Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins

Abstract

Artificial intelligence-driven advances in protein structure prediction in recent years have raised the question: has the protein structure-prediction problem been solved? Here, with a focus on nonglobular proteins, we highlight the many strengths and potential weaknesses of DeepMind’s AlphaFold2 in the context of its biological and therapeutic applications. We summarize the subtleties associated with evaluation of AlphaFold2 model quality and reliability using the predicted local distance difference test (pLDDT) and predicted aligned error (PAE) values. We highlight various classes of proteins that AlphaFold2 can be applied to and the caveats involved. Concrete examples of how AlphaFold2 models can be integrated with experimental data in the form of small-angle X-ray scattering (SAXS), solution NMR, cryo-electron microscopy (cryo-EM) and X-ray diffraction are discussed. Finally, we highlight the need to move beyond structure prediction of rigid, static structural snapshots toward conformational ensembles and alternate biologically relevant states. The overarching theme is that careful consideration is due when using AlphaFold2-generated models to generate testable hypotheses and structural models, rather than treating predicted models as de facto ground truth structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of AF2.
Fig. 2: Example applications of AF2 predictions that deviate from the experimental structure.
Fig. 3: Integration of AlphaFold models with experimental data.

Similar content being viewed by others

Data availability

PyMOL sessions containing comparisons of AlphaFold models (extracted from the literature or the AlphaFold database) compared with experimental structures together with python script used to color code structures based on pLDDT values are freely available at https://github.com/mcshanlab/AlphaFold_Models_Agarwal_McShan.

References

  1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertoline, L. M. F., Lima, A. N., Krieger, J. E. & Teixeira, S. K. Before and after AlphaFold2: an overview of protein structure prediction. Front. Bioinform. 3, 1120370 (2023).

    Google Scholar 

  3. Perrakis, A. & Sixma, T. K. AI revolutions in biology. EMBO Rep. 22, e54046 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouatta, N., Sorger, P. & AlQuraishi, M. Protein structure prediction by AlphaFold2: are attention and symmetries all you need? Acta Crystallogr. D 77, 982–991 (2021).

    CAS  Google Scholar 

  5. Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590–596 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    CAS  PubMed  Google Scholar 

  7. Varadi, M. et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 52, D368–D375 (2024).

  8. Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahdritz, G. et al. OpenFold: retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat. Methods https://doi.org/10.1038/s41592-024-02272-z (2024).

  10. Chen, S.-J. et al. Protein folds vs. protein folding: differing questions, different challenges. Proc. Natl Acad. Sci. USA 120, e2214423119 (2023).

    CAS  PubMed  Google Scholar 

  11. Skolnick, J., Gao, M., Zhou, H. & Singh, S. AlphaFold 2: why it works and its implications for understanding the relationships of protein sequence, structure, and function. J. Chem. Inf. Model. 61, 4827–4831 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Outeiral, C., Nissley, D. A. & Deane, C. M. Current structure predictors are not learning the physics of protein folding. Bioinformatics 38, 1881–1887 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Roney, J. P. & Ovchinnikov, S. State-of-the-art estimation of protein model accuracy using AlphaFold. Phys. Rev. Lett. 129, 238101 (2022).

    CAS  PubMed  Google Scholar 

  15. Laurents, D. V. AlphaFold 2 and NMR spectroscopy: partners to understand protein structure, dynamics and function. Front. Mol. Biosci. 9, 906437 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chakravarty, D. & Porter, L. L. AlphaFold2 fails to predict protein fold switching. Protein Sci. 31, e4353 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Akdel, M. et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 29, 1056–1067 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    CAS  PubMed  Google Scholar 

  20. Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  21. Gao, M., Nakajima An, D., Parks, J. M. & Skolnick, J. AF2Complex predicts direct physical interactions in multimeric proteins with deep learning. Nat. Commun. 13, 1744 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mariani, V., Biasini, M., Barbato, A. & Schwede, T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 29, 2722–2728 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Oeffner, R. D. et al. Putting AlphaFold models to work with phenix.process_predicted_model and ISOLDE. Acta Crystallogr. D 78, 1303–1314 (2022).

