Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

An alternative model for maternal mtDNA inheritance

Matters Arising to this article was published on 20 March 2025

The Original Article was published on 18 September 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Data availability

All data are contained within the paper. This study did not use any custom code or software.

References

  1. Hance, N., Ekstrand, M. I. & Trifunovic, A. Mitochondrial DNA polymerase γ is essential for mammalian embryogenesis. Hum. Mol. Genet. 14, 1775–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Kuhl, I. et al. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2, e1600963 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Kozhukhar, N., Spadafora, D., Rodriguez, Y. A. R. & Alexeyev, M. F. A method for in situ reverse genetic analysis of proteins involved mtDNA replication. Cells 11, 2168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inatomi, T. et al. TFB2M and POLRMT are essential for mammalian mitochondrial DNA replication. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119167 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wanrooij, S. et al. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc. Natl Acad. Sci. USA 105, 11122–11127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan, B. G., Gustafsson, C. M. & Falkenberg, M. Mechanisms and regulation of human mitochondrial transcription. Nat. Rev. Mol. Cell Biol. 25, 119–132 (2023).

  8. Plaza, G. A. I. et al. Mechanism of strand displacement DNA synthesis by the coordinated activities of human mitochondrial DNA polymerase and SSB. Nucleic Acids Res. 51, 1750–1765 (2023).

    Article  Google Scholar 

  9. Kanki, T. et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol. Cell. Biol. 24, 9823–9834 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rebelo, A. P., Williams, S. L. & Moraes, C. T. In vivo methylation of mtDNA reveals the dynamics of protein–mtDNA interactions. Nucleic Acids Res. 37, 6701–6715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spadafora, D., Kozhukhar, N., Chouljenko, V. N., Kousoulas, K. G. & Alexeyev, M. F. Methods for efficient elimination of mitochondrial DNA from cultured cells. PLoS ONE 11, e0154684 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shoop, W. K. et al. Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat. Metab. 5, 2169–2183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozhukhar, N. & Alexeyev, M. F. Limited predictive value of TFAM in mitochondrial biogenesis. Mitochondrion 49, 156–165 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, W. et al. Molecular basis for maternal inheritance of human mitochondrial DNA. Nat. Genet. 55, 1632–1639 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gross, N. J., Getz, G. S. & Rabinowitz, M. Apparent turnover of mitochondrial deoxyribonucleic acid and mitochondrial phospholipids in the tissues of the rat. J. Biol. Chem. 244, 1552–1562 (1969).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions and helpful discussions of W. Copeland and D. King as well as the insightful comments of anonymous reviewers. The authors were supported by grants from the Baptist Health Foundation of San Antonio (Y.B.), NIH 5P30CA054174 (Y.B.), 1R01CA283840 (Y.B.), 1R21AI171940 (Y.B.), HL66299 (M.A.), S10OD025089 (M.A.), NSF FAIN2419655 (M.A.), DoD 81XWH2110161 (M.A.) and W81XWH2110669 (M.A.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Mikhail Alexeyev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Liliana Milani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeyev, M., Bai, Y. An alternative model for maternal mtDNA inheritance. Nat Genet 57, 1103–1104 (2025). https://doi.org/10.1038/s41588-025-02149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-025-02149-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing