (HEIDI 
P = 0.103). These results showed that germline variations influencing 
HNRNPLL expression and PTPRC splicing also influenced T cell propor-
tions (Fig. 5k).

Fig. 5 | trans-sQTL analysis revealed a regulatory relationship between 
HNRNPLL and PTPRC. a, Upset plot showing discovery and sharing of trans-
sQTLs across cell types. Right, the bar plot shows the number of trans-sQTLs per 
cell type. Top, the bar plot shows the number of trans-sQTLs in each category. 
The x axis is truncated at a minimum of five sQTLs. b, The number of trans-sGenes 
scaled with the number of donors. The two-sided P value was calculated using 
Spearman’s rank correlation. c, Box plot of the π1 statistics for cis-sQTLs and 
trans-sQTLs. The P value was calculated using a two-sided paired t-test (n = 251 
for trans-sQTLs; n = 251 for cis-sQTLs). d, Circos plot revealing the cis-regulatory 
effects (cis-eQTLs) underlying trans-sQTLs (links colored according to cell type 
as in a). A link is black if a colocalization event occurred in multiple cell types.  
e, Bar plot and heatmaps showing the colocalization probability (COLOC PP: 
H4) between HNRNPLL cis-eQTL and PTPRC trans-sQTL and QTL P values. In e,f,j, 
Unadjusted P values were obtained using Matrix eQTL (cis-eQTL) and QTLtools 
(trans-sQTL). f, LocusCompare plots showing the colocalization between 
HNRNPLL cis-eQTL and PTPRC trans-sQTL in CD4+ T (naive, TCM and TEM) cells. 
g, Higher SpliZ scores (representing more isoforms with longer intron length) 

were observed in single cells with greater HNRNPLL expression. The dot plot 
shows the mean and 95% CI. The P value was calculated using a two-sided t-test 
(n = 214,504 for ‘not expressed’; n = 53,064 for ‘expressed’). h, Violin and box 
plots showing that rs6751481 was associated with the ratio between naive and 
memory CD4+ T cells across AIDA donors. The P value and β were determined 
using linear regression (red line; n = 96 for TT; n = 217 for TC; n = 114 for CC). 
i, SMR revealed strong pleiotropy between HNRNPLL cis-eQTLs and GWAS on 
activated T cell proportion. The P value was obtained using SMR (n = 3579 for all 
the input variants). The SMR effect plot shows the mean ± s.e.m. of the variant 
effects. j, LocusZoom plot showing that naive and CD4+ TEM cells harbored two 
independent lead SNPs for HNRNPLL cis-eQTLs (square: lead SNPs for naive and 
CD4+ TEM cells; triangle: remaining SNPs for naive CD4+ T cells; circle: remaining 
SNPs for CD4+ TEM cells). Bottom, SuSiE posterior inclusion probability (PIP). 
The LD between rs6751481 and rs74258942 was modest (r2 = 0.28). k, Schematic 
showing the proposed regulatory relationship between HNRNPLL cis-eQTLs and 
PTPRC trans-sQTLs.

Fig. 4 | Dynamic intron use and sQTLs identified through B cell development. 
a, Principal component (PC) projections of single-cell gene expression for 
naive, IGHMhi memory and IGHMlo memory B cells. b, Pseudotime projection 
of 52,964 B cells. The direction of the curve and the intensity of the green 
color indicate the dynamic process of B cell maturation from naive to IGHMhi 
memory and to IGHMlo memory B cells. c, B cells were partitioned into six 
quantiles according to pseudotime values. d, Dynamic expression of IGHM 
during cellular development agreed with B cell class switch recombination 
from producing IgM to other isotypes. IGHM ratio: IGHM expression level/
(IGHM + IGHG1 + IGHG2 + IGHG3 + IGHG4 + IGHA1 + IGHA2 + IGHD + IGHE) 
expression level. e, Three distinct patterns were identified for pseudotime-
dependent intron use: stepwise, linear and quadratic. f, Dynamic intron use 
across six quantiles of B cell development. Three example genes with different 

dynamic intron use patterns (top, stepwise change in PAX5; middle, linear change 
in PTPRC; bottom, quadratic change in DOCK8). The dot color corresponds to the 
six quantiles in c and the dot size reflects the mean intron usage in that quantile. 
g, Left, heatmap of scaled mean intron use across pseudotime, with the color bar 
corresponding to the three dynamic intron use patterns in e. sVariant–intron 
pairs with significant interaction effects with B cell pseudotime are shown. Both 
linear (genotype × time) and quadratic (genotype × time2) models were used 
to assess the interaction between genetic and pseudotime quantiles. Middle, 
scaled effect size estimates of sVariant–intron pairs. Right, three example genes 
(CLEC2D, CCND3, ORMDL3) with dynamic effect sizes across pseudotime. The 
samples sizes for each quantile are: Q1 (n = 419), Q2 (n = 425), Q3 (n = 427), Q4 
(n = 450), Q5 (n = 448) and Q6 (n = 449).
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Aberrant splicing mediates complex diseases
To identify the AS mechanisms that mediated polygenic disease 
risk, we compiled GWAS summary statistics for 20 traits focused 
on Asian populations (Supplementary Table 6). We conducted colo-
calization between cis-sQTLs from 19 cell types and GWAS for 20 
complex traits with COLOC57 (Fig. 6a and Extended Data Fig. 10a). The 
proportion of colocalized GWAS loci varied across different GWAS 

traits, with immune-related diseases having the highest propor-
tion, while nonimmunological traits had the lowest proportion of 
colocalization. We applied stratified LD score regression (S-LDSC) to 
estimate heritability enrichment from GWAS summary statistics58. 
The heritability of SLE, atopic dermatitis (AD), GD and RA showed 
higher enrichment in PBMC sQTLs than other traits (Fig. 6b and 
Extended Data Fig. 10e,f).
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We identified 53 colocalized loci among the five autoimmune and 
inflammatory diseases (COLOC H4 > 0.75; Fig. 6c and Supplementary 
Tables 11 and 12). Our results identified cell-type-specific colocalization 
between the SLE GWAS and an sQTL that regulates the splicing of IRF5 
exon 1 (Extended Data Fig. 10b,c). IRF5 is a well-known risk gene for 
SLE59. The putative causal SNP rs2004640 disrupted the 5′ splice site 
of exon 1B, leading to nonsense-mediated decay and downregulation 
of IRF5 expression (Extended Data Fig. 10d).

We turned our attention to GD, an autoimmune hyperthyroidism 
with a significantly higher incidence rate in Asian than European popu-
lations60. Colocalization analysis captured TCHP as a cell-type-specific 
risk gene for GD. Cell types with high use of the intron junction between 
TCHP exons 4 and 5 harbored cis-sQTLs, which led to cell-type-specific 
sQTL-GWAS colocalization (Fig. 6d). Furthermore, cis-sQTL effects led 
to intron retention between exons 4 and 5 and nonsense-mediated 
decay, which manifested as cis-eQTLs (Fig. 6d). A recent study in the 
Japanese population identified a GWAS locus associated with GD 
(P = 8.6 × 10−14)42. The GWAS lead variant rs74416240 had a significant 
genetic effect on TCHP exon 4 use in monocytes, NK, CD4+ and CD8+ 
T cells (FDR < 0.05) and strongly colocalized with TCHP cis-sQTLs 
(Fig. 6d,e). Notably, the MAF of rs74416240 was high in the East Asian 
population ( Japanese = 0.18; Chinese = 0.15, Korean = 0.13), modest 
in the Southeast Asian (Malay = 0.04) population and absent in the 
South Asian population in AIDA. We observed the same pattern of allele 
frequencies in 1000 Genomes Project populations (Fig. 6f).

The lead variant rs74416240 resided in the last nucleotide of TCHP 
exon 4 and was predicted to disrupt the 5′ splice junction (Fig. 6g). To 
validate this effect, we conducted a minigene experiment to test the 
effect of rs74416240 on TCHP exon 4 splicing in K562 cells. The test 
region contained a 57-nt-long exon 4 plus the 200-bp flanking sequence 
(Fig. 6h). We transfected two identical minigene constructs with one 
nucleotide difference at rs74416240. A low level of intron retention 
was observed for the reference allele (G) construct. The alternative 
allele (A) construct, where the 5′ splice site was disrupted, revealed a 
nearly complete intron retention isoform (Fig. 6h). These results sug-
gest that rs74416240 is a causal variant for the TCHP sQTL and possibly 
contributes to GD risk via this differential splicing.

Discussion
AS is a key mediator of genetic effects on complex diseases. Our study 
leveraged droplet-based 5′ scRNA-seq to investigate cell-type-specific 
AS and sQTLs. Unlike FACS-based bulk RNA-seq studies12,13,35, our study 
conducted unbiased sampling to capture low-abundance PBMC cell 
types. Compared to previous population-scale scRNA-seq PBMC 
studies7,8, our study demonstrated a 4.3-fold increase in exon cover-
age by leveraging 5′ scRNA-seq, enabling better power for sQTL detec-
tion. In addition, our data filled a critical gap in expanding the catalog 
of under-represented Asian populations, especially Southeast and 
South Asians.

The ancestral diversity of our cohort enabled the identification 
of ancestry-biased splicing and sQTLs. Like previous studies61, we 
found that ancestry had a stronger influence than sex on AS. Such 
influence can be partially attributed to differences in allele frequency: 
ancestry-biased SPSB2 splice site use was caused by an MAF gradient 
from Eastern to Southeastern to South Asian populations. In addi-
tion, most Malay-biased and Indian-biased sQTLs had higher MAFs in 
the respective discovery populations, while the rest were explained 
by differences in effect sizes. Notably, we captured an Asian-specific 
causal variant that disrupted the 5′ splice site of TCHP exon 4 and led 
to intron retention. This variant colocalized with an Asian-specific GD 
risk locus identified in the Japanese population42.

We identified 607 trans-sGenes across 19 cell types, which was 
significantly higher than previously identified by tissue-level bulk 
analysis33. Most trans-sGenes are specific to one cell type, which prob-
ably explains the scarcity of trans-sGenes when studying homog-
enized tissue samples. Notably, trans-sQTLs for PTPRC colocalized 
with cis-eQTLs for HNRNPLL in a cell-type-specific manner. Lead SNPs 
in naive and CD4+ TEM cells were more than 36-kbp apart and in modest 
LD; fine-mapping analysis suggested distinct causal variants across 
the T cell subtypes.

Our study highlights mechanistic findings and disease impli-
cations from single-cell sQTLs and underscores the importance of 
ancestral diversity. However, our findings must be interpreted within 
the limitations of our study. One limitation is that dynamic B cell 
analysis missed transitional states such as activated B cells and plas-
mablasts, which are typically observed during the adaptive immune 
response and not in healthy donors. Individuals undergoing active 
immune challenges are better suited to study B cell development. 
A second limitation of this study is that rare cell types are under-
powered for sQTL discovery. Thus, we probably missed true posi-
tive sQTLs in these rare cell types. A third limitation was the uneven 
sequencing depth across the length of the gene. This problem could be 
addressed using full-length scRNA-seq library preparation methods, 
such as SmartSeq, or using long-read sequencing, such as Oxford 
Nanopore and PacBio. Because of the higher cost per sample and 
lower throughput, these methods have not been widely applied to 
large-scale sQTL studies. With the rapid advancement in genomic 
technologies, high-throughput and low-cost full-length scRNA-seq 
will enable unbiased and comprehensive coverage of the transcrip-
tomic landscape.
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Fig. 6 | Aberrant splicing mediates complex diseases. a, Cell-type-specific 
colocalization between cis-sQTLs from 19 cell types and 20 complex traits. 
b, Heritability enrichment (proportion h2/proportion variant) for 20 traits 
mediated by cis-sQTLs from 19 cell types. Autoimmune and inflammatory 
diseases are highlighted in bold. c, Colocalization for 28 example sGenes 
across 19 cell types in the five disease traits. The color of each circle indicates 
the associated diseases. The inset shows the total number of colocalized loci 
across the five diseases. d, Gene expression, eQTLs, junction reads, sQTLs and 
H4 posterior probability (sQTL-GWAS colocalization) for TCHP across 19 cell 
types. High junction use between exons 4 and 5 led to sQTL and sQTL-GWAS 
colocalization. e, Cell-type-specific colocalization of GD GWAS and TCHP sQTLs 
in seven cell types. rs74416240 was the lead GWAS risk variant. The unadjusted, 
two-sided P value was calculated using QTLtools. f, MAF of rs74416240 in five 
AIDA populations and five major populations in the 1000 Genomes Project 
showed an East Asian bias of the rs74416240 minor allele. g, Gene model of TCHP 

with three isoforms. rs74416240 was located in the 5′ splice site of the intron 
junction between exons 4 and 5. h, Minigene experiment to validate the effect 
of rs74416240 on TCHP exon 4 splicing in K562 cells. The universal minigene 
vector (UMV) backbone alone corresponded to the band with the smallest 
molecular weight on the gel image. The test region, containing the 57-nt long 
exon 4 plus the 200-bp flanking sequences, was cloned into the UMV. Two 
identical minigene constructs with one nucleotide difference at rs74416240 
(reference = G; alternative = A) were transfected into K562 cells. The reference 
allele (G) predominantly led to the normal isoform; the alternative allele (A) led 
to intron retention. BAS, basophil count; BMI, body mass index; EOS, eosinophil; 
Hb, hemoglobin; Ht, hematocrit; MCH, mean corpuscular Hb; LYM, lymphocyte; 
MCHC, MCH concentration; MCV, mean corpuscular volume; MON, monocyte 
count; NEU, neutrophil; PLT, platelet count; RBC, red blood cell; WBC, white 
blood cell count.
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Methods
Inclusion and ethics statement
Local researchers from the AIDA consortium member countries were 
involved in study design, study implementation, data ownership, 
intellectual property and authorship of publications throughout the 
research process. All participants were approved by local ethics review 
committees before study enrollment.

All study protocols were approved by the institutional review 
boards (IRBs) of the institutions that the laboratories are affiliated 
with (Genome Institute of Singapore: IRB-2020-012 and IRB-2022-051; 
Nanyang Technological University: IRB-2016-11-030-01, IRB-2016-11-
030 and IRB-18IC4698; RIKEN: IRB-H30-9; Samsung Genome Institute: 
IRB-2019-09-121; Faculty of Medicine Siriraj Hospital, Mahidol Univer-
sity: IRB-725/2563(IRB3); National Institute of Biomedical Genomics: 
IRB-NIBMG/2022/1/0022) before dataset generation. All donors pro-
vided written informed consent for sample and metadata collection 
and subsequent analyses.

The AIDA cohort
The AIDA Data Freeze v.1 performed 10x 5′ scRNA-seq on 503 donors 
of Eastern (Singaporean Chinese, Japanese, Korean), Southeastern 
(Singaporean Malay) and South Asian (Singaporean Indian) descent. 
After removing donors whose samples failed genotyping or scRNA-seq 
QC, and related donors (up to third-degree cousins), 484 nonrelated 
individuals remained. Taking the intersection between genotype and 
scRNA-seq resulted in 474 individuals for sQTL analysis. The donor 
characteristics are provided in Supplementary Table 1.

Genotype data processing and QC
Genotyping was performed using the Illumina Infinium Global Screen-
ing Array v.3 according to the manufacturer’s protocol. We exported 
genotype data into PLINK data format using the GenomeStudio PLINK 
Input Report plug-in v.2.1.4 to perform QC and imputation. A total of 
477,889 post-QC variants were used for genome-wide imputation with 
prephasing using the Michigan imputation server62. All populations in 
1000 Genomes Project high-coverage (hg38) were selected as reference 
panel. After imputation, only imputed variants with an imputation 
quality of R2 > 0.8 were retained. Variants with missingness greater 
than 0.05, MAF < 0.05 or Hardy–Weinberg equation P < 1 × 10−6 were 
excluded from further analysis. Monoallelic and multiallelic variants 
in each population were removed, leaving 5,065,361 genetic variants 
for downstream analysis. We extracted autosomal nonpalindromic 
variants and merged the AIDA genotypes with the 1000 Genomes 
(n = 2,504) for PC analysis (PCA). We merged the AIDA samples with 
the 1000 Genomes samples using bcftools63 v.1.9 and performed PCA 
using PLINK64 v.1.9.

scRNA-seq data processing and QC
The single-cell experiments used the 10x Genomics 5′ v.2 RNA-seq 
method. Each batch included a pooling of 15 Asian donors and one Euro-
pean control sample. The initial data preprocessing and QC steps, such 
as doublet identification and demultiplexing, were conducted using 
DRAGEN v.3.8.4, Cell Ranger v.7.0.1 and Freemuxlet (https://github. 
com/statgen/popscle;v0.1-beta). We used the GENCODE release 32 
(GRCh38, Ensembl 98, 5 September 2019) as our gene annotation  
reference. Cells with fewer than 300 GENCODE release 32 genes 
detected (NODG < 300) were filtered out. Subsequent analyses 
involved Seurat v.4.1.1R65 and RCA v.2.0 (ref. 65) for the initial cell type 
annotation for the doublet identification workflow. Further QC, both 
at the library-specific and cell-type-specific levels, was performed 
to remove low-quality cells. AIDA Data Freeze v.1 included 1,058,909 
PBMCs from 503 Asian donors and five European controls profiled 
in Japan, Singapore and South Korea. Cells expressing heightened 
platelet marker genes in B cells, plasmacytoid dendritic cells, myeloid 
cells, innate lymphoid cells, NK cells and T cells were removed during 

cell-population-specific QC. Data integration was achieved using the 
Seurat anchor integration reciprocal PCA algorithm. Subsequent 
subclustering annotation was based on marker genes curated from 
the literature and an examination of gene expression across clusters 
in our dataset. In the final annotation, 34 cell types were identified. In 
these 34 subtypes, we focused on 21 PBMC subtypes, each including 
more than 3,500 cells. Red blood cells, platelets and clusters with 
ambiguous identities (for example, expression of marker genes of 
other cell types) were excluded from this analysis (the details are 
described in ref. 22).

Quantification of mRNA AS
RNA-seq data were aligned to the human reference genome GRCh38 
primary assembly and GENCODE v.32 using STARsolo66 v.2.7.10a 
with the options --soloCBmatchWLtype 1MM --soloUMIdedup 1MM_
Directional_UMItools. The cell barcode whitelist is available inside 
the Cell Ranger installation (cellranger-x.y.z/lib/python/cellranger/
barcodes/737K-august-2016.txt). A two-pass mode was used to enable 
new splice junction discovery. The --waspOutputMode option was used 
to reduce allelic mapping bias. For each sample, the corresponding 
post-QC VCF file was used for WASP filtering. Deduplication of reads 
was performed based on cell barcodes and unique molecular identi-
fier tags from the BAM files using the MarkDuplicates function from 
Picard. Only uniquely mapped reads in proper pairs that passed the 
WASP filter were retained for downstream analysis. To calculate the 
percentage of exonic bases covered by sequencing reads, BEDTools67 
v.2.27.1 merge was used to merge overlapping exon regions. To vizualize 
read distribution, deepTools68 v.3.5.1 was used.

Reads from the same cell type of each donor were extracted 
using custom scripts to make pseudobulk BAM files; reads from the 
same individuals were pooled using SAMtools69 v.1.16.1 merge. We 
used RegTools70 v.0.0.1 to extract intron junctions and LeafCutter24 
v.0.2.9 to quantify intron use levels. The prepare_phenotype_table.
py script from LeafCutter was used to generate phenotype files 
in sQTL mapping. Introns with zero read counts in more than 40% 
of the samples or with insufficient variation (s.d. < 0.005) were 
removed. Replication of intron junctions obtained using RegTools 
is detailed in the Supplementary Methods. SpliZ was used to quantify 
the gene-level splicing of each cell. This pipeline generated a scalar 
score for each gene–cell pair. A larger negative score indicates that 
the introns for the gene in a given cell are shorter than average, 
while a larger positive score indicates the opposite. The GENCODE 
v.32 annotation file was used as the reference annotation file. The 
--lower_bound parameter was set to 1 to include all junction reads 
in the calculation of SpliZ.

Differential splicing analysis across sex and ancestry
Sex-biased differential splicing was performed with LeafCutter v.0.2.7 
using default parameters, with age, sequencing center and five geno-
type PCs as covariates. We calculated FDRs with the Benjamin–Hoch-
berg method and used an FDR < 0.05 as a significance cutoff. The R 
package gggenes v.0.5.1 was used to plot the gene model and visualize 
the read coverage on FLNA.

Ancestry-biased differential splicing was performed with Leaf-
Cutter using default parameters, with sex and age as covariates. To 
minimize the batch effects caused by different sequencing centers, 
we focused on the Singapore cohort (n = 75 for Singaporean Chi-
nese; n = 54 for Singaporean Malay; n = 60 for Singaporean Indian) 
for this analysis. We determined the influence of ancestry on AS by 
performing one-versus-one differential splicing analysis between 
the Singaporean Chinese, Malay and Indian populations. We cal-
culated FDRs with the Benjamin–Hochberg method and used an 
FDR < 0.05 as a significance cutoff. Sashimi plots used to show the 
junction use difference between ancestries were generated using 
ggsashimi34 v.1.1.5.
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cis-sQTL mapping
cis-sQTL mapping was performed using QTLtools71 v.1.2, using intron 
excision ratios and a cis-window of 1 Mb on both sides of the junction. 
Each cell type needed a minimum of ten cells per individual. Eight PCs 
derived from splicing ratios, five genotype PCs, sex and age information 
were used as covariates in the linear model. The number of phenotypes 
and genotype PCs were chosen to maximize sQTL discovery. Grouped 
permutations (--grp option) were used to jointly compute an empiri-
cal P value over all intron clusters of a gene. QTLtools was run using 
the permutation mode (1,000 permutations); beta-approximated 
permutation P values were adjusted for multiple testing correlation 
using the qvalue package72 v.2.30.0. The significance threshold was 
set at FDR < 0.05. Conditional sQTL analysis was done by forward step-
wise regression followed by a backward selection step. The gene-level 
significance threshold was set to the maximum beta-adjusted P value 
over all sGenes in a given cell type. Scanning for cis-sQTLs using QTL-
tools was performed to correct for all previously discovered variants 
and all covariates. If the beta-adjusted P value for the lead variant was 
insignificant at the gene-level threshold, the forward stage was com-
plete and the procedure moved on to the backward stage. If this P value 
was significant, the lead variant was added to the list of discovered 
cis-QTLs as an independent signal and the forward step moved on to 
the next iteration. The backward stage consisted of testing each variant 
separately, controlling for all other discovered variants. Enrichment 
of lead sQTL variants in the annotations was calculated using qtlBHM 
v.1.0 (https://github.com/rajanil/qtlBHM).

To evaluate the replication of AIDA cis-sQTLs in the external data-
sets, we used five data sources: (1) BLUEPRINT13, which had CD14+ mono-
cytes and CD4+ T cells; (2) DICE12, which had CD14+ monocytes, CD16+ 
monocytes, CD16+ NK cells, CD4+ naive T cells, CD8+ naive T cells and 
naive B cells; (3) GTEx whole-blood; (4) GTEx LCL; and (5) ImmuNexUT35. 
During replication, we selected cis-sQTLs from the corresponding cell 
types and queried their P value in the aforementioned datasets. The 
replication was quantified using the π1 statistic as implemented in 
the qvalue package.

We used mashr36 v.0.2.79 to estimate sQTL sharing across cell types. 
We used as input the nominal P values from sQTLs (sIntron-sVariant) 
for each cell type. We defined the cis-sQTL with the most significant  
P value in each gene as the top cis-sQTL for this gene and combined 
all the top cis-sQTLs as the strong tests. Random tests were chosen 
by randomly selecting 20,000 cis-sQTLs from sQTL nominal P values. 
Strong tests were used to learn data-driven covariance matrices; ran-
dom tests were used to learn correlation structures. Finally, we used 
the aforementioned fitted model to compute the posterior means and 
LFSR for the strong tests.

Sex-biased cis-sQTL
Sex-biased sQTLs were defined as those cis-sQTLs with a significant 
genotype-by-sex (G × S) interaction effect. For each significant intron–
variant pair identified in the independent sQTL analysis, a linear regres-
sion model was fitted for each cell type to test for genotype-by-sex 
(G × S) interaction while adjusting for known and unknown confound-
ers. Male-specific or female-specific means that the allelic effect of 
the sQTL was significant in the discovery sex (P < 5 × 10−4) and non-
significant in the other sex (P > 0.05). Differential effect means that 
the allelic effects of the sQTL were significant in both sexes, but their 
effect sizes differed.

Dynamic intron use and dynamic sQTL mapping in B cell 
development
We inferred the pseudotime trajectory from naive to memory B cells 
using slingshot73 v.2.10.0 and divided the trajectory into six discrete 
quantiles. To identify dynamic splicing junctions during B cell devel-
opment, we used analysis of variance to identify intron junctions with 
a significant change (FDR < 0.05) through six quantiles. To identify 

dynamic sQTLs, we used linear mixed models with the R package 
lme4 (ref. 74) v.1.1-35.3. The model assessed the interaction between 
genotype and pseudotime quantiles, incorporating random effects to 
account for individual identity and fixed effects for genotype, pseudo-
time, sex, age and ancestry PCs, and phenotype PCs from each quantile 
(Supplementary Methods). We tested both linear (genotype × pseudo-
time) and quadratic interactions (genotype × pseudotime2). An FDR of 
0.05 was used as a threshold to call dynamic sQTLs.

trans-sQTL mapping
We followed a previously established permutation-based pipeline33 
to map regulatory variants at least 5 Mb away from their trans-sGenes 
and applied stringent mappability filters to minimize false positive 
findings74. Only variants with a 50-mer mappability greater than 0.9 
were retained as test variants. To exclude genes susceptible to mapping 
artifacts, we excluded genes with a mappability of less than 0.8 and any 
variant–gene pair where the trans-sGene cross-mapped with any gene 
within the cis-window of the variant. Mappability was calculated with 
a k-mer length of 75 for exons and 36 for untranslated regions75. We 
performed trans-sQTL mapping using QTLtools34 to test for associa-
tions between the test genes and all variants beyond 5 Mb of the same 
chromosome and interchromosomal associations. For gene-level FDR 
control, we obtained beta-approximated empirical P values based 
on 50,000 permutations. To correct for multiple intron phenotypes 
per gene, we used the most significant empirical P values of variant–
phenotype pairs to compute the distribution for the P value across k 
phenotypes using 1 − (1 − F(x))k, where F(x) is the empirical cumula-
tive distribution function. Benjamin–Hochberg correction was used 
across all genes and an FDR of 0.01 was used as a threshold to define 
trans-sQTLs. The circos plot was generated using circlize76 v.0.4.15.

Complex trait associations
We obtained publicly available GWAS summary statistics of 20 phe-
notypes covering a broad range of categories including blood traits 
(hemoglobin, platelet count, white blood cell count, monocyte count, 
basophil count, hematocrit, mean corpuscular volume, lymphocyte, 
neutrophil, mean corpuscular hemoglobin concentration, mean cor-
puscular hemoglobin, red blood cell, eosinophil), anthropometric 
traits (height, BMI) and immune-related traits (AD, asthma, GD, RA, 
SLE). We estimated sQTL enrichment in the 20 traits using S-LDSC 
v.1.0.1 with default parameters from the partitioned heritability pipe-
line (https://github.com/bulik/ldsc/wiki/Partitioned-Heritability) in a 
window of ±100 kb around each sGene with at least one independent 
cis-sQTL. To assess colocalization between GWAS loci and cis-sQTLs, 
we tested colocalization between GWAS and sQTL signals for genes 
with at least ten variants using the coloc.abf function of the COLOC 
R package57 v.5.2.3 (with default prior, using beta coefficients from 
the GWAS and sQTL analysis). We used the MAFs of our sQTL study to 
estimate the standard deviation of the quantitative trait. H4 > 0.75 was 
set as the threshold for colocalization. The colocalization results were 
visualized using LocusCompare77 (http://locuscompare.com/) v.1.0.0.

Experimental validation
To validate the effect of rs74416240 on TCHP exon 4 splicing, we built 
two minigene constructs that were identical except at rs74416240, with 
a G allele in the reference construct and an A allele in the alternative 
construct (the complete sequences can be found in the Supplementary 
Information). The minigenes consisted of three exon and two intron 
fragments cloned into an expression plasmid, whereby the middle 
exon may be subject to splicing changes by the variant. We inserted 
the sequences into the MCAD minigene we built previously78, which 
had two outer constitutive exons with their intronic portions and an 
intronic multiple cloning site to clone the fragments. We cloned both 
reference and alternative alleles using PCR amplification of genomic 
DNA fragments. We transfected minigene constructs into the K562 cell 

http://www.nature.com/naturegenetics
https://github.com/rajanil/qtlBHM
https://github.com/bulik/ldsc/wiki/Partitioned-Heritability
http://locuscompare.com/


Nature Genetics

Article https://doi.org/10.1038/s41588-024-02019-8

line. Forty-eight hours after transfection, we examined the splicing 
patterns using RNA extraction, PCR with reverse transcription and 
agarose gels. All oligonucleotides were synthesized by Integrated DNA 
Technologies (Supplementary Data 1).

Statistics and reproducibility
We included all donors with both quality-controlled genotype and 
scRNA-seq data. For each cell type, donors with fewer than ten cells 
were excluded from the analysis. This filtering process resulted in 
the final sample sizes for each cell type, as detailed in Supplementary 
Table 1. Sample sizes ranged from 114 to 459 (>400 for most cell types). 
These numbers are comparable to those reported in previous studies. 
Donors whose samples failed genotyping or scRNA-seq QC, as well as 
related donors (up to third-degree cousins), were removed. Genetic 
variants with a missingness >0.05, MAF < 0.05 or Hardy–Weinberg 
equation P < 0.000001 were excluded from the analysis. The experi-
ments were not randomized. The investigators were not blinded to allo-
cation during the experiments and outcome assessment. All statistical 
tests described in the article were two-sided. Box plots generated using 
the R ggplot2 function show the median and IQR; the whiskers are 1.5 
times the IQR. Any data points outside the whiskers were considered 
outliers and were plotted as individual points.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The AIDA Data Freeze v.1 gene-cell matrix (1,058,909 cells from 503 
Japanese, Singaporean Chinese, Singaporean Malay, Singaporean 
Indian and South Korea Asian donors and five distinct Lonza com-
mercial controls), and donor age, sex and self-reported ethnicity 
metadata are available via the Chan Zuckerberg CELLxGENE data 
portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-
47c1-a735-513c7084d508. The Japanese genotypes and scRNA-seq 
FASTQ files are available via Gene Expression Omnibus (accession no. 
GSE280974). The Korean genotypes and scRNA-seq FASTQ files are 
available via Gene Expression Omnibus (accession no. GSE281106). 
The Singaporean genotypes and scRNA-seq FASTQ files require a data 
access application to the HELIOS Data Access Committee (helios_
science@ntu.edu.sg). All sQTL summary statistics are available via 
Zenodo at https://doi.org/10.5281/zenodo.8343364 (ref. 79). The 
nucleotide sequences of the GRCh38 primary genome assembly and 
gene annotation are available at https://www.gencodegenes.org/
human/release_32.html. The OneK1K scRNA-seq data are available 
via the Gene Expression Omnibus (accession no. GSE196830). The 
junctions assembled using Snaptron can be downloaded from the 
Snaptron website (https://snaptron.cs.jhu.edu/data/srav2/junctions.
bgz). The GTEx sQTL summary statistics can be downloaded from the 
GTEx portal (https://gtexportal.org/home/downloads/adult-gtex/
qtl). Full summary statistics of the BLUEPRINT and DICE sQTL data14 
were acquired from Y. I. Li (yangili1@uchicago.edu). The T cell pro-
portion GWAS data55 are available at http://ftp.ebi.ac.uk/pub/data-
bases/gwas/summary_statistics/GCST90001001-GCST90002000/
GCST90001538/. The sources of the GWAS summary statistics40–44 
used for the colocalization analysis are outlined in Supplementary 
Table 6. Source data are provided with this paper.

Code availability
The source code used in this study is available via GitHub at https:// 
github.com/boxiangliulab/AIDA_phase1_sQTL (ref. 78).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Overview of the AIDA dataset. (a) PC1 and PC2 of AIDA 
and 1000 Genomes individuals. East Asian individuals from AIDA (Singaporean 
Chinese, Japanese, Korean) overlapped with the 1000 Genomes EAS individuals. 
South Asian individuals from AIDA (Singaporean Indian) overlapped with the 
1000 Genomes SAS individuals. Southeast (Singaporean Malay) individuals form 
a continuum between EAS and SAS individuals from 1000 Genomes. (b) The 
number of single cells across ancestry groups averaged 1,959 cells per donor.  
The red line shows the mean across all individuals. (c) UMAP of 21 PBMC subtypes 
in AIDA Data Freeze v1, colored by cell types. (d) The total number of reads per 
cell, grouped by cell types. The cell number (N) in (d) and (e): cDC2 (N = 197), 
CD16+ Monocyte (N = 508), Naive CD8 + T (N = 699), cm CD4 + T (N = 1026), 
IGHMhi memory B (N = 263), Naive CD4 + T (N = 1976), em CD4 + T (N = 333), 
atypical B (N = 143), pDC (N = 210), GZMKhi CD8 + T (N = 343), IGHMlo memory B 

(N = 423), Treg (N = 314), Naive B (N = 513), GZMKhi gdT (N = 199), MAIT (N = 426), 
GZMBhi CD8 + T (N = 809), CD16 + NK (N = 1244), cyt CD4 + T (N = 638), CD14+ 
Monocyte (N = 3145), CD56 + NK (N = 157), GZMBhi gdT (N = 437). The red line 
shows the mean across all cell types. The box plots show median and IQR, and 
whiskers are 1.5-fold IQR. (e) The total number of splice junction reads per cell, 
grouped by cell types. The red line shows the mean across all cell types. The 
box plots show median and IQR, and whiskers are 1.5-fold IQR. (f ) We ranked 
and divided all donor libraries into ten quantiles according to library size and 
randomly selected one individual from each quantile. These donors are labeled 
as Q1-Q10, and the number of genes (N) for each bin and each donor is shown 
above each box plot. The box plots show median and IQR, and whiskers are 1.5-
fold IQR. We observed base coverage across genes increased with read count for 
all ten quantiles. Fraction of base coverage = covered bases / all bases.
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Extended Data Fig. 2 | Quality control of splice junctions. (a) Canonical introns 
had a significantly lower Gini index than novel introns, indicating that the 
expression levels of canonical introns were more homogeneous across cell types. 
P value was calculated using t-test (two-sided, Nnovel = 53,653, Ncanonical = 59,400). 
The boxes show median and IQR, and whiskers are 1.5-fold IQR. (b) Replication 
of LeafCutter junction discoveries in PacBio MAS-seq long-read dataset. The 
proportion of replicated junctions increased with the number of PacBio MAS-
seq libraries. (c) Replication of LeafCutter junction discoveries in GENCODE 

and Snaptron. The number of replicated introns increased as we relaxed the 
threshold for Snaptron. (d) Position-weight matrices for canonical splice 
sites and novel splice sites. Both canonical and novel splice sites were highly 
enriched for canonical splice site motifs. JSD value refers to the Jensen-Shannon 
divergence value: positive JSD values imply that the given base is more prevalent 
in canonical splice sites’ Position Probability Matrix (PPM) compared to novel 
splice sites’ PPM. Canonical and novel splice sites were assigned based on 
whether they appeared in GENCODE.
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Extended Data Fig. 3 | Context-dependent differentially spliced genes.  
(a) Hierarchical clustering of pseudobulk quantification of alternative splicing. 
Hierarchical clustering revealed four distinct clusters: myeloid cells, B cells, 
non-cytotoxic T cells, cytotoxic T / NK cells. The heatmap shows Spearman’s 
rank correlation coefficient. (b) Cell-type-specific differential splicing analysis 

identified female-biased expression of the isoform ENST00000498491 
(highlighted in red) in GZMKhi γδ T, MAIT, GZMKhi CD8+ T, Treg, CD4+ (em and 
cm), and CD16+ NK cells. (c) Minor allele frequency (MAF) of rs11064437 in 1000 
Genome populations. MAF of rs11064437 is higher in African and East Asians than 
in other populations.
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Extended Data Fig. 4 | sQTL power, sharing, and sex-biases. (a) The inverse 
relationship between the mean absolute effect size of cis-sQTLs (y-axis) and the 
number of donors (x-axis) across 19 cell types (Pearson’s r = -0.95). Each black dot 
represents one cell type. The dark blue line represents the fitted linear regression 
model, and the grey shadow represents the 95% confidence interval in the linear 
regression. (b) The positive relationship between the number of sGenes and the 
total junction read counts across 19 cell types (Pearson’s r = 0.96). Each black 
point represents one cell type. The shaded area represents 95% confidence 
interval. (c) Fractions of cell-type-specific sQTLs detected by mashr using a 
threshold of LFSR < 0.05 shared by various numbers of cell types. LFSR = local 
false sign rate. (d) An example of single-sex sQTLs (rs930090 modulated TECR 
intron chr19:14529711-14562525; N = 459). The allelic effect in CD16+ NK was only 
significant in females but not males. (e) An example of sex-differential sQTLs 

(rs17713729 modulated SH3YL1 intron chr2: 253115-264782; N = 459). The allelic 
effect in cm CD4+ T was significant in both males and females but larger in males 
than in females. (f ) An example of Malay-specific sQTLs (rs492083 modulated 
ATP5MPL intron chr14: 103914633-103915066; N = 456). The allelic effect  
in CD16+ Monocyte was significant in Malay but not significant in East Asian.  
(g) An example of Indian-specific sQTLs (rs6576010 modulated POLB intron chr8: 
42338685-42344953; N = 458). The allelic effect in Naive CD4+ T was significant 
in Indian but not significant in East Asian. Note: The box plots show median and 
interquartile range (IQR), and whiskers are 1.5-fold IQR in (d), (e), (f) and (g). 
Unadjusted two-sided P value was calculated by QTLtools in (d), (e), (f) and (g). 
Red lines in (d), (e), (f) and (g) indicate significant linear relationship between 
intron usage and genotype.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | sQTL replication. The results of AIDA cis-sQTLs were 
replicated in BLUEPRINT (a), DICE (b), ImmuNexUT (c), GTEx whole blood (d), 
and GTEx lymphoblastoid cell lines (e). The proportions of replicated sQTLs 
were used to quantify the replication of independent cis-sQTLs in BLUEPRINT 
(BP), DICE, GTEx and ImmuNexUT for all matched cell types. Replicated sQTLs 

mean the AIDA independent cis-sQTLs with summary statistics available in BP, 
DICE, and GTEx and are significant with FDR < 0.05. Each bar plot represents the 
replicated sQTLs’ proportions in all the cis-sQTLs which have summary statistics 
in corresponding databases.
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Extended Data Fig. 6 | Examples of cell-type-specific sQTLs in known SLE risk 
genes. A total of 30 cell-type-specific cis-sQTLs affecting known risk genes in 
Systemic Lupus Erythematosus. The alternate allele of the lead SNP rs147291617 
upregulated an intron junction (chr17:36103981-36104528) of CCL4 in a cell-
type-specific fashion. Dark blue blocks in the left panel indicates the existence of 
cis-sQTL. Red lines in violin plots in the right panel indicate the significant linear 
relationships between the junction ratios of chr17:36103981-36104528 and the 

genotype of rs147291617 in CD16+ Monocyte, CD16 + NK, cyt CD4 + T, em CD4 + T, 
GZMBhi CD8 + T, GZMKhi CD8 + T, MAIT, GZMKhi gdT and GZMBhi gdT. The lack 
of red lines in the violin plot of CD14+ Monocyte, IGHMhi memory B, and IGHMlo 
memory B indicates no significant relationship between the junction ratios of 
the intron and the genotype of rs147291617. The box plots show median and 
interquartile range (IQR), and whiskers and 1.5-fold IQR.
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Extended Data Fig. 7 | Examples of dynamic intron usage. Boxplot of dynamic 
intron usage change of PAX5, PTPRC, and DOCK8. Each data point within the 
boxplot corresponds to the intron usage measurement of an individual, and 
these points are organized into six different quantiles. The box plots show 
median and interquartile range (IQR), and whiskers are 1.5-fold IQR. The 
samples sizes N for each quantile are: Q1(N = 4190), Q2(N = 4250), Q3(N = 427), 

Q4(N = 450), Q5(N = 448), Q6(N = 449). To enhance clarity, the bars in the boxplot 
are color-coded to represent various quantiles. The curve displayed within each 
bar plot provides insight into the three patterns (step-wise change, linear change, 
and quadratic change) of intron usage changes from the first quantile (Q1) to the 
sixth quantile (Q6), offering a visual representation of how intron usage varies 
across these quantiles. Red dot shows the median intron usage of each quantile.
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Extended Data Fig. 8 | Examples of dynamic sQTLs colocalization results. 
(a) The first dynamic sQTL example involves rs6936285. rs6936285 shows a 
decreased effect on CD83 splicing during the B cell maturation and is highly 
colocalized with RA in naïve B cells. Unadjusted two-sided P value was calculated 
by QTLtools (right panel). Red lines in box plots indicate the effect trend of 
genotype on intron usage. (b) The second dynamic sQTL example of rs16971619, 

which inserts increased effect on BCL2A1 splicing. It is found to be colocalized 
with lymphocyte count. The box plots show median and interquartile range 
(IQR), and whiskers are 1.5-fold IQR. The samples sizes N for each quantile are: 
Q1(N = 419), Q2(N = 425), Q3(N = 427), Q4(N = 450), Q5(N = 448), Q6(N = 449). 
Unadjusted two-sided P value was calculated by QTLtools (right panel). Red lines 
in box plots indicate the effect trend of genotype on intron usage.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Trans-sQTL analysis revealed a regulatory relationship 
between hnRNPLL and PTPRC. (a) Colocalization between hnRNPLL cis-eQTL 
and PTPRC trans-sQTL. We identified colocalization (H4 > 0.75) in GZMBhi CD8+ 
T, GZMKhi CD8+ T, and GZMKhi γδ T cells. Unadjusted two-sided P values were 
obtained using Matrix eQTL (eQTL) and QTLtools (sQTL). (b) Violin plot showing 
the cell-type-specific effect of hnRNPLL cis-eQTL and PTPRC trans-sQTL.  

The minor allele of rs6751481 leads to a lower expression of hnRNPLL (upper 
panel) and a lower expression of CD45RO isoform (lower panel). Unadjusted two-
sided P values were obtained using Matrix eQTL (upper) and QTLtools (lower). 
The number of donors for each genotype is shown under each violin plot. The 
box plots show median and IQR, and whiskers are 1.5-fold IQR. Red lines indicate 
significant linear relationship between intron usage and genotype.
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Extended Data Fig. 10 | Aberrant splicing mediated complex autoimmune.  
(a) Correlation between GWAS sample size (x-axis) and proportion of colocalized 
loci (y-axis). A low correlation (Pearson’s r = -0.17) was observed between the 
proportion of colocalization events and GWAS sample size across 20 traits.  
Each black dot in the panel represents a trait. The dark blue line indicates the 
linear relationship between the proportion of colocalized loci and GWAS  
sample size. The shaded area on either side of regression line represents 95% 
confidence interval. (b) H4 posterior probability of IRF5 in five cell types.  
H4 posterior probability measures the association level between cis-sQTLs  
and SLE GWAS. H4 > 0.75 was used as the threshold for the colocalization.  

(c) Cell-type-specific colocalization results of IRF5 in SLE GWAS. IRF5 sQTL 
colocalized with SLE GWAS in cm CD4+ T but not in IGHMhi memory B, Naïve 
CD8 + T, cyt CD4 + T and GZMBhi CD8+ T. Unadjusted two-sided P value was 
calculated by QTLtools. (d) Schematic to show how causal SNP rs2004640 
disrupts the 5′ splice site of exon 1B, leading to nonsense-mediated decay (NMD) 
and downregulation of IRF5 expression. (e) Absolute heritability for 20 traits 
mediated by cis-sQTLs from 19 cell types. (f ) The ratio between Heritability 
enrichment for 20 traits mediated by cis-sQTLs from 19 cell types and Heritability 
enrichment for 20 traits mediated by cis-sQTLs in GTEx whole blood. Red dash 
line represents the ratio equals to 1.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs2004640


1

nature portfolio  |  reporting sum
m

ary
April 2023

Corresponding author(s): Boxiang Liu

Last updated by author(s): Aug 14, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sequel IIe (ICS version 11.0.1.162970), skera (v0.1.0-8), SMRT Link (version 11.1.0.166339), Lima (v2.6.0-6), Isoseq3 (v3.8.2), pbmm2 (v1.10.0) 

Data analysis bcftools (v1.9), PLINK (v1.9), STARsolo (v2.7.10a), bedtools (v2.27.1), samtools (v1.16.1), RegTools (0.0.1), LeafCutter (0.2.9), QTLtools (v1.2), 
mashr (0.2.79), slingshot (v2.10.0), lme4 (1.1-35.3), COLOC (v5.2.3), SMR (v1.3.1), SpliZ (v1.0), deepTools (v3.5.1), qtlBHM (v1.0), susieR 
(0.12.10), LocusCompare (v1.0.0), LDSC (v1.0.1), ggplot2 (v3.4.2), qvalue (2.30.0), ggsashimi (v1.1.5), circlize (0.4.15). Custom code can be 
found at Github (https://github.com/boxiangliulab/AIDA_phase1_sQTL). 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The AIDA Data Freeze v1 gene-cell matrix (1,058,909 cells from 503 Japan, Singaporean Chinese, Singaporean Malay, Singaporean Indian, and South Korea Asian 



2

nature portfolio  |  reporting sum
m

ary
April 2023
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Replication (N=197); (2) The DICE dataset (N=91); (3) GTEx whole blood (N = 670) and lymphoblastoid cell lines (LCLs; N=147); (4) ImmuNexUT33 (N = 
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