    CAS  Google Scholar 

  24. Tsaban, T. et al. Harnessing protein folding neural networks for peptide–protein docking. Nat. Commun. 13, 176 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McDonald, E. F., Jones, T., Plate, L., Meiler, J. & Gulsevin, A. Benchmarking AlphaFold2 on peptide structure prediction. Structure 31, 111–119 (2023).

    CAS  PubMed  Google Scholar 

  26. Mikhaylov, V. et al. Accurate modeling of peptide–MHC structures with AlphaFold. Structure 32, 228–241 (2024).

    CAS  PubMed  Google Scholar 

  27. Alderson, T. R., Pritišanac, I., Kolarić, Đ., Moses, A. M. & Forman-Kay, J. D. Systematic identification of conditionally folded intrinsically disordered regions by AlphaFold2. Proc. Natl Acad. Sci. USA 120, e2304302120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fowler, N. J. & Williamson, M. P. The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 30, 925–933 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zweckstetter, M. NMR hawk‐eyed view of AlphaFold2 structures. Protein Sci. 30, 2333–2337 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tejero, R., Huang, Y. J., Ramelot, T. A. & Montelione, G. T. AlphaFold models of small proteins rival the accuracy of solution NMR Structures. Front. Mol. Biosci. 9, 877000 (2022).

  31. Thornton, J. M., Laskowski, R. A. & Borkakoti, N. AlphaFold heralds a data-driven revolution in biology and medicine. Nat. Med. 27, 1666–1669 (2021).

    CAS  PubMed  Google Scholar 

  32. Saldaño, T. et al. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 38, 2742–2748 (2022).

  33. Hekkelman, M. L., de Vries, I., Joosten, R. P. & Perrakis, A. AlphaFill: enriching AlphaFold models with ligands and cofactors. Nat. Methods 20, 205–213 (2023).

    CAS  PubMed  Google Scholar 

  34. Karelina, M., Noh, J. J. & Dror, R. O. How accurately can one predict drug binding modes using AlphaFold models? eLife 12, RP89386 (2023).

    PubMed  PubMed Central  Google Scholar 

  35. Diwan, G. D., Gonzalez-Sanchez, J. C., Apic, G. & Russell, R. B. Next generation protein structure predictions and genetic variant interpretation. J. Mol. Biol. 433, 167180 (2021).

    CAS  PubMed  Google Scholar 

  36. David, A., Islam, S., Tankhilevich, E. & Sternberg, M. J. E. The AlphaFold database of protein structures: a biologist’s guide. J. Mol. Biol. 434, 167336 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jambrich, M. A., Tusnady, G. E. & Dobson, L. How AlphaFold2 shaped the structural coverage of the human transmembrane proteome. Sci. Rep. 13, 20283 (2023).

    PubMed  PubMed Central  Google Scholar 

  38. Hegedűs, T., Geisler, M., Lukács, G. L. & Farkas, B. Ins and outs of AlphaFold2 transmembrane protein structure predictions. Cell. Mol. Life Sci. 79, 73 (2022).

    Google Scholar 

  39. Topitsch, A., Schwede, T. & Pereira, J. Outer membrane β-barrel structure prediction through the lens of AlphaFold2. Proteins 92, 3–14 (2024).

    CAS  PubMed  Google Scholar 

  40. Azzaz, F., Yahi, N., Chahinian, H. & Fantini, J. The epigenetic dimension of protein structure is an intrinsic weakness of the AlphaFold program. Biomolecules 12, 1527 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).

    CAS  PubMed  Google Scholar 

  43. Wilson, C. J., Choy, W.-Y. & Karttunen, M. AlphaFold2: a role for disordered protein/region prediction? Int. J. Mol. Sci. 23, 4591 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Piovesan, D., Monzon, A. M. & Tosatto, S. C. E. Intrinsic protein disorder and conditional folding in AlphaFoldDB. Protein Sci. 31, e4466 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lane, T. J. Protein structure prediction has reached the single-structure frontier. Nat. Methods 20, 170–173 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Del Alamo, D., Sala, D., Mchaourab, H. S. & Meiler, J. Sampling alternative conformational states of transporters and receptors with AlphaFold2. eLife 11, e75751 (2022).

