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Indoleisanimportant biomolecule in plants, essential for amino
acid biosynthesis, defense, pollinator attraction and plant-plant

communication. Its biosynthesis is reported to be catalyzed by standalone
indole-3-glycerol phosphate lyases, which are, however, absentin core
eudicots. Here we show that, in core eudicots, indole production for defense
and signaling occurs through an alternative pathway. The tryptophan
synthase a subunit (TSA), which is typically complexed with the 3 subunit
(TSB) to synthesize tryptophan through indole as anintermediate, can

be hijacked by a noncatalytic paralog of TSB (TSB-like) to produce free
indole. TSB-like is a pseudoenzyme that evolved from TSB by mutagenesis
of two key essential residues, retaining the ability to allosterically activate
TSAtoallow formation and release of indole. The widespread occurrence
and expression pattern of TSB-like genes in plants suggest that thisis a
general mechanism for the formation of free indole in plant defense and

communication.

Indole (1) is anitrogen-containing aromatic compound that functions as
acentralintermediatein the biosynthesis of theaminoacid tryptophan
(2)inallforms of life. In several plants, indole also serves as a precursor
for the biosynthesis of specialized defense metabolites, including ben-
zoxazinoids (BXDs)' (Fig. 1a,b), nudicaulins®and indigoids®. Moreover,
many plantsrelease volatileindole upon herbivory to either deter the
herbivore or warn neighboring plants of impending attack, thereby
priming plant resistance* . Indole is also released by several plant
speciesas a flower volatile thatisinvolved inattracting pollinators™™,

The formation of indole for various biological processes in plants
is carried out by different types of indole-3-glycerol phosphate (IGP)
lyases, all of which catalyze the retro-aldol cleavage of IGP (3) toindole
and glyceraldehyde-3-phosphate but differ in their allosteric activa-
tion requirements and heteromeric state'®". The tryptophan syn-
thase o subunit (TSA) is a ubiquitous IGP lyase that produces indole
as an intermediate of tryptophan biosynthesis in all kingdoms of life,
including plants (Fig.1a)"*". Indole produced by TSAis channeled into
the active site of the tryptophan synthase (3-subunit (TSB), where it is
condensed with L-serine in a pyridoxal phosphate (PLP)-dependent

manner to formL-tryptophan®*?2, TSA and TSB alone have low catalytic
activity; however, the formation of a heterotetrameric oo complex
provides a mutual allosteric activation that is required for both of
these enzymes to work efficiently? . Binding of IGP to TSA triggers
allosteric activation of TSB, which in turn promotes IGP cleavage and
indole biosynthesis in the TSA subunit. This coordinated activation
mechanism of the TSA-TSB complex prevents the release of indole
from the complex* and, thus, its emission as a volatile or its conver-
sion into downstream specialized metabolites. To produce indole
for volatile emission or as a precursor for the biosynthesis of spe-
cialized metabolites, plants have evolved two types of standalone
IGP lyases, namely IGL and benzoxazinoneless 1 (BX1). Both IGL and
BX1 enzymes evolved from TSA but independently in monocots and
eudicots®?. Unlike TSA, they do not require allosteric activation
by TSB to efficiently produce indole”. IGL is active as a monomeric
enzyme and has been reported to produce indole for volatile emis-
sion” and specialized metabolite biosynthesis?in different species of
the Poaceae””®, a family of monocots, and in basal eudicots® (Fig. 1a).
BX1, in contrast, acts as a homodimer and produces indole for the
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Fig.1|Plants have several ways to produce indole. a, Occurrence of
BXD-producing species and indole biosynthetic enzymes among plant families.
Phylogenetic tree of plant families, based on the Kew Gardens tree of life
dataset™. Plant families comprising BXD-producing species are colored in
green. Types of IGP lyase enzymes present are indicated on the side. b, Indole
asa precursor for BXDs is produced by BX1in monocots and basal eudicots or,
asreported here, by TSA-TSB-like complexes in core eudicots. BX2, BX3, BX4,
BX5 and BX8 enzymes convert indole into the BXD HBOA-Glc and DIBOA-Glc.

¢, BX1and TSB-like from different species provide indole as a precursor for BXDs.
Bxl1genes from Z. mays and C. orientalis, TSA genes from L. galeobdolon and

A. squarrosa, TSB-like genes from A. squarrosa, L. galeobdolon, P. trichocarpa,

A. thaliana and N. benthamiana and the INS gene from A. thaliana were
transiently expressed in N. benthamiana along with the BXD biosynthetic genes
Bx2, Bx3, Bx4, Bx5 and Bx8 from Z. mays. The negative control (neg ctr) consisted
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of lines expressing only Bx2, Bx3, Bx4, Bx5 and Bx8. Bar graphs represent the
mean t s.d. for three independent biological replicates (n = 3 plants). Columns
labeled with different letters represent statistically significant differences
(P<0.05, one-way analysis of variance (ANOVA) with Tukey’s correction for
multiple comparisons). FW, fresh weight. d, ASTSB-like promotes the formation
ofindole. MRM showing indole accumulation upon transient expression of
ASTSB-like or ASTSA in N. benthamiana. The chromatogram scale (y axis, peak
intensity) is equalized across all chromatograms. e, ASTSA and AsTSB-like
transiently expressed in N. benthamiana colocalize in the chloroplast. ASTSA-
mCyan, AsTSB-like-eYFP and chloroplast autofluorescence are displayed.