    PubMed  PubMed Central  Google Scholar 

  47. Wayment-Steele, H. K. et al. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 625, 832–839 (2024).

    CAS  PubMed  Google Scholar 

  48. Zhao, B., Ghadermarzi, S. & Kurgan, L. Comparative evaluation of AlphaFold2 and disorder predictors for prediction of intrinsic disorder, disorder content and fully disordered proteins. Comput. Struct. Biotechnol. J. 21, 3248–3258 (2023).

    CAS  Google Scholar 

  49. Buel, G. R. & Walters, K. J. Can AlphaFold2 predict the impact of missense mutations on structure? Nat. Struct. Mol. Biol. 29, 1–2 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pak, M. A. et al. Using AlphaFold to predict the impact of single mutations on protein stability and function. PLoS ONE 18, e0282689 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    CAS  PubMed  Google Scholar 

  52. Moffat, L., Greener, J. G. & Jones, D. T. Using AlphaFold for rapid and accurate fixed backbone protein design. Preprint at bioRxiv https://doi.org/10.1101/2021.08.24.457549 (2021).

  53. Goverde, C. A., Wolf, B., Khakzad, H., Rosset, S. & Correia, B. E. De novo protein design by inversion of the AlphaFold structure prediction network. Protein Sci. 32, e4653 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yin, R., Feng, B. Y., Varshney, A. & Pierce, B. G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci. 31, e4379 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yin, R. & Pierce, B. G. Evaluation of AlphaFold antibody–antigen modeling with implications for improving predictive accuracy. Protein Sci. 33, e4865 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bryant, P., Pozzati, G. & Elofsson, A. Improved prediction of protein–protein interactions using AlphaFold2. Nat. Commun. 13, 1265 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeppesen, M. & André, I. Accurate prediction of protein assembly structure by combining AlphaFold and symmetrical docking. Nat. Commun. 14, 8283 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pinheiro, F., Santos, J. & Ventura, S. AlphaFold and the amyloid landscape. J. Mol. Biol. 433, 167059 (2021).

    CAS  PubMed  Google Scholar 

  59. Binder, J. L. et al. AlphaFold Illuminates half of the dark human proteins. Curr. Opin. Struct. Biol. 74, 102372 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. Nat. Methods 19, 1376–1382 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024).

    CAS  PubMed  Google Scholar 

  62. McCafferty, C. L., Pennington, E. L., Papoulas, O., Taylor, D. W. & Marcotte, E. M. Does AlphaFold2 model proteins’ intracellular conformations? An experimental test using cross-linking mass spectrometry of endogenous ciliary proteins. Commun. Biol. 6, 421 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Motmaen, A. et al. Peptide-binding specificity prediction using fine-tuned protein structure prediction networks. Proc. Natl Acad. Sci. USA 120, e2216697120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jussupow, A. & Kaila, V. R. I. Effective molecular dynamics from neural network-based structure prediction models. J. Chem. Theory Comput. 19, 1965–1975 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Guo, H.-B. et al. AlphaFold2 models indicate that protein sequence determines both structure and dynamics. Sci. Rep. 12, 10696 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Carugo, O. pLDDT values in AlphaFold2 protein models are unrelated to globular protein local flexibility. Crystals 13, 1560 (2023).

    CAS  Google Scholar 

  67. Zhu, W., Shenoy, A., Kundrotas, P. & Elofsson, A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 39, btad424 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fontana, P. et al. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 376, eabm9326 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Terwilliger, T. C. et al. Accelerating crystal structure determination with iterative AlphaFold prediction. Acta Crystallogr. D 79, 234–244 (2023).

    CAS  Google Scholar 

  70. Blanc, M. et al. Designed ankyrin repeat proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system. PLoS Pathog. 19, e1011368 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Brookes, E., Rocco, M., Vachette, P. & Trewhella, J. AlphaFold-predicted protein structures and small-angle X-ray scattering: insights from an extended examination of selected data in the Small-Angle Scattering Biological Data Bank. J. Appl. Crystallogr. 56, 910–926 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brookes, E. & Rocco, M. A database of calculated solution parameters for the AlphaFold predicted protein structures. Sci. Rep. 12, 7349 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chinnam, N. B. et al. Combining small angle X-ray scattering (SAXS) with protein structure predictions to characterize conformations in solution. Methods Enzymol. 678, 351–376 (2023).

    PubMed  Google Scholar 

  74. Da Vela, S. & Svergun, D. I. Methods, development and applications of small-angle X-ray scattering to characterize biological macromolecules in solution. Curr. Res. Struct. Biol. 2, 164–170 (2020).

    PubMed  PubMed Central  Google Scholar 

  75. Rambo, R. P. & Tainer, J. A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kryshtafovych, A. et al. Computational models in the service of X-ray and cryo-EM structure determination. Proteins 89, 1633–1646 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chai, L. et al. AlphaFold protein structure database for sequence-independent molecular replacement. Crystals 11, 1227 (2021).

    CAS  Google Scholar 

  78. McCoy, A. J., Sammito, M. D. & Read, R. J. Implications of AlphaFold2 for crystallographic phasing by molecular replacement. Acta Crystallogr. D 78, 1–13 (2022).

    CAS  Google Scholar 

  79. Barbarin-Bocahu, I. & Graille, M. The X-ray crystallography phase problem solved thanks to AlphaFold and RoseTTAFold models: a case-study report. Acta Crystallogr. D 78, 517–531 (2022).

    CAS  Google Scholar 

  80. Abergel, C. Molecular replacement: tricks and treats. Acta Crystallogr. D 69, 2167–2173 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chiliveri, S. C. et al. Experimental NOE, chemical shift, and proline isomerization data provide detailed insights into amelotin oligomerization. J. Am. Chem. Soc. 145, 18063–18074 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Abdollahi, H., Prestegard, J. H. & Valafar, H. Computational modeling multiple conformational states of proteins with residual dipolar coupling data. Curr. Opin. Struct. Biol. 82, 102655 (2023).

    CAS  PubMed  Google Scholar 

  83. Sedinkin, S. L., Burns, D., Shukla, D., Potoyan, D. A. & Venditti, V. Solution structure ensembles of the open and closed forms of the ~130 kDa enzyme I via AlphaFold modeling, coarse grained simulations, and NMR. J. Am. Chem. Soc. 145, 13347–13356 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, E. H. et al. Blind assessment of monomeric AlphaFold2 protein structure models with experimental NMR data. J. Magn. Reson. 352, 107481 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma, P., Li, D.-W. & Brüschweiler, R. Predicting protein flexibility with AlphaFold. Proteins 91, 847–855 (2023).

    CAS  PubMed  Google Scholar 

  86. Robertson, A. J., Courtney, J. M., Shen, Y., Ying, J. & Bax, A. Concordance of X-ray and AlphaFold2 models of SARS-CoV-2 main protease with residual dipolar couplings measured in solution. J. Am. Chem. Soc. 143, 19306–19310 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lenard, A. J., Mulder, F. A. A. & Madl, T. Solvent paramagnetic relaxation enhancement as a versatile method for studying structure and dynamics of biomolecular systems. Prog. Nucl. Magn. Reson. Spectrosc. 132–133, 113–139 (2022).

    PubMed  Google Scholar 

  88. Koehler Leman, J. & Künze, G. Recent advances in NMR protein structure prediction with Rosetta. Int. J. Mol. Sci. 24, 7835 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu, W., Yang, D. T. & Gronenborn, A. M. Ligand-capped cobalt(II) multiplies the value of the double-histidine motif for PCS NMR studies. J. Am. Chem. Soc. 145, 4564–4569 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Klukowski, P., Riek, R. & Güntert, P. Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction. Sci. Adv. 9, eadi9323 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. McShan, A. C. Utility of methyl side chain probes for solution NMR studies of large proteins. J. Magn. Reson. Open 14–15, 100087 (2023).

    Google Scholar 

  92. Ruschak, A. M. & Kay, L. E. Methyl groups as probes of supra-molecular structure, dynamics and function. J. Biomol. NMR 46, 75–87 (2009).