Left: larger sections of bright field images with superimposed fluorescence
channels. Dashed box (top) indicates dimensions of bottom image. Dashed box
(bottom) indicates dimensions of fluorescence images.

biosynthesis of BXD***°, BX1 enzymes have been exclusively foundin
BXD-producing plants belonging to the Poaceae** and in Consolida
orientalis®, a species belonging to the plant family Ranunculaceae
(basal eudicots) (Fig.1a). In general, IGP lyases including TSA, IGL and
BXlarelocalized inthe chloroplast®, the site ofindole and tryptophan
biosynthesis****. However, two cytosolic IGP lyases, named TSA-like
and indole synthase (INS), have been reported in the Poaceae and in
the Brassicaceae, respectively. While maize (Zea mays) TSA-like
did not display indole biosynthetic activity either alone or in complex
with TSBY, Arabidopsis thaliana INS possesses IGP lyase activity and
islikely involved in tryptophan-independent auxin biosynthesis®*°.
Althoughindole emission has beenreported in numerous species
of the core eudicots®*'*'?">*” and many core eudicots use indole as a
precursor for BXD biosynthesis*****’, IGL and BX1 enzymes have not
beenidentified inthis taxonomic group. Therefore, it remained unclear

how these plants produceindole for volatile emission and specialized
metabolite biosynthesis. Recently, the genes responsible for BXD
biosynthesis were identified in two core eudicot species, Lamium
galeobdolon (Lamiaceae) and Aphelandra squarrosa (Acanthaceae)™*.
However, the first committed step of the pathway, indole formation
(Fig. 1b and Supplementary Fig. 1), remained in part elusive. The IGP
lyases of these two species, LglGL1(EU747715), LglGL2 (EU747716) and
AsIGL (EU747710), were reported to have low indole biosyntheticactiv-
ity invitro compared to the BX1enzymes from Z. mays (AY254104) and
C. orientalis (EU747712); therefore, it was unclear whether they provide
indole for BXD biosynthesis in planta®. In this work, we report the
identification of a core eudicot-specific TSB-like pseudoenzyme that
itselflacks tryptophanbiosyntheticactivity butallosterically activates
TSA for efficient production of indole for BXD biosynthesis and, more
broadly, for plant defense and communication.
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Results

TSB-like enables indole biosynthesis in core eudicots
Phylogenetic analysis showed that the previously identified enzymes
LgIGL1, LgIGL2 and AsIGL clustered with previously characterized
TSA enzymes from other core eudicot species and not with IGL or
BX1 enzymes (Supplementary Fig. 2), suggesting a function as TSA
rather thanIGL or BX1. We, therefore, renamed LglGL1and LgIGL2 from
L. galeobdolon and AsIGL from A. squarrosa as TSA (LgTSAIl, LgTSA2
and AsTSA, respectively). To test whether LgTSA1, LgTSA2 and ASTSA
couldnevertheless provideindole for BXD formationin planta, we first
reconstituted the BXD biosynthetic pathway in the heterologous host
Nicotiana benthamianaby transient expression of the BXD biosynthetic
genes Bx1, Bx2, Bx3, Bx4, Bx5 and Bx8 from Z. mays and then replaced
Bx1withLgTSA1,LgTSA2 or ASTSA. As expected, plants expressing BxI,
Bx2, Bx3, Bx4, Bx5 and Bx8 accumulated substantial amounts of BXD
while plants in which BxI was replaced by LgTSAI, LgTSA2 or ASsTSA
showed significantly lower BXD accumulation (Fig. 1c), indicating that
LgTSAl, LgTSA2 and AsTSA did not function as BX1or IGL. We, therefore,
hypothesized that A. squarrosa and L. galeobdolon must have an alter-
native mechanism to produce indole for BXD biosynthesis. Touncover
this mechanism, we screened transcriptomes from A. squarrosa and
L. galeobdolon for genes coexpressed with Bxgenes previously identi-
fied in these species*’. This approach revealed in both species a gene
thatwassimilar (56% nucleotide sequence identity on average) to 7SB,
named AsTSB-likeand LgTSB-like, which exhibited a Pearson correlation
coefficient of 0.96 and 0.99 with Bx4 and Bx5genesin A. squarrosa and
L. galeobdolon, respectively (Supplementary Figs. 3 and 4). Transient
expression of ASTSB-like or LgTSB-like together with maize Bx2, Bx3,
Bx4, Bx5and Bx8in N. benthamianaresulted in BXD levels comparable
tothose produced by plants expressing the entire maize BXD pathway
(Fig.1c).Inaddition, N. benthamiana plants expressing only AsTSB-like
accumulated substantial amounts of indole, whereas indole was barely
detectablein plants overexpressing AsTSA (Fig.1d). Acomprehensive
basiclocal alignmentsearchtool (BLAST) analysis revealed that TSB-like
sequences are not only present in the BXD-producing species A. squar-
rosaand L. galeobdolonbut alsowidespreadinall core eudicot species
examined (Fig.1a and Supplementary Fig. 5). Notably, no TSB-like gene
was found in monocots and basal eudicots (Supplementary Fig. 5),
whichareknown to possess functional IGL and BX1enzymes forindole
production (Fig. 1aand Supplementary Fig. 2)***"*!, Testing of additional
TSB-like genes from non-BXD-producing species of the core eudicots,
including N. benthamiana, Populustrichocarpa and A. thaliana, showed
thatall, when transiently overexpressed with maize Bx2, Bx3, Bx4, Bx5
and Bx8in N. benthamiana, promoted indole formation, as inferred
from the production of BXD (Fig. 1c). Phylogenetic analysis showed
that TSB-like sequences formed a clade well separated from those of
TSB and TSB type II, which are both known to catalyze the formation
of tryptophan (Fig. 2a)*>**. In contrast to AsTSB-like, transient overex-
pression of ASTSB or AsTSB type Il with maize Bx2, Bx3, Bx4, Bx5 and
Bx8in N. benthamiana did not resultin the formation of BXD (Fig. 2b).

TSB-like is a pseudoenzyme that allosterically activates TSA

TSA and canonical TSB form a protein complex, thereby mutually
activating each other. Thus, we hypothesized that indole resulting
from the expression of TSB-like might be associated with TSA. In this
model, the indole formation observed in N. benthamiana express-
ing TSB-like genes from other species (Fig. 1c,d and Supplementary
Fig. 6) would be because of the interaction between the introduced
TSB-like and the endogenous TSA of N. benthamiana, which is con-
stitutively expressed in the leaves of this plant. Indeed, when recom-
binant AsTSB-like was incubated with ASTSA and the substrates IGP
andL-serine, indole but not tryptophanwas produced. Conversely, in
reactions containing AsTSA and canonical ASTSB, tryptophan was the
main product. Each enzyme showed negligible activity when assayed
alone (Fig.3a,b), indicating that AsTSB-like acts as allosteric activator
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Fig. 2| Phylogenetic analysis and indole biosynthetic activity of TSB, TSB-like
and TSB type Il enzymes. a, TSB, TSB-like and TSB type Il enzymes form distinct
phylogenetic clades. Amaximum-likelihood tree was inferred using amino acid
sequences. b, Transient expression of AsTSB-like, ASTSBand AsTSB typellin

N. benthamiana along with maize Bx2, Bx3, Bx4, Bx5 and Bx8 genes. EIC, extracted
ion chromatogram. The chromatogram scale (y axis, peak intensity) is equalized
across allchromatograms.

for AsTSA. Allosteric activation of TSA by TSB-like was also observed
upon in vitro coincubation of TSA and TSB-like from several species,
includingA. thaliana, N. benthamiana, P. trichocarpa and L. galeobdo-
lon (Supplementary Fig. 7a). In species harboring two TSA genes (for
example, L. galeobdolon)®, allosteric activation of both TSA homologs
by TSB-like was observed (Supplementary Fig. 7a). Moreover, INS
fromA. thaliana displayed allosteric activation uponincubation with
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does not produce tryptophanin vitro. Recombinant proteins were assayed with
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through affinity purification. Untagged TSA or TSB-like could be copurified with
the corresponding tagged partner as shown in SDS-PAGE and western blot.

d, AsTSB and AsTSB-like compete for AsTSA in vitro. Recombinant proteins were
assayed with the substrates IGP and L-serine. Left: equimolar concentrations of
TSA and TSB-like were incubated with increasing concentrations of TSB, resulting

AN-gS1sy

VS1sy

d Indole (1) Indole (1)
TSA + TSB-like + TSB TSA + TSB-like + TSB
o o 1T 1 X [0} 1 « x = 1
© 1.5x10 e 1.5x10°
O ~
e 27
co 52
_8 © 5 207
® x 75x10 © % 7.5%x10°
03 e
28 £°
5 <
Jo}
@ 0 & 0
0135 10 15 20 0135 10 15 20
x (molar ratio) x (molar ratio)
Tryptophan (2) Tryptophan (2)
TSA + TSB-like + TSB TSA + TSB-like + TSB
17 1 : x 1 01
8 35x10 g 35x10 X
S 5
o T T3
5¢< 35
2 g 175%107 2 $ 175%107
03 20
2 Q =8
& )
& 0 & o
0135 10 15 20 0135 10 15 20
x (molar ratio) x (molar ratio)
e HBOA-Glc (6) f TSB-like
Neg ctr
zmi1 R+
A TSBAIS'ISB ] oen
S -like + decrease
AsTSB B %
AsTSB-like H
——
0 75x10° 1.5x10°

Relative abundance
(peak area per 100 mg FW)

TSA

inincreased accumulation of tryptophan and reduced accumulation of indole.
Right: equimolar concentrations of TSA and TSB were incubated with increasing
concentrations of TSB-like, resulting in increased accumulation of indole and
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—-329,332).f, Schematic of how TSB-like and TSA produce indole (1). For visual
clarity, only one af3-like dimer is shown.

A. thaliana TSB-like (Supplementary Fig. 7a). To test whether TSB-like
and TSA form a protein complex thatis characteristic of this allosteric
activation, we performed copurification assays with different com-
binations of His-tagged or nontagged recombinant proteins. Incu-
bation of His-tagged AsTSB-like with untagged AsTSA or vice versa,
followed by nickel affinity purification, always resulted in purification
of both proteins, regardless of whether the His tag was fused to the C
or N terminus of the protein (Fig. 3c and Supplementary Fig. 7b,c).
This demonstrated that AsTSB-like forms a complex with AsTSA that is
stable even under the conditions of the in vitro purification procedure.
Indeed, acomparison of the amino acid residues that form the inter-
face between plant TSA and TSB**** or TSB-like showed that 69% of the
residues were conserved between TSB and TSB-like (Supplementary
Figs. 8 and 9). Competition assays in vitro and in N. benthamiana also
suggested that TSB-like and TSA form a complex. In vitro, incubation
of TSA and TSB-like with increasing amounts of TSB resulted in a pro-
gressivereductioninindole andincreasein tryptophanaccumulation
(Fig. 3d). Incubation of TSA and TSB with increasing amounts of TSB-like
resultedinincreased indole accumulationand, in this case, minor levels
of tryptophan (Fig. 3d). The low levels of tryptophan observed in this

experiment were most likely because of the previously reported ability
of TSB and the TSA-TSB complex to use indole as a substrate for tryp-
tophanbiosynthesis"***¢ (Supplementary Fig.10). In N. benthamiana,
where the endogenous TSA is constitutively expressed for tryptophan
biosynthesis, coexpression of AsTSB-liketogether with AsSTSB and maize
Bx2, Bx3, Bx4and Bx8resulted in an approximately 50% reductioninthe
amount of BXD produced compared to the control, which expressed
only AsTSB-like and maize Bx2, Bx3, Bx4 and Bx8 (Fig. 3e). Moreover,
the subcellular localization of ASTSA and AsTSB-like, as evidenced
by expression of fluorescence-tagged proteins in N. benthamiana,
indicated that both proteins colocalized in the chloroplasts (Fig. 1e
and Supplementary Fig. 11). Taken together, our results suggest that
TSB-like has no enzymatic function butinstead binds to TSA, thereby
activating this enzyme for efficient indole production (Fig.3f).

Two residues mediate the functionalities of TSB-like

Phylogenetic analysis suggested that 7SB-like most likely evolved by
gene duplication and neofunctionalization of a canonical 7SB gene
(Supplementary Fig. 5). To understand how TSB-like lost tryptophan
synthase activity but retained the capacity to allosterically activate
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TSA, we identified residues that were consistently different between
TSBand TSB-likein all species examined (Supplementary Fig.12). One
of the identified residues, E190, numbered according to AsTSB (Sup-
plementary Fig. 13) and corresponding to E105 in the model TSB of
Thermotoga maritima, is located in the active site (Fig. 4a) and has
beenshown to be essential for tryptophan formation?-*>*, This residue
activatesindole by coordinating the N-H proton through its side-chain
carboxyl group*® (Fig. 4b). In TSB-like, this glutamate residue is almost
always replaced by alanine (Fig. 4c and Supplementary Fig. 14), with
the only exception found in TSB-like from Solanaceae species, which
instead contained aserine or a proline at this position (Supplementary
Fig.15). Site-directed mutagenesis of A190 in AsTSB-like to glutamate
resulted in a gain of tryptophan biosynthetic activity, albeit at low
levels (Fig. 4e). Structure modeling indicated that the EI90A substitu-
tion does not cause major alterations of the active site structure, sug-
gesting that the activation effect of glutamate is only because of the
carboxyl group of the side chain (Fig. 4b and Supplementary Fig. 16).
Nevertheless, the ASTSA-AsTSB-like-A190E complex still produced
indole in amounts comparable to those of ASTSA-AsTSB-like (Fig. 4e
and Supplementary Fig. 17b). Another residue that was consistently
different between TSB and TSB-like, D386, which corresponds to D300
inthe TSB from T. maritima, has been proposed to have a role in TSB

activation”*. Binding of IGP to TSA triggers a conformational change
in TSA that promotes a switch from the inactive to the active confor-
mation of TSB. By forming a salt bridge with R222, D386 stabilizes the
active TSB conformation®, which in turn promotes IGP cleavage and
indole biosynthesis by TSA. This aspartate residue was universally
replaced by glutamate in TSB-like (Fig. 4a,d and Supplementary Fig. 14).
Site-directed mutagenesis of E386 in ASTSB-like to aspartate resultedin
reducedindole formation, although tryptophanbiosynthesis was still
notobserved (Fig.4e and Supplementary Fig.17a). We hypothesize that
the glutamate residue in TSB-like sequences, in contrast to the shorter
aspartate in TSB, alwaysinteracts with the positively charged residue at
position222 (arginine or lysine in TSB-like sequences), regardless of the
TSA conformation, resulting in permanent stabilization of the active
conformation of TSB-like (Supplementary Figs.18 and19). The double
mutant AsTSB-like-A190E;E386D, together with ASTSA, combined the
gain of tryptophan biosynthetic activity with a reduction in indole
biosynthetic activity (Fig. 4e and Supplementary Fig.17). Moreover,
transient expression of the double mutant in N. benthamiana with
maize Bx2, Bx3, Bx4, Bx5 and Bx8 showed that TSB-like activity was
almost completely eliminated in planta, as evidenced by the low levels
of BXD production (Fig. 4f). Introducing the reverse substitutionsinto
ASTSB (AsTSB-E190A and AsTSB-E190A;D386E) resulted in the loss of
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Fig. 5|Indole accumulation and emission are accompanied by TSB-like
expressionin core eudicots. a, N. benthamiana plants wounded by S. littoralis
caterpillars accumulated indole. Plants were exposed to herbivory for 17 h.

Bar graphs represent the mean = s.d. for eight independent biological replicates
(n=8plants).***P < 0.0001 (two-tailed t-test; P=0.0000001, ¢t = 9.865,
df=14,95% Cl=-1,710,-1,100). b,c, Relative gene expression of TSB-like and
TSAinN. benthamiana plants treated with S. littoralis caterpillars. Bar graphs

represent the mean + s.d. for five independent biological replicates (n = 5 plants).
P < 0.0001 (two-tailed ¢-test; P= 0.00000574, t =10.54, df = 8, 95% Cl = 69.80,
108.9) and *P < 0.05 (two-tailed t-test; P=0.04, t = 2.486,df = 8,95% Cl = -0.4896,
-0.01843).d, Meta-analysis showing the accumulation or emission of indole and
the expression of TSB-like in different families of core eudicots upon herbivory
(Hb) or jasmonic acid (JA) treatment. (+) indicates increased accumulation or
emission of indole or increased expression of TSB-like compared to the control.

tryptophan biosynthetic activity but not in a gain of indole biosyn-
thetic activity (Supplementary Fig. 20). Site-directed mutagenesis
of additional residues, which differed between TSB and TSB-like, was
not sufficient toincrease indole production (Supplementary Fig. 21).
Interestingly, it was recently reported that site-directed mutagenesis
of E105 toglycine, alanine and serine enabled bacterial TSB enzymes to
use phenolic substrate to produce tyrosine (4) and tyrosine analogs*®.
However, testing AsTSB-like enzymes on phenol (5) showed no tyrosine
biosynthetic activity (Supplementary Fig. 22).

The data presented here indicate that the substitution of E1I90
to alanine and D386 to glutamate had a notable role in the evolution
of TSB-like from TSB, resulting in the loss of tryptophan biosynthetic
activity and conservation of TSA activation. However, the lower tryp-
tophanbiosynthetic activity exhibited by TSB-like-A190E;E386D com-
pared to TSB suggests that a more extensive network of residues may
regulate efficient tryptophan biosynthesis.

TSB-like is involved in plant defense and signaling

Indoleis awidespread plant volatile that is often released in response
to herbivore damage or as a characteristic floral scent component.
N. benthamiana has been reported to emit indole upon herbivore
attack® (Fig. 5a). We could show that, along with indole emission,
TSB-like expression but not TSA expression was strongly upregulated
in N. benthamiana upon herbivore damage (Fig. 5b,c), suggesting
that TSB-like promotes indole formation in response to biotic stress.
Ameta-analysis of literature data across core eudicot species for which
both metabolomicand transcriptomic datawere available revealed that
both herbivory-induced and floral-scent-related indole emissions were
always accompanied by an upregulation of TSB-like expression, whereas
TSA expression remained unchanged or showed smaller fold-change
differences compared to TSB-like (Fig. 5d and Supplementary Fig. 23).
These observations are consistent with arecently reported study from
teathat showed the upregulation of a TSB-like protein after herbivore
attack and that this proteininteracts with TSA". Along with the absence
of IGL and BX1 genes, these data suggest that indole emission in core
eudicotsis dependent on the action of TSB-like.

Discussion

Despite the biologicalimportance of indole in plant defense and com-
munication, the mechanismunderlying its formationin the vast clade
of'the core eudicots remained unknown. In this work, we report that
the pseudoenzyme TSB-like, a catalytically ‘dead’ paralog of TSB,
appears to be responsible for indole biosynthesis in core eudicots.
TSB-like most likely evolved from TSB through a loss of tryptophan
biosyntheticactivity. Theresulting catalytically inactive TSB-like mim-
icstheinteraction of TSB with TSA, thereby allosterically activating

TSAtoallowindole biosynthesis but without subsequent conversion
to tryptophan (Fig. 3f). Therefore, TSB-like has evolved to serve as a
switch that toggles between tryptophan and indole biosynthesis by
hijacking the pre-existing TSA. However, tryptophan is an essential
amino acid and plants must be able to maintain tryptophan biosyn-
thesis even under conditions whereindole is produced for defense or
communication. Itis, therefore, conceivable that TSB-like and TSB,
whichboth compete for TSA, may be expressed in different cell types,
especially in plants where TSB-like is continuously expressed (for
example, for BXD production, asin L. galeobdolon and A. squarrosa).
Single-cell techniques could be used in future studies to understand
how core eudicots control TSA-dependent indole formation for
tryptophan biosynthesis, defense and communication. Although
pseudoenzymes can be challenging to discover, recent work has
highlighted that these proteins have essential roles in a number of
biological processes in plants such as vitamin B, biosynthesis*, alka-
loid biosynthesis*® and starch breakdown**%. In summary, we report
the biosynthesis of indole, afundamental part of the plant defense
response®, in core eudicots. The elucidation of TSB-like, therefore,
paves the way for the metabolic engineering of indole biosynthesis
for plant defense, pollinator attraction and specialized metabolite
biosynthesis in core eudicots.
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Methods

Chemicals

All chemicals used in this study were purchased at molecular biology
grade or higher from Sigma-Aldrich, Thermo Fisher or Tokyo Chemical
Industry unless otherwise stated. BXD standards previously synthe-
sized or isolated*® were used in this study.

Plant material and growth

A.squarrosa, L. galeobdolon and N. benthamiana plants were cultivated
under greenhouse conditions as previously described*’. N. benthami-
anaplants were grown for 3 weeks before gene candidate infiltration.

Plant metabolite extraction

Collected plant material was snap-frozeninliquid nitrogen and ground
to fine powder with 3-mm tungsten carbide beads using a TissueLyser
(Qiagen) or, when more material was needed, liquid-nitrogen-frozen
samples were ground to a fine powder in a prechilled mortar. Tissue
samples (100 mg + 5%) were extracted with 500 pl of methanol (liquid
chromatography-mass spectrometry (LC-MS) grade). Samples were
vortexed vigorously and then incubated at 25 °C, shaking for 15 min,
followed by centrifugation at maximum speed before filtering with a
0.22-um PTFE syringe filter for LC-MS analysis.

Gene candidate identification

Gene candidates were selected from the previously published A. squar-
rosa and L. galeobdolon transcriptomes (BioProject PRINA967136)
assembled as previously reported*’. Pearson coexpression correlation
analyses were performed in Excel. TSB-like candidatesin other species
wereidentified on the basis of homology by performing BLAST analyses
on public databases: National Center for Biotechnology Information
(NCBI), SolGenomics, Citrus Genome Database, 1KP and NbenBase.

Cloning

Total RNA was extracted from ground plant tissue using the RNeasy
plant mini kit (Qiagen) including an on-column DNAse digestion step
and complementary DNA (cDNA) was synthesized from total RNA using
SuperSCript IV VILO Master Mix (Thermo Fisher Scientific), according
to the manufacturer’s instructions. Genes were amplified from cDNA
using Platinum SuperFi Il PCR master mix (Thermo Fisher Scientific).
Synthetic genes, when used, were ordered from Twist Bioscience and
used as atemplate for PCR amplification. PCR products were purified
using DNA clean and concentrator 5 (Zymo) or Zymoclean gel DNA
recovery kit (Zymo). Amplified genes were inserted with In-Phusion
HD cloning (Takara Bio) in p3Q1 vector (Bsal-HF digested) for expres-
sioninN. benthamiana. For expression in Escherichia coli, the follow-
ing vectors were used: pOPINF (HindIll-HF and Kpnl-HF digested)
for N-terminal His-tagged sequences, pOPINE (Ncol-HF and Kpnl-HF
digested) for C-terminal His-tagged sequences and pET28a for alter-
native N-terminal (BamHI-HF and NotI-HF digested) or C-terminal
(Ncol-HF and Xhol-HF digested) His tagging. For subcellular localiza-
tionstudies, AsTSA and AsTSB-like were cloned with a C-terminal fused
fluorescent protein (mCeruleans and eYFP) separated by an AGCGGC
linker. The fusion constructs were cloned under the control of the
strong constitutive Solanum lycopersicum Ubiquitin 10 (§/Ubq10)
promoter and terminator in 3al vector through Golden Braid using
Bsal-HF and T4 DNA®. Vectors harboring the sequences of interest
were transformedin E. coli Top10 with the heat-shock method. Plasmid
DNA was isolated using Wizard Plus SV Minipreps DNA purification
system kit (Promega) following the manufacturer’s instructions. Each
construct was checked through Sanger sequencing. All primers used
inthis study are reported in Supplementary Table 2.

Transient transformation of N. benthamiana
Electrocompetent Agrobacterium tumefaciens GV3101 (Goldbio) cells
were mixed with sequence-confirmed plasmid and incubated on ice

for 15 min. Cells were electroporated using a BioRad Micropulser. The
transformed cells were recovered in1 ml of Luria-Bertani (LB) medium
and incubated at 28 °C, 200 rpm for 3 h before plating on LB-agar
plates containing the appropriate selection marker. Plates were incu-
bated at 28 °C for 48 h. Single colonies were inoculated into liquid LB
medium with the appropriate selection and incubated overnight at
28°C, 200 rpm. For N. benthamiana transient transformation, the
overnight cultures were pelleted by centrifugation at 3,220g for 10 min
at14 °C.Thecell pellet was resuspended ininfiltration medium (10 mM
MES, 10 mM MgClI, and 100 pM acetosyringone, pH 5.7) to an optical
density at 600 nm (ODy,,) of 0.6-0.7 and incubated at 28 °C,200 rpm
for 1.5 h. Equal volumes of the prepared infiltration solutions were
mixed to achieve the desired transformation mix containing each con-
structatan ODq,0f 0.1. The transformation mix was infiltrated into the
abaxial side of 3-week-old N. benthamianaleaves using aneedleless 1-ml
syringe. The infiltrated plants were maintained in a growth chamber
under growth lights up to 5 days after infiltration, when samples were
collected. In all transformations, a construct encoding the silencing
repressor protein p19 was coinfiltrated to enhance expression.

Small-scale expression of candidate genes in E. coli

Gene candidates were expressed as previously described*® with minor
modifications. In brief, E. coli DE3 (Thermo Fisher Scientific) cells were
transformed with sequence-confirmed plasmids using the heat-shock
method. Single colonies were inoculated in liquid LB medium with
selection and grown at 37 °C, 250 rpm, overnight. The seed culture
(1 ml) was used to inoculate 100 ml of 2x YT medium with selection
and the culture was grown at 37 °C, 250 rpm, until OD¢, = 0.5-0.6.
Cultures were thenincubated at18 °C, 250 rpm, for 20 minbefore the
addition of 500 uM IPTG. Induced cultures were incubated at 18 °C,
250 rpm, overnight. Cultures were retrieved by centrifugation (4,000g,
4°C, 15 min) and resuspended in Al buffer (50 mM Tris-HCI, 50 mM
glycine, 5% v/v glycerol, 0.5 M NaCl and 20 mM imidazole, pH 8) with
0.2g L' lysozyme, one tablet (50 ml) of EDTA-free protease inhibitor
(and100 pM PLP for TSB and TSB-like) and disrupted by sonicationon
ice (Bandelin UW 2070). Cell debris was removed by centrifugation at
35,000gat 4 °Cfor 20 minand His-tagged proteins were purified from
the supernatant using Ni-NTA agarose (Qiagen) beads according to the
manufacturer’sinstructions. Proteins were eluted using elution buffer
B1(Albuffer + 500 mMimidazole, pH 8). Ultimately, elution buffer was
exchanged for protein storage buffer 20 mMHEPES and 150 mM NaCl,
pH 7.5, with10% glycerol) using Amicon concentrator columns (Merck
Millipore). Proteins were aliquoted and stored at —20 °C.

Large-scale expression of candidate genes in E. coli

For large-scale heterologous expression, 1L of 2x YT medium was
inoculated with 10 ml of seed culture and induced as described above.
Pelleted cells were resuspended in 20 ml of Al buffer with 0.2 g L™
lysozyme, one tablet (50 ml) of EDTA-free protease inhibitor and
100 pM PLP. Cells were disrupted by sonication on ice (Bandelin UW
2070). Cell debris was removed by centrifugation at 35,000g at 4 °C for
20 minand His-tagged proteins were purified onan AKTA pure fast pro-
tein LC system (GE Healthcare) equipped with a 5-ml HisTrap column
(Cytiva). The fast protein LC system was programmed as previously
described*. In brief, the column was equilibrated with five column
volumes of buffer Al. The protein sample was loaded at a flow rate of
2 ml min™. Subsequently the column was washed with buffer A1 (flow
rate of 5 ml min™) for a total of ten column volumes. The protein was
eluted with five column volumes of buffer Bland the elution monitored
using ultraviolet absorption at 280 nm.

Protein concentration determination

The concentration of PLP-dependent protein was calculated using
the Pierce Rapid Gold BCA protein assay kit (Thermo Fisher Scien-
tific) following the manufacturer’s instructions. Plates were read on
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a CLARIOstar Plus (BMG Labtech) plate reader. The concentration of
non-PLP-dependent proteins was determined spectrophotometrically
measuring absorbance at 280 nm on an IMPLEN Nanodrop.

SDS-PAGE and Western blot

SDS-PAGE analyses were performed using Novex 12%, Tris—glycine Plus
WedgeWell gels (Invitrogen) according to the manufacturer’s instruc-
tions. Gels for SDS-PAGE were stained with Quick Coomassie stain
(Serva). Gels for western blot analysis were transferred on a Power Blot-
ter Select Transfer Stack PVDF mini size membrane using Power Blotter
XL transfer station (Invitrogen). Blotted membranes were blocked in
TBS +1ml L™ Tweenbuffer (TBST) + 5% (w/v) skimmed milk at room tem-
perature for 1 h. Blocking solution was removed and membranes were
incubatedin TBST + 3% (w/v) skimmed milk and anti-His antibody cou-
pled with horseradish peroxidase (BioRad, MCA5995P;1:1,000) as per
the manufacturer’sinstructions. Antibodies were validated according
to1SO9001: 2015 by the manufacturer as stated onthe BioRad website.
Western blots wereimaged with Clarity Western enhanced chemilumi-
nescence substrate (BioRad) as per the manufacturer’s instructions.

IGP invitro biosynthesis

IGP was synthesized invitro as described by Ivens et al.”” by incubating
recombinantly purified E. coli phosphoribosyl transferase (7rpD) and
phosphoribosyl anthranilate isomerase-IGP synthase (TrpF-TrpC
fusiongene) with 0.5 mMMgCl,, 0.4 mMDTT, 3 mManthranilicacid and
3 mM 5-phospho-D-ribose-diphosphate. The reaction was performed
in KPO, buffer, 25 mM (pH 7.5) at 30 °C, shaking for 1 h. The reaction
was stopped by heatinactivation at 95 °C for 10 min and proteins were
precipitated by centrifugation. IGP was stored at—20 °Cand used within
1day of synthesis.

Invitro assays

Invitro assays forindole and tryptophan biosynthesis were performed
inKPO, buffer,25 mM (pH7.5) with10 nM of each protein and saturating
concentrations of IGP, 1 mM L-serine and 0.2 mM PLP. Reactions were
started by addition of substrate. The reactions were incubated 15 min at
30°C,300 rpmand quenched by the addition of one isovolume of metha-
nol. Proteins were precipitated by centrifugation and samples were ana-
lyzed through LC-MS. In vitro reactions to check tyrosine biosynthesis
were performed in in KPO, buffer, 25 mM (pH 7.5) with 50 nM of each
protein, 1 mM phenol in DMSO, 1.5 mM L-serine and 0.2 mM PLP. Reac-
tions were started by addition of the substrate and incubated for 1 h at
30 °C,300 rpm.Reactions were quenched by addition of oneisovolume
of methanol and1 M HCI. Proteins were precipitated by centrifugation
and samples were analyzed on LC-quadrupole time-of-flight qTOF) MS.

LC-qTOF-MS analysis

Samples were analyzed as previously described*® with minor varia-
tions. LC-qTOF-MS analyses were conducted on a Thermo Scientific
UltiMate 3000 ultrahigh-performance LC (UHPLC) system coupled to
anImpactIlultrahigh-resolution qTOF-MS instrument (Bruker Dalton-
ics). Chromatographic separation was performed using areverse-phase
Phenomenex Kinetex XB-C18 column (100 x 2.1 mm, 2.6 um; 100 A) at
35°C. The mobile phase consisted of water + 0.1% formic acid (A) and
acetonitrile (B) runat aflow rate of 0.3 ml min™ withasample injection
of 2 ul. The chromatographic separation was performed starting at
5% B for 1 min, followed by alinear gradient from 5% to 50% B in 7 min,
100%B for 2.5 minand 5% B for 2.5 min. MS acquisition was performed
in positive or negative electrospray ionization (ESI) mode depending
onthe compound of interest. Data were analyzed using Bruker MS data
analysis version 6.1.

LC-MS/MS analysis
Targeted analysis of indole and tryptophan was performed using a
Thermo Scientific UltiMate 3000 UHPLC system coupled to a Bruker

EVOQElite tandem MS instrument. Chromatographic separation was
performed using areverse-phase Phenomenex Kinetex XB-C18 column
(100 x 2.1 mm, 2.6 pm; 100 A) at 35 °C. The mobile phase consisted
of water + 0.1% formic acid (A) and acetonitrile (B) run at a flow rate
of 0.3 ml min™ with a sample injection of 1 pl. The chromatographic
separationwas performed starting at 5% B for 30 s, followed by alinear
gradient from 5%to70% B in4 min,100% B for 2 min and 5% B for 2 min.
MS acquisition was performed in positive mode using a heated ESI
source, with a spray voltage of 4,000V, cone temperature of 350 °C,
cone gas flow of 20 psi, probe temperature of 400 °C, probe gas flow
of 45 psi and nebulizer gas flow of 50 psi. Indole and tryptophan were
detected using multiple reaction monitoring (MRM) transitions. For
indole, the transition from 118 m/z to 91 m/z using a collision energy
of 19 eV was used. For tryptophan, the transitions from 205.1 m/z to
188 m/z with a collision energy of 5 eV, 205.1 m/z to 146 m/z with a col-
lision energy of 13 eV and 205.1 m/z to 118 m/z with a collision energy
of 23 eV were used. Data were analyzed using Bruker MS Data Review
version 8.2.1software.

Confocal laser scanning microscopy

A. tumefaciensstrainsharboring AsTSB-like-eYFPor ASTSA-mCeruleans
constructs were infiltrated in 3-week-old N. benthamiana plants as
described above. Plant leaf disks were analyzed 48 h after infiltra-
tion. Micrographs of the freshly punched leaf disks were acquired
using acLSM 880 Axio Imager 2 (Zeiss) equipped witha C-Apochromat
x40/1.20 waterimmersion objective. The leaf disks were water mounted
in 3D-printed object slides with 400-um-deep circular wells and cov-
ered with a170-um-thick cover glass. The fluorophores were scanned
in two line-sequential tracks with two channels each. The first track
contained excitation with a458-nmargon laser (10% transmission) for
mCyan and 405-nm laser diode (1%) for chlorophyll autofluorescence
combined with MBS 405 and MBS 458/514. Emissions of mCyan and
chlorophyll were detected at 460-499 nm (650 detector gain) and
639-743 nm (650 gain), respectively, with a pinhole adjusted to 1 Airy
unit. Theline-sequential second track contained excitation of eYFP with
a514-nmArgonlaser (3%) combined with MBS 458/514 and its emission
was detected at 517-597 nm (600 gain). Additionally, the second track
contained atransmitted light channel T-PMT (400 gain). The majority
of the micrographs were acquired unidirectionally with an averaging of
8, pixel dwell time of 0.76 ps, resolution of 1,024 x 1,024 and resulting
pixel scaling of 50 x 50 nm.

Herbivory treatment

Threetofour Spodoptera littoralis caterpillars (second to third instar)
were starved for 24 h, placed on 3-week-old N. benthamiana leaves
and left to feed on the plants for 17 h. Afterward, the caterpillars were
removed and plant tissue wasimmediately snap-frozenin liquid nitro-
gen. Tissue was ground to afine powder and used for metabolite extrac-
tion and qPCR analysis.

gqPCR analysis

Primers for reverse transcription (RT)-qPCR analysis were designed
tohavea T;,0f 60 °C,aG+C content of 40-60% and alength of20-21 nt
using the primer design software in Geneious Prime (modified Primer3
2.3.7 version), resulting in amplicon sizes between 105and 134 bp. The
specificity of the primers was confirmed by agarose gel electrophore-
sis, melting curve analysis and sequence verification of the cloned PCR
amplicons. The efficiencies of the primers (95.7-103.6%) were deter-
mined using a standard curve. Three common housekeeping genes
were tested*®. The most stable gene (PP2A) according to the s.d. was
usedto calculate the relative quantities. All samples were runona CFX
Connectreal-time PCR detection system (BioRad) in an optical 96-well
plate. RT-qPCR was performed with the Biozym Blue S'Green qPCR kit
separate ROX according to the manufacturer’s instructions. cDNA was
diluted 1:10 for analysis. Five biological samples per treatment were
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analyzed in triplicate. The following PCR conditions were applied for
allreactions: initialincubation at 95 °C for 3 min followed by 40 cycles
of amplification (95 °C for 5s and 60 °C for 20 s). Reads were taken
during the extension step of each cycle and melting curve data were
recorded at the end of cycling at 65-95 °C. Normalized fold expression
was calculated with the AACP method®. Data and calculations are
provided in the Source Data.

Protein modeling

Protein models were generated using AlphaFold2 in MMSeq (https://
colab.research.google.com/github/sokrypton/ColabFold/blob/main/
AlphaFold2.ipynb) with default parameters (accession date: 8 March
2024)%, Alternatively, models were created by homology modeling
using SWISS-MODEL (https://swissmodel.expasy.org/). PLPand ligands
wereintroduced in the modelsin PyMol by aligning the obtained pro-
teinmodel with crystal structures of orthologous enzymes cocrystal-
lized with PLP and ligands. Protein figures were generated with Chimera
Xversion1.3.

Statistics and reproducibility

Statistical analysis was performed using GraphPad Prism version10.0.3.
Statistical tests and parameters used for each experiment are reported
inthe corresponding figure legend or Source Data. Experiments were
performed at least three times with similar results. Confocal micros-
copy experiments were performed twice with similar results.

Phylogenetic analysis

Amino acid sequences were aligned with WebPrank alignment soft-
ware® and maximum-likelihood phylogenetic trees were inferred using
iQTree®, unless otherwise specified. The phylogenetic tree of plant
families was readapted from the Kew Gardens tree of life**.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Genes described in this study were deposited to NCBI GenBank under
the accession numbers givenin Supplementary Table 1. Sequences of
the previously reported LgIGL1 (EU747715), LgIGL2 (EU747716), AsIGL
(EU747710), ZmBX1 (AY254104) and CoBX1 (EU747712) wereretrieved
from NCBI. Other sequences were retrieved from SolGenomics, Citrus
Genome Database, 1IKP and NbenBase with the accession numbers
provided in Supplementary Data 1. A. squarrosa and L. galeobdolon
transcriptome raw sequence reads used are available from the NCBI
Sequence Read Archive under BioProject PRINA967136. All other
data are available in the main text and Supplementary Information.
Sequences used for phylogenetic analysis are provided, with acces-
sion numbers, in Supplementary Data 1. Other dataare available from
the corresponding authors upon request. Source data are provided
with this paper.
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Study description Briefly describe the study. For quantitative data include treatment factors and interactions, design structure (e.g. factorial, nested,
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controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why
blinding was not relevant to your study.
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Access & import/export | Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority,

the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.
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Antibodies

Antibodies used commercially-available anti-HIS antibodies (BioRad, catalog number: MCA5995P) were used in a 1:1000 dilution

Validation Antibodies were validated according to ISO 9001: 2015 by the manufacturer as stated on the BioRad website.

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Spodoptera littoralis caterpillars (lab strain). Age : 2-3 instar
Wild animals No wild animals were used in this study.
Reporting on sex n/a

Field-collected samples  No field-collected samples were used.

Ethics oversight This study does not require any ethical approvel.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Plants

Seed stocks Aphelandra squarrosa: plants were obtained from a garden center in Jena, Germany
Lamium galeobdolon: plants were obtained from Baumschule Horstmann, Schenefeld, Germany

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication Bg;cmfélg;;y authenticationprocedures for-each-seed-stock-tised-ornovel-genotype-generated.-bescribe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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