    Google Scholar 

  93. Pritišanac, I., Würz, J. M., Alderson, T. R. & Güntert, P. Automatic structure-based NMR methyl resonance assignment in large proteins. Nat. Commun. 10, 4922 (2019).

    PubMed  PubMed Central  Google Scholar 

  94. Clay, M. C., Saleh, T., Kamatham, S., Rossi, P. & Kalodimos, C. G. Progress toward automated methyl assignments for methyl-TROSY applications. Structure 30, 69–79 (2022).

    CAS  PubMed  Google Scholar 

  95. Giri, N., Roy, R. S. & Cheng, J. Deep learning for reconstructing protein structures from cryo-EM density maps: recent advances and future directions. Curr. Opin. Struct. Biol. 79, 102536 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hryc, C. F. & Baker, M. L. AlphaFold2 and cryoEM: revisiting cryoEM modeling in near-atomic resolution density maps. iScience 25, 104496 (2022).

    PubMed  PubMed Central  Google Scholar 

  97. Reggiano, G., Lugmayr, W., Farrell, D., Marlovits, T. C. & DiMaio, F. Residue-level error detection in cryo-electron microscopy models. Structure 31, 860–869 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Dai, X., Wu, L., Yoo, S. & Liu, Q. Integrating AlphaFold and deep learning for atomistic interpretation of cryo-EM maps. Brief. Bioinform. 24, bbad405 (2023).

    Google Scholar 

  99. Alshammari, M., He, J. & Wriggers, W. Appraisal of AlphaFold2-predicted models in cryo-EM map interpretation. Microsc. Microanal. 29, 977–978 (2023).

    PubMed  Google Scholar 

  100. Lindorff-Larsen, K. & Kragelund, B. B. On the potential of machine learning to examine the relationship between sequence, structure, dynamics and function of intrinsically disordered proteins. J. Mol. Biol. 433, 167196 (2021).

    CAS  PubMed  Google Scholar 

  101. Wei, G., Xi, W., Nussinov, R. & Ma, B. Protein ensembles: how does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. Chem. Rev. 116, 6516–6551 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sala, D., Hildebrand, P. W. & Meiler, J. Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties. Front. Mol. Biosci. 10, 1121962 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Heo, L. & Feig, M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins 90, 1873–1885 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sala, D., Engelberger, F., Mchaourab, H. S. & Meiler, J. Modeling conformational states of proteins with AlphaFold. Curr. Opin. Struct. Biol. 81, 102645 (2023).

    CAS  PubMed  Google Scholar 

  105. Stein, R. A. & Mchaourab, H. S. SPEACH_AF: sampling protein ensembles and conformational heterogeneity with AlphaFold2. PLoS Comput. Biol. 18, e1010483 (2022).

    CAS  Google Scholar 

  106. Wallner, B. AFsample: improving multimer prediction with AlphaFold using massive sampling. Bioinformatics 39, btad573 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Johansson-Åkhe, I. & Wallner, B. Improving peptide–protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform. 2, 959160 (2022).

    Google Scholar 

  108. Ramelot, T. A., Tejero, R. & Montelione, G. T. Representing structures of the multiple conformational states of proteins. Curr. Opin. Struct. Biol. 83, 102703 (2023).

    CAS  PubMed  Google Scholar 

  109. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bojar, D. & Lisacek, F. Glycoinformatics in the artificial intelligence era. Chem. Rev. 122, 15971–15988 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.C.M. acknowledges start-up funds from the Georgia Institute of Technology. V.A. acknowledges support from the National Science Foundation (CHE-2238650) and the National Institutes of Health (R35GM142882).

Author information

Authors and Affiliations

Authors

Contributions

A.C.M. and V.A. conceived, wrote and edited the manuscript. A.C.M. generated figures and analyzed models.

Corresponding authors

Correspondence to Vinayak Agarwal or Andrew C. McShan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Paul Adams and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, V., McShan, A.C. The power and pitfalls of AlphaFold2 for structure prediction beyond rigid globular proteins. Nat Chem Biol 20, 950–959 (2024). https://doi.org/10.1038/s41589-024-01638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-024-01638-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing