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After infection with SARS-CoV-2, most children develop mild 
and self-limiting symptoms of COVID-19 (ref. 1), although 
severe cases and fatal outcomes have been also reported2. 

However, approximately 3–4 weeks after exposure to SARS-CoV-2, 
some children develop a hyperinflammatory response resembling 
Kawasaki disease (KD) and toxic shock syndrome that has been 
termed MIS-C3–5.

The mechanisms underlying the different picture of pCOVID-19 
and MIS-C remain ill-defined. Older age, male sex, obesity, 
co-existing comorbidities, genetic defects of Toll-like receptor 3 
(TLR3)-dependent and TLR7-dependent type I IFN pathways 
and neutralizing auto-antibodies against type I IFNs are associ-
ated with more severe clinical outcomes in adults with COVID-
19 (aCOVID-19)6–9. More limited information is available on the 

immune response to acute SARS-CoV-2 infection in children10. 
Elevated serum levels of several inflammatory biomarkers, an 
expansion of T cell clonotypes expressing the T cell receptor (TCR) 
TRBV11-2 gene (possibly in response to a SARS-CoV-2 superan-
tigen) and presence of auto-antibodies directed against several 
self-antigens have been reported in MIS-C11–15.

The magnitude of the inflammatory response in MIS-C corre-
lates with disease severity13,16, and use of glucocorticoids and intra-
venous immunoglobulins (IVIGs) improves clinical outcome17, 
whereas limited data are available on the efficacy of biologics, such 
as IL-1 receptor (IL-1R) and tumor necrosis factor-α (TNF-α) 
antagonists and tocilizumab18,19. Nevertheless, the temporal tra-
jectory of inflammatory markers in response to treatment during 
the course of the disease has not been elucidated. In this study, we 
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used a multi-omics approach (with analysis of soluble biomark-
ers, proteomics, single-cell gene expression profile, T and B cell 
receptor repertoires and auto-antibodies) to comparatively assess 
longitudinal changes of innate and adaptive immune responses 
of pCOVID-19 and MIS-C, and we identified distinct signatures 
associated with pCOVID-19 and MIS-C that might help define the 
pathophysiology of these disorders and guide treatment.

Results
Characteristics of the study cohorts. We included a total of 186 
pediatric patients (110 with pCOVID-19 and 76 with MIS-C) and 
76 pHCs. The demographic, clinical and laboratory characteristics 
of patients and pHCs are reported in Table 1, and the number of 
patients analyzed with various assays is outlined in Fig. 1.

Soluble biomarkers in the early phase of pCOVID-19 and MIS-C. 
To explore early immune and inflammatory responses, we mea-
sured levels of 50 soluble biomarkers in serum or plasma obtained 
from 57 children with pCOVID-19 within 7 days since the onset 
of symptoms (median, 2 days, interquartile range (IQR), 1–3 days) 
and in 48 children with MIS-C within 7 days from hospitalization 
(‘MIS-C Early’; median, 2 days, IQR, 1–4 days). Soluble biomark-
ers were also measured in 60 patients with MIS-C more than 7 
days after admission (‘MIS-C Late’; median, 14 days, IQR, 10.25–
31 days) and in 53 pHCs. Distinctive signatures characterized 
pCOVID-19 and MIS-C. Higher levels of IFN-α2a were detected 
in pCOVID-19 (Fig. 2a), especially in children with mild disease 
(Extended Data Fig. 1a). High levels of IFN-α2a in pCOVID-19 
were associated with a higher type I IFN score, as determined by a 
NanoString assay capturing expression of 28 type I IFN-stimulated 
genes in both myeloid and lymphoid cells.20 (Fig. 2b). In addition, 
pCOVID-19 was also characterized by low levels of IL-33, an epi-
thelial and endothelial cell alarmin, and by increased levels of some 
inflammatory biomarkers, whose levels rapidly declined over time 
(Fig. 2a and Extended Data Fig. 2a,b). However, NanoString analy-
sis of the expression of 15 type II IFN-dependent and 11 nuclear 
factor (NF)-κB-responsive genes did not reveal differences between 
pCOVID-19 and pHC (Fig. 2c).

To investigate whether age plays an important role in modulat-
ing inflammatory responses (including attenuated inflammation 
in pCOVID-19 compared to aCOVID-19), we compared levels of 
soluble biomarkers measured in moderate forms of pCOVID-19 
(n = 9) and aCOVID-19 (n = 26)21 as well as in pHCs (n = 53) and 
adult healthy controls (aHCs, n = 45). For most biomarkers (38/50), 
blood levels differed between pHC and aHC (Extended Data Table 
1), indicating that age plays an important role in setting baseline 
immune status. Adjustment for these baseline differences is neces-
sary when interpreting the influence of COVID-19 (Extended Data 
Fig. 1b–d).

Analysis of MIS-C samples obtained within 7 days of hospi-
talization in 48 patients demonstrated a significant increase in 
biomarkers related to type II IFN signaling (IFN-γ, CXCL9 and 
CXCL10), macrophage activation (IL-6, sTNFRI, IL-10, sCD25, 
IL-17, TNF-α, sCD163, CCL2, CCL3, CCL4, ferritin and IL-15), 
endothelial injury and activation (VEGF, sVCAM-1/sCD106 and 
sE-Selectin/sCD62E), neutrophil activation (MPO and lactofer-
rin), matrisome-related inflammation (MMP-9, sST2/sIL-33R and 
CX3CL1) and septic shock (LBP) and low levels of CCL22 (Fig. 2a 
and Extended Data Fig. 2b). The SARS-CoV-2 polymerase chain 
reaction (PCR) status around the time of admission had no signifi-
cant effect on the clinical presentation and on the levels of soluble 
biomarkers (Supplementary Table 1 and Supplementary Fig. 1). 
For most biomarkers, levels tended to decrease at later time points 
(MIS-C Late) during hospitalization (Fig. 2a and Extended Data 
Fig. 2b), concurrent with clinical improvement. Consistent with 
this broad inflammatory signature, NanoString analysis of 15-gene 

type II IFN-dependent and 11 NF-κB-responsive genes revealed 
significantly higher scores in paired samples obtained from patients 
with MIS-C at earlier versus later time points during hospitalization  
(Fig. 2c), and a similar pattern was observed also for type I IFN 
score (Fig. 2b).

Feature importance analysis based on random forest classifica-
tion (that also included age, sex and ethnicity) identified low lev-
els of IL-33 and increased levels of IL-6, TNF-α, ferritin, CCL2, 
MPO, IL-15, IFN-α2a, soluble VCAM-1 (sVCAM-1) and IL-10 as 
the most important parameters distinguishing pCOVID-19 from 
pHC (Fig. 2d). Using the same approach, elevated levels of several 
inflammatory biomarkers, and low levels of CCL22, emerged as 
the most important parameters distinguishing MIS-C Early from 
pHC (Fig. 2e). Furthermore, random forest classification identified 
molecules involved in matrisome (sST2/sIL-33R), intestinal inflam-
mation and myocardial damage (Reg3A) and T cell homeostasis 
(CCL22) as the most important factors distinguishing MIS-C from 
pCOVID-19 (Fig. 2f). Multivariate regression analysis identified 
IL-33 as the only biomarker whose levels were significantly different 
in pCOVID-19 versus pHC, whereas CCL3 and IL-15 distinguished 
MIS-C from pHC and pCOVID-19, respectively, with a role also 
for CCL22 in both cases (Extended Data Table 2). The prominent 
inflammatory signature of MIS-C was associated with significantly 
elevated levels of soluble spike protein (Fig. 2g). Of note, among 15 
patients in whom spike protein levels higher than 40 pg ml−1 were 
detected within 7 days after admission, only two tested positive for 
SARS-CoV-2 mRNA in nasopharyngeal swabs. Finally, anti-spike 
(anti-S) and anti-nucleocapsid (anti-N) antibody levels were sig-
nificantly higher in MIS-C than in pCOVID-19 (Extended Data 
Fig. 2c), consistent with the limited time interval between onset of 
symptoms and sample collection in the pCOVID-19 group.

Proteomic analysis of immunopathological signatures. To gain 
additional insights into the inflammatory signature of MIS-C and 
pCOVID-19, we performed proteomic profiling of a subgroup of 
patients using SOMAscan22. In ten patients with pCOVID-19, we 
observed a limited number of upregulated and downregulated 
proteins (26 and 25, respectively) relative to four pHCs, including 
increased levels of myeloid activation-associated proteins (MPO, 
IL18R1, TNFAIP6 and ACP5) and SIGLEC7, an inhibitor of nat-
ural killer (NK) cell pyroptosis and inflammasome activation23  
(Fig. 3a,b). Gene set enrichment analysis (GSEA) revealed molec-
ular signatures of immune activation, compatible with active 
SARS-CoV-2 viral infection (Fig. 3a).

A marked inflammatory profile was observed in patients with 
MIS-C, with a high number of significantly increased (n = 242) 
and decreased (n = 158) proteins compared to pHC (Fig. 3c,d). 
Patients with MIS-C had increased levels of several inflammatory 
biomarkers (serum amyloid A (SSA1), CRP, ferritin, CXCL10, sST2/
sIL-33R and CXCL9) and of B natriuretic peptide (NPPB.1), the lat-
ter consistent with cardiac involvement in MIS-C. GSEA showed 
hyperactivation of the matrisome-associated response. Overall, the 
inflammatory activation observed in MIS-C appeared to be higher 
and qualitatively different from pCOVID-19 (Fig. 3e,f).

Longitudinal evolution of blood biomarkers in MIS-C. We 
hypothesized that the differences in soluble biomarker levels 
detected at early and later time points during the course of MIS-C 
(Fig. 2a and Extended Data Fig. 2b) could be due to early interven-
tion with systemic glucocorticoids and IVIG17. However, how these 
interventions modulate the inflammatory response has not been 
elucidated. The timeline of initiation of therapeutic intervention 
with various classes of drugs and blood sampling compared to day 
of admission in patients with MIS-C is reported in Extended Data 
Fig. 3. We identified 12 patients for whom biomarker levels were 
measured both before (median, 0 day; IQR, −1 to 0 days) and after 
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Table 1 | Demographic, clinical and laboratory features

pCOVID-19 (n = 110) MIS-C (n = 76) pHC (n = 76)a P valueb

A. General description

Sex (F/M) 41/69 35/41 31/29 0.168

Age, years (median (IQR)) 5 (1–12) 8 (3–11) 8 (4–11) 0.033c

Ethnicity

Caucasian 95/110 (86%) 36/76 (47%) 58/60 (96%) <0.001

Hispanic/Latino 7/110 (6%) 35/76 (46%) 1/60 (2%) <0.001

Black/African American 5/110 (5%) 5/76 (7%) 0 0.165

Asian 3/110 (3%) 0 1/60 (2%) 0.366

Comorbidities 46/110 (42%) 18/76 (24%) 19/60 (32%)d 0.034

Immunosuppressive therapy 2/110 (2%) 0 0 0.352

B. Clinical and laboratory data in patients with pCOVID-19 and patients with MIS-C

pCOVID-19 (n = 110) MIS-C (n = 76) P value

Presenting signs and symptoms

 Fever 77/110 (70%) 76/76 (100%) <0.001

 Upper respiratory (rhinorrhea, cough, sore throat/pharyngitis) 51/110 (46%) 12/76 (16%) <0.001

 Pneumonia 17/110 (15%) 15/76 (20%) 0.425

 Dyspnea 10/110 (9%) 27/76 (36%) <0.001

 Gastrointestinal (nausea, vomiting, diarrhea, abdominal pain) 32/110 (29%) 65/76 (86%) <0.001

 Neurological (headache, irritability, drowsiness/somnolence, seizures) 22/110 (20%) 30/76 (39%) 0.115

 Rash 7/110 (6%) 47/76 (62%) <0.001

 Cardiovascular 0 53/76 (70%) <0.001

 Coronary artery involvement 0 4/53 (8%) NA

 Cardiomyopathy/heart failure only 0 42/53 (79%) NA

 Coronary artery involvement and cardiomyopathy/heart failure 0 7/53 (13%) NA

 Shock 4/110 (4%) 36/76 (47%) <0.001

 SARS-CoV-2 PCR positivee 99/110 (90%) 16/76 (21%) <0.001

 SARS-CoV-2 serology positive 11/110 (10%) 76/76 (100%) <0.001

Laboratory anomalies

 ANC < 1.0 × 109 cells per L 14/84 (17%) 0 <0.001

 ALC < 1.5 × 109 cells per L 11/84 (13%) 46/71 (65%) <0.001

 PLT < 150 × 109 cells per L 5/69 (7%) 31/71 (44%) <0.001

 CRP > 100 mg L−1 2/76 (3%) 45/70 (64%) <0.001

 Median CRP (IQR), mg L−1 0.9 (0.3–7.4) 152 (54–264) <0.001

 D-dimer >500 μg L−1 34/59 (58%) 62/69 (90%) <0.001

 Ferritin >500 μg L−1 3/28 (11%) 27/53 (51%) <0.001

 ALT >40 U L−1 11/75 (15%) 34/69 (49%) <0.001

C. Disease course in patients with pCOVID-19 and patients with MIS-C

 Asymptomatic 3/110 (3%) 0 NA

 Mild 85/110 (77%) 0 NA

 Moderate 17/110 (15%) 52/76 (68%) NA

 Severe 5/110 (5%) 24/76 (32%) NA

D. Therapy in patients with pCOVID-19 and patients with MIS-C

 Glucocorticoids 9/110 (10%) 69/76 (91%)f <0.001

 IVIG 0 46/76 (61%) <0.001

 Biologics (in addition to glucocorticoids and/or IVIG) 0 12/76 (16%) <0.001

 Anakinra 0 7/12 (58%) NA

 Tocilizumab 0 3/12 (25%) NA

 Infliximab 0 2/12 (17%) NA

 Inotropes 0 21/76 (28%) <0.001

 Respiratory support 6/110 (5%) 28/76 (37%) <0.001

 Non-invasive 4/6 (67%) 16/28 (57%) 0.185

 Mechanical ventilation 2/6 (33%) 12/28 (43%) 0.185
aData in the table are reported for 60 pHCs for whom detailed demographic, clinical and laboratory data were available. bChi-square test except for age (Kruskal–Wallis test) and median CRP comparison 
(two-tailed Mann–Whitney U-test) cKruskal–Wallis test; pairwise comparison was significant only between pCOVID-19 and pHC. dControls had allergy as the only comorbidity. ePatients with pCOVID-19 
negative for PCR had either positive immunoglobulin M or positive immunoglobulin G for SARS-CoV-2. For MIS-C, patients had positive PCR within 1 week of admission. fForty-two of these patients 
received both glucocorticoids and IVIG. ALC, absolute lymphocyte count; ALT, alanine aminotransferase; ANC, absolute neutrophil count; CRP, C-reactive protein; F, female; M, male; NA, not applicable; PLT, 
absolute platelet count.
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(median, +5 days; IQR, +4 to +7.5 days) glucocorticoid adminis-
tration. Two of these patients had previously received IVIG, and 
eight additional patients received IVIG in the interval. Biomarkers 
associated with type II IFN response (IFN-γ and CXCL9), T cell 
activation (sCD25), cell adhesion (sE-Selectin/sCD62E) and mono-
cyte/macrophage activation (sTNFRII, M-CSF, ferritin and IL-6) 
decreased after treatment (Extended Data Fig. 4a). To investigate 
how rapidly treatment with glucocorticoids and/or IVIG might 
impact on the inflammatory phenotype, we re-analyzed the MIS-C 
Early cohort, segregating patients into two groups: those whose 
blood samples were drawn before (n = 12) or after (n = 36) thera-
peutic intervention. A significant difference of blood levels between 
untreated and pre-treated patients with MIS-C Early was observed 
for four biomarkers (lymphotoxin-α (LT-α), lactoferrin, IL-12p70 
and IL-5), and a similar trend was present for several other proteins 
(Extended Data Fig. 4b). Furthermore, treatment before blood sam-
pling was not among the top ten most important variables when 
introduced in the random forest regression analysis comparing 
MIS-C Early versus pHC (Extended Data Fig. 4c). Altogether, these 
data indicate that treatment did not entirely obscure the hyperin-
flammatory phenotype that characterizes MIS-C early in the course 
of the disease. However, longitudinal analysis during the entire 
course of hospitalization revealed a negative correlation between 
length of hospitalization and levels of most soluble biomarkers in 
patients who had received glucocorticoids, irrespective of whether 
IVIG was administered (Supplementary Fig. 2a,b). Random forest 
regression analysis identified several biomarkers that were of higher 
median predictive importance in patients who received glucocorti-
coids (Fig. 3g); concurrent use of IVIG had a more specific effect on 
IL-1R antagonist (IL-1Ra), MPO, sIL-2Rα, sTNFRI, LBP, sICAM-1, 
CCL3 and sCD163.

Multimodal single-cell profiling of MIS-C and pCOVID-19. To 
better understand and compare the cell-type-specific gene expres-
sion profile of MIS-C and pCOVID-19, we performed single-cell 
cellular indexing of transcriptomes and epitopes by sequencing 
(CITE-seq)24,25 in peripheral blood mononuclear cells (PBMCs) 
from seven patients with MIS-C, eight patients with pCOVID-19 
and seven age- and sex-matched pHCs. Two longitudinal samples 
were available for three patients with MIS-C. We also performed 
CITE-seq profiling on sorted non-naive T and B cells to enhance 
TCR and B cell receptor (BCR) clonality analysis. Unsupervised 
clustering identified 24 annotated coarser-level cell populations 
(Fig. 4a). Integrating the CITE-seq data with previously published 
aCOVID-19 datasets25 yielded largely concordant cell clusters 
(Extended Data Fig. 5a). The frequency of non-classical monocytes 
was reduced in patients with MIS-C; a similar pattern was observed 
in aCOVID-19 and especially in patients with more severe disease25 
(Disease Severity Matrix (DSM)_high in Extended Data Fig. 5b). 
Reduced frequencies of plasmacytoid dendritic cells (pDCs) were 
detected in MIS-C but not in pCOVID-19 compared to pHC. 
Another characteristic of pCOVID-19 was the increased frequency 
of CD8+ memory T cells, which was also noted in adults with less 
severe disease (DSM_low in Extended Data Fig. 5b).

We next systemically assessed cell-type-specific transcriptional 
changes among pHC, pCOVID-19 and MIS-C using the cell clus-
ters derived from surface proteins (Fig. 4b and Extended Data Fig. 
5c). Strong T and B cell activation signatures and increased anti-
gen presentation in both innate and adaptive cell populations were 
observed in both pCOVID-19 and MIS-C groups compared to 
pHC (Fig. 4b and Extended Data Fig. 5c). Consistent with a recent 
report13, we observed enrichment of the gene set ‘KEGG_Natural_
Killer_cell_mediated_cytotoxicity’ in CD16hi NK cells from patients 
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with MIS-C but not from patients with pCOVID-19 (Fig. 4b and 
Extended Data Fig. 5c).

Type I IFN signatures (including gene signatures induced by live 
viral challenge or vaccination26,27) were strongly elevated in almost 
all immune cell subsets in pCOVID-19 but only in a few MIS-C 
adaptive cell populations and pDCs (Fig. 4b and Extended Data Fig. 
5c); MIS-C exhibited broadly lower type I IFN signatures across cell 
types compared to pCOVID-19 (Fig. 4b). Consistent with our prior 
CITE-seq analysis in adults25, time effect analysis hinted that the 
type I IFN signature in pCOVID-19 decreased over time in most 
cell types (Fig. 4c, top), although we caution that the number of lon-
gitudinal samples was small.

Although classical monocyte cell frequencies were similar, the 
mRNA-based uniform manifold approximation and projection 
(UMAP) visualization of monocytes showed separation among 
pHC, pCOVID-19 and MIS-C (Extended Data Fig. 5d, left). 
Specifically, MIS-C monocytes showed significantly higher levels 
of CD163 expression and of several S100A family inflammatory 
genes; the latter were also increased (although to a lesser degree) in 
pCOVID-19 monocytes compared to pHC (Extended Data Fig. 5d, 
middle and right). However, classical monocytes from patients with 
MIS-C showed repressed inflammatory signatures (HALLMARK_
TNFα_via_NFκB signaling and HALLMARK_inflammatory 
response pathways/gene sets) compared to both pCOVID-19 and 
pHC (Fig. 4b,d,e). Intriguingly, the lymphocytes (CD4+ and CD8+ 
T cells and NK cells) and dendritic cell (DC) populations tended to 
have lower inflammatory signatures instead in pCOVID-19 than in 
both MIS-C and pHC (Fig. 4b,d,e and Extended Data Fig. 5c). This 
repressed inflammatory gene signatures in non-monocyte popu-
lations in pCOVID-19 could point to differences in the systemic 
immune responses in children compared to adults, as also recently 
reported by others28.

To validate these observations, we interrogated an independent 
published cohort with single-cell data13 and observed similarly 
strong signatures of T and B cells, NK and CD8+ T cell cytotox-
icity and enhanced type I IFN response (mainly seen in T and B 
cell populations) in patients with MIS-C (Supplementary Fig. 
3a). The repressed inflammatory signatures of monocytes were 
also seen in this validation cohort, with overlapping leading edge 
(LE) genes driving these repressed signatures (Supplementary Fig. 

3a,b). We next visually assessed these LE genes from the MIS-C 
versus pCOVID-19 comparison in our cohort by plotting the 
cell-type-specific expression heat maps of these genes using data 
from the validation cohort13. This revealed that these genes indeed 
tend to have lower expression in classical monocytes in MIS-C 
compared to pHC, although this trend appeared less significant in 
memory CD4+ T cells (Supplementary Fig. 3b).

TRBV11-2 usage over time in MIS-C CD4+ T cells. Bulk 
high-throughput sequencing of TCRβ (TRB) repertoire was per-
formed to analyze the breadth of the SARS-CoV-2-specific TCR 
repertoire, representing the fraction of TRB clonotypes that are 
SARS-CoV-2 specific in each repertoire. A modest increase in 
the breadth of SARS-CoV-2-specific clonotypes was observed in 
pCOVID-19 and MIS-C compared to pHC (Extended Data Fig. 6a).

Analysis of TRBV gene usage revealed markedly increased fre-
quency of TRBV11-2 clonotypes in MIS-C (Fig. 5a), confirming 
previous reports13–15,29,30. Interestingly, such increased frequency of 
TRBV11-2 clonotypes was restricted to MIS-C samples that were 
collected soon after hospitalization, whereas a rapid decline in the 
proportion of TRBV11-2 clonotypes was observed thereafter (Fig. 
5b), as also reported by others15. Both the increased TRBV11-2 
usage and the progressive decline in the frequency of TRBV11-2 
clonotypes were confirmed in CITE-seq profiling of CD4+ T cells 
(Fig. 5c) of patients with MIS-C. Computational analysis revealed 
enrichment of unique SARS-CoV-2-specific CDR3 clonotypes 
among TRBV11-2-positive clonotypes in all groups (MIS-C, 
pCOVID-19 and pHC); however, such enrichment was signifi-
cantly lower in patients with MIS-C compared to pCOVID-19 and 
pHC (Extended Data Fig. 6b). Moreover, TRBV11-2 clonotypes of 
patients with MIS-C were characterized by a diverse usage of associ-
ated TRBJ genes (Supplementary Fig. 4a) and a broad distribution 
of CDR3 length (Supplementary Fig. 4b), arguing against oligoclo-
nal expansions.

The frequency of TRBV11-2 clonotypes in MIS-C positively cor-
related with levels of several inflammatory biomarkers (Extended 
Data Fig. 6c), consistent with previous observations14. Single-cell 
CITE-seq gene expression analysis showed slightly higher average 
expression of genes associated with T cell activation (HCST and 
DUSP2) and effector function (GZMK, PRF1, GZMA and IL32), 

Fig. 2 | Blood biomarker analysis in pCOVID-19 and MIS-C. a, Comparison of serum biomarker levels in children with MIS-C Early (n = 48) (within 7 
days since admission) and MIS-C Late (more than 7 days after admission, n = 60), pCOVID-19 (n = 57) within 7 days from symptom onset and pHCs 
(n = 53). b, Comparison of type I IFN score in paired MIS-C Early and MIS-C Late (n = 11), pHC (n = 12) and pCOVID-19 (n = 15) with elevated (pCOVID-
19hi, n = 6) and lower (pCOVID-19low, n = 9) IFN-α2a levels. c, Comparison of NF-κB score and type II IFN score in paired MIS-C Early and MIS-C Late 
(n = 11), pCOVID-19 (n = 15) and pHC (n = 12). d, Random forest classification comparing pCOVID-19 within 7 days from symptom onset (n = 57) to pHC 
(n = 53). e, Random forest classification comparing MIS-C Early (n = 48) to pHC (n = 53). f, Random forest classification comparing MIS-C Early (n = 48) 
to pCOVID-19 within 7 days from symptom onset (n = 57). g, Serum spike protein levels in MIS-C (n = 21), pCOVID-19 (n = 9) and pHC (n = 16). Maxima 
of box plots in a, b, c and g represent median values, and bars represent IQR. Statistical analysis in a–c and g was performed by Kruskal–Wallis test with 
adjustment for multiple comparisons. P values are marked as follows: *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.

Fig. 3 | Proteomic analysis in MIS-C compared to pCOVID-19. a, b, Upregulated (a) and downregulated (b) plasma proteins obtained from the 
comparison between pCOVID-19 (n = 10) and pHC (n = 4). c, d, Top 25 upregulated and downregulated plasma proteins obtained from the comparison 
between MIS-C (within the first 7 days of hospitalization, n = 16) and pHC (n = 4). e, f, Top 25 upregulated and downregulated plasma proteins obtained 
from the comparison between MIS-C (within the first 7 days of hospitalization, n = 16) and pCOVID-19 (n = 10). g, Median predictive importance values 
derived from random forest regression of soluble biomarker values in a group of 101 samples obtained at various time points after hospitalization from 38 
patients with MIS-C who received both systemic glucocorticoids and IVIG and in another group of 57 samples from 25 patients with MIS-C who received 
systemic glucocorticoids only. In each random forest regression model (composed of 1,000 decision trees with one model per target), the predictive 
importance value for each predictor–target pair is computed using the algorithm described in ref. 63. In a–f, top upregulated and downregulated proteins 
were identified by selecting all proteins with FDR < 0.05 and P < 0.05 (two-tailed t-test) and then ordering them according to increased or decreased fold 
changes expressed in a log2 scale. Heat maps show the most significantly enriched pathways for the group comparison, and the statistical significance is 
expressed as −log(P value). FC, fold change; RF, random forest.
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immune cell synapse and adhesion formation (PSMB1, HAVCR2, 
SIRPG, CTLA4, RAC2, MSN, ITGB2 and SELL) and IL-2 and 
IL-15 signaling response pathways (SIRPG, IL2RB and IL2RG) in 

TRBV11-2 CD4+ T cell clones compared to other CD4+ MIS-C 
T cells (Extended Data Fig. 6d). Differential expression analysis on 
the cell surface markers (CITE-seq antibody data) revealed higher 
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expression of T cell co-stimulatory molecules CD28 and CD150 
(SLAM) (Extended Data Fig. 6e). Furthermore, the transcriptional 
signature of TRBV11-2 CD4+ T cells was characterized by increased 
expression of genes involved in apoptosis and lymphocyte activa-
tion (Extended Data Fig. 6f and Supplementary Table 2).

Interestingly, time elapsed from the first use of glucocorticoids 
negatively correlated with the frequency of TRBV11-2 clonotypes 
(Extended Data Fig. 6g) and was predictive of reduced TRBV11-2 
gene usage over time (Extended Data Fig. 6h). This suggests that the 
use of glucocorticoids might have contributed to the apoptosis tran-
scriptional signatures that we saw in the single-cell analysis above 
(Extended Data Fig. 6f), even though this could also reflect the con-
traction of CD4+ T cell subsets during the resolution of disease31–33.

It was previously shown that patients with MIS-C with a severe 
clinical phenotype and expansion of TRBV11-2 share the combina-
tion of human leukocyte antigen (HLA) class I alleles A*02, B*35 and 
C*04, indicating a possible contribution of HLA-mediated restric-
tion in the process of TRBV11-2 expansion29. To determine whether 
a similar association was found in our patient cohort and to avoid 
confounding factors due to different frequencies of HLA alleles in 
different ethnic groups, we analyzed a subcohort of Italian patients 
only (MIS-C, n = 9; pCOVID-19, n = 64; pHC, n = 44), which we 
further restricted by selecting individuals of predicted European 
ancestry (MIS-C, n = 7; pCOVID-19, n = 45; pHC, n = 35). The 
A*02, B*35 and C*04 allele combination was present in five of the 
seven patients with MIS-C, in two of the 35 pHCs and in none of 
the 45 patients with pCOVID-19, reaching statistical significance 
(Extended Data Table 3). Of note, the combination of HLA A*02, 
B*35 and C*04 alleles was not associated with severity of the MIS-C 
phenotype, as it was found in four patients with moderate disease 
and one child with severe disease.

B cell activation and repertoire in MIS-C. Previous studies have 
documented B cell abnormalities in severe aCOVID-19 and in 
MIS-C, with increased number of IgD−CD27−CD11c+ cells in the 
former34 and increased number of plasmablasts in both condi-
tions34,35, along with increased frequency of IGHV4-34 and IGHV4-
39 clonotypes14,34 and presence of auto-antibodies against a variety 
of self-antigens12–14. High-throughput sequencing of the IGH rep-
ertoire in 13 pHCs, 15 patients with pCOVID-19 and 19 patients 
with MIS-C did not reveal major differences in the usage of IGHV 
genes (Extended Data Fig. 7a,b) but demonstrated an increased rate 
of somatic hypermutation (SHM) among MIS-C IGHV clonotypes 
(Extended Data Fig. 7c). CITE-seq analysis revealed a significantly 
increased frequency of SHM in plasmablasts in MIS-C compared to 
pCOVID-19 (Fig. 5d), and a similar trend was observed in memory 
B cells (Extended Data Fig. 7d). Several surface markers associated 

with B cell activation correlated with mutation frequencies within 
memory B cells (lower IgD, CD305 and IgM and higher CD27, 
CD95, CD71 and CD99; Extended Data Fig. 7e) and plasmablasts 
(CD95, CD99 and HLA-DR; Extended Data Fig. 7f).

To investigate the presence of auto-antibodies, we used the human 
proteomic (HuProt) assay comparing ten MIS-C samples (four with 
and six without prior IVIG treatment) to five pCOVID-19 samples. 
We detected several auto-antibodies in MIS-C, including previously 
reported TROVE2/Ro60 and ATP4A14 (Fig. 5e). However, positivity 
was mostly evident in MIS-C samples drawn after IVIG administra-
tion, suggesting that IVIG might represent an important confound-
ing factor in the evaluation of the presence of auto-antibody in 
MIS-C. Pre-existing neutralizing auto-antibodies targeting IFN-α 
and/or IFN-ω are frequently detected in critical aCOVID-19 (ref. 9). 
To investigate whether such auto-antibodies are also present in chil-
dren, we screened serum from pHC (n = 53), pCOVID-19 (n = 70) 
and MIS-C (n = 40). Borderline levels of positive immunoreactivity 
against IFN-α and/or IFN-ω were detected in a few patients with 
MIS-C and pCOVID-19, and no neutralizing activity was detected 
(Supplementary Fig. 5).

Discussion
Defining the pathophysiology underlying distinct SARS-CoV-
2-related diseases in children represents an important medical 
need. Type I IFN-dependent responses play a critical role in con-
trolling replication of respiratory tract viruses early after infec-
tion36. Defective type I IFN responses have been shown in severe 
aCOVID-19 (refs. 37,38). Our observations of intact frequencies of 
pDCs in pCOVID-19, associated with robustly elevated IFN-α2a 
levels and increased expression of type I IFN-dependent genes in 
peripheral blood samples collected within 7 days from onset of 
symptoms, contrast with findings in aCOVID-19 and are consistent 
with the demonstration that pre-activated antiviral innate immu-
nity in the upper airways controls early SARS-CoV-2 infection in 
children28,39.

We identified reduced induction of systemic inflammatory 
responses as another important feature distinguishing pCOVID-19 
versus aCOVID-19 (refs. 21,25), as shown by lower levels of inflam-
matory biomarkers and decreased transcriptional inflammatory 
signatures of lymphocyte and DC populations in the former.

The identification of decreased IL-33 levels in pCOVID-19 rep-
resents a finding that needs validation in other cohorts. IL-33 is a 
member of the IL-1 cytokine family and is released mainly by epi-
thelial cells upon infection, cell damage or exposure to allergens40,41. 
High IL-33 levels are increased in children with severe viral and bac-
terial infections42–45. The low IL-33 levels detected in pCOVID-19 
might be indicative of modest respiratory epithelium cell damage, 

Fig. 4 | Multimodal single-cell profiling of MIS-C and pCOVID-19. a, UMAP visualization of single-cell clusters based on protein expression profiles (see 
Methods for cell type acronyms). b, GSEA of MIS-C versus pHC (left) and MIS-C versus pCOVID-19 (right) at time points within 40 days of admission. 
Selected gene sets are grouped into functional/pathway categories. Dot color denotes normalized gene set enrichment score, and size indicates −
log10(adjusted P value). P values were from GSEA test of the whole gene sets (Methods) and adjusted using the Benjamini–Hochberg method. The sample 
size for each group was as follows: MIS-C, n = 8 (two patients with two time points); pCOVID-19, n = 7; and pHC, n = 7. Further details of statistical analysis 
are described in the Methods. c, GSEA result of pCOVID-19 (top) and MIS-C (bottom) based on the association with time (days since admission), showing 
only the type I IFN-related response signatures. The sample size for each group was as follows: MIS-C, n = 10 (three patients with two time points); 
pCOVID-19, n = 8; and pHC, n = 7. d, Heat map of HALLMARK_TNFa_Signaling_via_NFκB gene set in CD4+ memory T cells and classical monocytes. Heat 
map showing the scaled average mRNA expression (row Z-score) of LE genes from the GSEA analysis of MIS-C versus pCOVID-19. Shared LE genes and 
selected top LE genes from both cell types are labeled by gene symbol. The shared LE genes are annotated on the right column. Each column represents 
a sample. Patients are grouped by pHC, pCOVID-19 and MIS-C classes, and columns are ordered by days since admission; also shown are the days since 
admission of each sample (top of the heat maps). e, Per-sample gene set signature scores of the HALLMARK_TNFα_Signaling_via_NFκB gene set in 
selected cell populations. Gene set scores were calculated using the Gene Set Variation Analysis (GSVA) of LE genes from the MIS-C versus pCOVID-19 
model (Methods). P values shown are adjusted P values from GSEA result in b. Box plot showing the median, first and third quantiles (lower and upper 
hinges) and smallest (lower hinge − 1.5× IQR) and largest (upper hinge + 1.5× IQR) values (lower and upper whiskers). Sample size was as follows: MIS-C, 
n = 8 (two patients with two time points), and pCOVID-19, n = 7. See Methods for details of some low representative populations.
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whereas high levels of IL-33 were previously demonstrated by our 
group in critical, but not moderate, aCOVID-19 (ref. 21).

Analysis of soluble biomarker levels in MIS-C revealed low lev-
els of CCL22, a homeostatic chemokine that promotes regulatory 
T cell migration and function46. By dampening regulatory T cell 
responses, low CCL22 levels in MIS-C might favor uncontrolled 
inflammation. Notably, both IL-33 and CCL22 are involved in Th2 
responses47,48, and both are negatively regulated by IFN-γ49,50. Along 
with increased levels of IFN-γ in MIS-C (and, to a lesser extent, in 
pCOVID-19), these observations indicate that pCOVID-19 and 

MIS-C are characterized by prominent Th1 and suppressed Th2 
responses.

Consistent with previous observations11–13,16, we showed that 
patients with MIS-C had elevated levels of soluble biomark-
ers associated with recruitment and activation of monocytes 
and neutrophils, vascular endothelium injury, matrisome activa-
tion, gastrointestinal and cardiac involvement and septic shock. 
Activation of matrisome, which encompasses proteins associated 
with the extracellular matrix, including the endothelium51, and 
increased levels of biomarkers indicative of endothelial cell dam-
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age in MIS-C mirror what is observed in various vasculitides,  
including KD52.

In addition, CITE-seq analysis revealed an MIS-C monocyte sig-
nature characterized by increased expression of several members of 

the S100A family of alarmins and of the scavenger receptor CD163. 
However, in comparison to pCOVID-19, MIS-C monocytes had 
lower type I IFN and NF-κB/inflammatory signatures and repressed 
antigen presentation genes, which were phenotypically similar to 
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Fig. 5 | High-throughput sequencing and CITE-seq analysis of T and B cell repertoire. a, TRBV gene usage in MIS-C (n = 96 samples from 58 patients), 
pCOVID-19 (n = 21 samples from 21 patients) and pHC (n = 13 samples from 13 individuals). Clonotypes with ambiguous gene assignments are excluded 
from the figure. For each gene, non-parametric Kruskal–Wallis test with unadjusted P values was used to compare the three groups. NS: P > 0.05 (not 
significant), *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. b, TRBV11-2 gene usage observed in patients with MIS-C within the first 7 days (in blue, 
n = 36 samples from 35 patients) and at later time points (in yellow, n = 59 samples from 44 patients) during hospitalization. Pearson correlation 
coefficient (number of days from admission versus TRBV11-2 gene usage) and its P value are shown for both time intervals. The inset plot in the figure 
provides a comparison between the TRBV11-2 gene usage distributions in these two time intervals and a P value derived from two-tailed Wilcoxon 
rank-sum test. Box plots show the median, first and third quantiles (lower and upper hinges) and smallest (lower hinge − 1.5× IQR) and largest (upper 
hinge + 1.5× IQR) values (lower and upper whiskers). c, Upper panel, TRBV11-2 usage (TRBV11-2 ratio among each sample) in CD4+ T cells among three 
groups (pHC, n = 7; pCOVID-19, n = 7; and MIS-C, n = 8 (two patients with two time points)) within 40 days of admission. P values shown are from 
two-sided Wilcoxon test between indicated two groups. Lower panel, TRBV11-2 usage frequency in MIS-C CD4+ T cells over time (days since admission, 
n = 10). Pearson correlation (R) and associated P values are shown. The shaded area represents standard error. Each dot indicates a sample. Box plot 
elements are the same as in Fig. 4e. d, Mutation quantification of plasmablasts in the three groups (pHC, n = 7; pCOVID-19, n = 8; and MIS-C, n = 7).  
P values shown were obtained using two-sided Wilcoxon test between indicated two groups. Each dot indicates a cell. Box plot elements are the same as 
in Fig. 4b. e, Heat map showing auto-antibodies with the highest variance ordered by fold change, using a cutoff of 4 fold change (Methods). Comparisons 
were made among pCOVID-19 (n = 5), MIS-C that did not receive IVIG (n = 6) and MIS-C after IVIG administration (MIS-C_IVIG, n = 4).
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the MS1 monocyte cell state reported in severe aCOVID-19 and 
in bacterial sepsis53,54. These reduced inflammatory signatures of 
monocytes in MIS-C might have been contributed by the routine 
administration of glucocorticoids and IVIG early in the course of 
the disease.

In our study, elevated levels of soluble spike protein were detected 
in 15 of 21 patients with MIS-C. A previous study correlated ele-
vated spike protein levels in MIS-C to persistence of SARS-CoV-2 
in the gastrointestinal tract55. Although we did not investigate the 
presence of SARS-CoV-2 mRNA in stool samples, only two of these 
15 patients with MIS-C had a positive PCR on nasopharyngeal swab 
within 7 days after admission, indicating that elevated spike protein 
levels were not due to persistent respiratory tract infection.

Analysis of the T cell and B cell repertoires revealed other impor-
tant features of pCOVID-19 and MIS-C. The modest increase in 
the breadth of SARS-CoV-2-specific CDR3 clonotypes in chil-
dren with pCOVID-19 and MIS-C compared to pHCs is consis-
tent with previous studies showing that younger individuals have 
pre-existing CD4+ T cells to human endemic β-coronaviruses that 
are cross-reactive to SARS-CoV-2 spike protein56,57 and that might 
help contain virus replication, limiting the development of a larger 
pool of newly generated SARS-CoV-2-specific T cells in infected 
children.

We confirmed previous observations showing an expansion of 
TRBV11-2-positive polyclonal T cells in MIS-C, possibly driven by 
a superantigen-like motif within the C-terminal region of the spike 
S1 subunit15,29,30,58. TRBV11-2 CD4+ T cells expressed high levels of 
CD150 and CD28 on their surface, and their transcriptional pro-
file was characterized by expression of genes involved in cell adhe-
sion and activation and of the mitochondrial pathway of apoptosis. 
Together, these results suggest that TRBV11-2-expressing T cells 
represent a cell population poised to respond to activating signals 
and undergo apoptosis. The proportion of TRBV11-2 clonotypes 
positively correlated with levels of various inflammatory biomark-
ers, and both the frequency of TRBV11-2 clonotypes and levels of 
most of these biomarkers decreased within 1–2 weeks after use of 
glucocorticoids. We postulate that the rapid decrease of TRBV11-
2 clonotypes was contributed by the use of glucocorticoids, which 
are known to mediate apoptosis of activated T cells, predominantly 
through the mitochondrial pathway59–61.

Notably, by selecting patients of homogeneous predicted ances-
try, we validated the recent demonstration of the association of 
MIS-C with the combination of the HLA-A*02, B*35 and C*04 
alleles29, arguing for a genetic basis of susceptibility to MIS-C.

Analysis of the B cell compartment of patients with MIS-C 
showed an increased SHM rate in plasmablasts, correlating with 
increased expression of several activation markers on the cell sur-
face of both memory B cells and plasmablasts. On the other hand, 
although auto-antibodies have been reportedly detected in patients 
with MIS-C also before IVIG administration11–14, we detected them 
at higher frequency in samples collected after IVIG administration, 
indicating that use of IVIG is an important confounding factor. 
Similar observations have been recently obtained in KD62.

This study has some limitations. Only a few children with severe 
pCOVID-19 were investigated, and no cases of acutely ill children 
with conditions other than COVID-19 were included. The tran-
scriptional signature of PBMCs was analyzed in a limited number 
of patients. Nonetheless, we were able to detect early and late signa-
tures of the disease, and the characteristic gene expression profile 
identified in our cohort correlated with what has been observed by 
others13. The vast majority of patients with MIS-C received treat-
ment with glucocorticoids (alone or in association with IVIG) 
shortly upon hospitalization, so it was not possible to define the rel-
ative role of therapeutic interventions and natural history of the dis-
ease on the dynamic changes of biomarkers analyzed. However, we 
postulate that timely therapeutic intervention played a critical role 

in facilitating resolution of inflammatory complications and favor-
able clinical outcome in all patients included in the study. Too few 
patients received IVIG alone (n = 4) or various biologics (n = 12) to 
allow definition of the specific effects of these treatments. Finally, 
all blood samples were collected at the time when only the ancestral 
Wuhan strain, the B1.177 (European lineage) variant and the 1.1.7 
(Alpha) variant were circulating at the centers where the patients 
were enrolled. Therefore, the effect of the Delta and Omicron vari-
ants on innate and adaptive immune responses in children with 
pCOVID-19 and MIS-C remains to be studied.

Relatively few studies have explored immune responses to 
SARS-CoV-2 in children, most often in a limited number of 
patients. By applying a multi-omics approach to a large cohort of 
patients, we have shown important differences in the response to 
acute SARS-CoV-2 infection in children and adults and established 
that pCOVID-19 and MIS-C have distinctive immunopathological 
signatures, which might help better characterize the pathophysiol-
ogy of these disorders and guide optimal treatment.
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Methods
Statistics and reproducibility. This was a natural history study of consecutive 
cases of patients with pCOVID-19 and MIS-C enrolled at the referring institutions. 
Informed consent was provided by the parents or guardians and assent by the 
minor, when appropriate. No statistical method was used to predetermine sample 
size. Investigators analyzing biomarker levels were blinded to the characteristics of 
the patients from whom the blood samples had been obtained.

Study population. The study included 186 pediatric patients (≤18 years old) with 
clinically and laboratory confirmed MIS-C (n = 76) and pCOVID-19 (n = 110) 
and pHCs (n = 76), whose blood samples were collected between 30 March 2020 
and 8 February 2021, upon informed consent and according to protocols approved 
by local institutional review boards (IRBs): Comité Ético Científico Facultad de 
Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile (protocol 
2020-41); Ethics Committee of the Fondazione IRCCS Policlinico San Matteo, 
Pavia, Italy (protocol 20200037677); Comitato Etico Interaziendale A.O.U. Città 
della Salute e della Scienza di Torino, Turin, Italy (protocol 00282/2020); Ethics 
Committee of the University of Naples Federico II, Naples, Italy (protocol 158/20); 
Comitato Etico Provinciale, Brescia, Italy (protocol NP-4000); University of Milano 
Bicocca-San Gerardo Hospital, Monza, and Ethics Committee of the National 
Institute of Infectious Diseases ‘Lazzaro Spallanzani’, Italy (protocol 84/2020); 
Hadassah Medical Organization IRB, Jerusalem, Israel (protocol HMO-235-20); 
and National Institute of Allergy and Infectious Diseases (NIAID), National 
Institutes of Health (NIH), Bethesda, Maryland, USA (protocols NCT04582903, 
NCT03394053 and NCT03610802).

Clinical datasets from international sites were translated, checked for 
consistency and transformed to the same scale and units as needed using Python 
libraries (NumPy, pandas and dateutil), and outliers were manually reviewed. 
The data harmonized across all sites were collected in LabKey (LabKey Server, 
Enterprise Edition, version 21.11.4) where final curation was performed by the 
clinical research team.

The severity of pCOVID-19 was defined as follows: (1) asymptomatic, (2) mild, 
(3) moderate, (4) severe and (5) critical, as per the NIH COVID-19 Treatment 
Guidelines64. The clinical severity was not affected by age, sex or ethnicity, and 
there were no fatal outcomes.

MIS-C diagnosis was based on the Centers for Disease Control and Prevention 
Health Advisory case definition5, but only patients with evidence of prior 
SARS-CoV-2 infection (as determined by positive PCR with or without anti-S/
anti-N serology) were included. Patients with MIS-C were divided into moderate 
(MIS-C-M; n = 52, 68%) and severe (MIS-C-S; n = 24, 32%) groups, as previously 
described13. All patients with MIS-C improved markedly during the hospitalization 
and were eventually discharged.

For the comparison of pCOVID-19 and aCOVID-19, we used previously 
published data from our group on biomarkers in aCOVID-19 (ref. 21) as well as a 
cohort of healthy adults. For NanoString and spike protein levels, pHC samples 
were obtained from a cohort of healthy children studied by NIAID Translational 
Autoinflammatory Disease Studies.

Measurement of soluble biomarkers. Analysis of soluble biomarker levels was 
performed on plasma or serum obtained from patients with pCOVID-19 (n = 110), 
patients with MIS-C (n = 73) and pHCs (n = 53), including 57 patients with 
pCOVID-19 and 48 patients with MIS-C whose samples were obtained within 
7 days since the onset of symptoms or hospitalization, respectively. Because of 
limited available volume, patient samples were analyzed as single determinations. 
Duplicate determinations of samples from pHCs yielded coefficients of variation 
that were normally less than 20%. Blood samples were centrifuged, and serum 
or plasma samples were immediately frozen at −85 °C before analysis. Levels of 
soluble biomarkers whose data were concordant between both plasma and sera 
were measured as previously described21. Depending on the nature of the analyte, 
measurements were obtained using the V-PLEX Human Cytokine 30-Plex Kit 
(Meso Scale Discovery) and analyzed on a MESO QuickPlex SQ 120 reader (Meso 
Scale Discovery) or using a customized, magnetic bead-based, multiplex assay 
(R&D Systems), according to the manufacturers’ specifications for standards and 
dilutions, and the magnetic beads were analyzed on Bio-Plex 3D instrumentation 
(Bio-Rad). Standard curves were analyzed using non-linear curve fitting, and 
unknowns were calculated based on the derived equation. Samples that exceeded 
the highest standards were reanalyzed at higher dilution until the values fell within 
the range of the known standards. Two control plasma samples and a control 
sample spiked with a known quantity of each analyte were analyzed on each plate 
to assess the inter-plate variation and to determine the effect of the biological 
matrix on the measurement of each analyte. For most analytes, the control samples 
had less than 25% variation from plate to plate, and the recoveries were generally 
more than 70%.

For the biomarker values that were below the lower limit of quantification 
(LLOQ), the actual measured concentrations were used, or, if unavailable and 
reported as 0 (for 26 of the 50 biomarkers), values were extrapolated as LLOQ 
divided by 2. The exception was made for the comparison of pCOVID-19 and 
aCOVID-19, owing to the absence of LLOQ for the biomarker measurements in 
adults. Therefore, only values over 0 were used for that analysis.

The univariate analysis of biomarker levels was performed using Mann–
Whitney U-test (when two groups were compared) or Kruskal–Wallis test 
(corrected for multiple comparisons) when multiple groups were compared. 
Biomarkers differing significantly between or among groups were then included 
in the multivariate model together with age, sex and ethnicity. For the comparison 
of pCOVID-19 with pHC, allergic conditions (allergic rhinitis, asthma and atopic 
dermatitis) were also included as a variable in multivariate regression analysis. 
These analyses were completed with IBM SPSS Statistics version 27 and GraphPad 
Prism version 9 software.

For the random forest classification, we used Python version 3.8.10 and the 
following libraries: pandas 1.1.2, numpy 1.18.5, scikit-learn 0.23.2 and matplotlib 
3.3.2. Three models were trained with 53 attributes: (training set size/validation set 
size/accuracy) pHC versus MIS-C (n = 78/n = 20/95%), MIS-C versus pCOVID-19 
(n = 82/n = 21/100%) and pHC versus pCOVID-19 (n = 87/n = 22/100%), trained 
with Python sklearn library’s RandomForestClassifier object, using the following 
parameters: n_estimator = 2,000 and random_state = 42 for dataset. Results 
represent the relative importance of each of the 53 attributes provided by the model 
attribute RandomForestClassifier.feature_importances_. Attribute’s direction of 
influence was based on the increase/decrease of its mean values between compared 
groups. For the comparison of pHC with pCOVID-19, the classification was then 
repeated after the exclusion of allergic pHC, with similar results.

Spike protein measurement. Patient serum was collected and analyzed for the 
concentrations of spike protein using the COVID-19 S-Protein (S1RBD) ELISA 
kit (ab284402, Abcam). Recombinant SARS-CoV-2 S1 + S2 ECD (S-ECD) protein 
(RP01283LQ, ABclonal) was spiked at increasing concentrations into pre-COVID 
serum from healthy controls and was used as standard for the calculation of the 
spike protein concentration. Pre-COVID-19 pediatric (n = 7, age 7–18 years) and 
adult (n = 9, age 19–63 years) serum samples were used as controls.

SARS-CoV-2 antibody testing. SARS-CoV-2 anti-S and anti-N antibody testing 
was performed via luciferase immunoprecipitation systems assay, as previously 
described65.

NanoString assay. Total RNA was extracted from whole blood samples collected 
in PAXgene tubes (Qiagen). Gene expression of selected genes was determined 
by NanoString (NanoString Technologies), and 28-gene type I IFN and 11-gene 
NF-κB scores were calculated as previously described20. An IFN-γ score was 
calculated based on 15 IFN-γ-regulated genes66. In brief, the 28-gene type I IFN 
score is the sum of the Z-scores of 28 type I IFN response genes; the 11-gene 
NF-κB score is the sum of the Z-scores of 11 NF-κB target genes; and the 15-gene 
IFN-γ score is the sum of the Z-scores of 15 response genes. Individual gene 
Z-scores were calculated using the mean and standard deviation of the NanoString 
counts from pHC. Non-parametric two-tailed Kruskal–Wallis test (corrected for 
multiple comparison) was used for group comparisons, and P values less than 0.05 
were considered statistically significant. Statistical analyses were performed using 
GraphPad Prism version 8.00 for Mac OS.

SOMAscan proteomic discovery platform analysis. SOMAscan (SomaLogic), 
an aptamer-based proteomics assay, was used to measure 1,305 human protein 
analytes in plasma. The platform technology is described in Candia et al.22.  
Sample data were normalized to remove hybridization variation within a run. 
Overall scaling was performed on a per-plate basis to remove overall intensity 
differences between runs. This was followed by median normalization across the 
different sample types to remove other assay biases within the run. The statistical 
analysis of SOMAscan results was performed using R Studio (R Core Team, 2020), 
also using a specifically developed webtool for basic data plotting and analysis63. 
For each group comparison, top upregulated and downregulated proteins were 
identified by selecting all the proteins with false discovery rate (FDR) < 0.05 
and P < 0.05 and then ordering them according to increased or decreased fold 
change, expressed in a log2 scale. Pathway enrichment analysis was performed on 
differentially expressed biomarkers among the groups (pCOVID-19, MIS-C and 
pHC), using the Molecular Signatures Database version 7.4, part of the GSEA 
software, a joint project of the University of California, San Diego and the  
Broad Institute.

Biomarker interaction analysis. The potential interactions between all variables 
in the biomarker and timeline data (MIS-C samples only) were characterized by 
first scaling the values of each variable (with the scale function in R); then, Pearson 
correlation coefficients and random forest regression-based interaction strengths 
between the variables were computed. The latter approach allowed us to integrate 
the biomarker levels with the timeline variables in a multivariate setting while 
taking into account the potential linear and non-linear interactions between all 
variables.

Pearson correlation coefficient values were computed using the corr.test 
function (psych package in R). Biomarkers and the time interval variables were 
ordered by hierarchical clustering (with complete linkage) based on their overall 
correlation patterns that were visualized with the corrplot function (corrplot 
package in R).
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Random forest regression models were built to compute the interactions among 
biomarker levels, gene usage and timeline variables with GENIE3 (Gene Network 
Inference with Ensemble of trees)67 using scaled inputs. Each model was composed 
of 1,000 decision trees that collectively predict a given variable’s value using all 
remaining variables as predictors. GENIE3 algorithm also identifies a predictive 
importance value of a given predictor in each predictor–target pair, which is 
also referred to as the interaction strength67. The median predictive importance 
value (derived by GENIE3) was extracted from the importance distribution 
associated with each predictor versus all its targets in either treatment condition 
(glucocorticoids alone or glucocorticoids + IVIG). The resulting values were 
visualized using the pheatmap and Complexheatmap packages in R. The variables 
were clustered based on the median interaction strength (or predictive importance) 
per variable, by implementing agglomerative hierarchical clustering with Euclidean 
distance and average linkage.

HLA typing. Genomic DNAs were extracted from patients’ whole blood using 
the QIAsymphony DNA Midi Kit and quantified using a fluorescence dye-based 
assay (PicoGreen dsDNA reagent) by a microplate reader (Molecular Devices 
SpectraMax Gemini XS). Whole-genome sequencing libraries are generated 
from fragmented DNA using the Illumina TruSeq DNA PCR-Free HT Library 
Preparation Kit with minor modifications for automation (Hamilton STAR 
Liquid Handling System) and IDT for Illumina TruSeq DNA UD Indexes (96 
Indexes, 96 Samples) adapters. Sequencing libraries were quantified using the 
KAPA qPCR Quantification Kit (Roche Light Cycler 480 Instrument II) and 
combined as 24-plex pools after normalization and sequencing on an Illumina 
NovaSeq 6000 using a S4 Reagent Kit (300 cycles) using 151+8+8+151 cycle run 
parameters. Primary sequencing data were demuxed using the Illumina HAS2.2 
pipeline, and sample-level quality control for base quality, coverage, duplicates 
and contamination (FREEMIX < 0.05 by VerifyBamID) was conducted. All 
sequencing data were then processed with Burrows–Wheeler Aligner and the 
Genome Analysis Toolkit (GATK) best practice pipeline for alignment and variant 
call. Samples underwent whole-genome sequencing at ≥30× median depth. Raw 
FASTQ files were trimmed using Trimmomatic version 0.39 (ref. 68) and mapped 
to the hg38 human reference genome using BWA-MEM version 07.17. PCR 
duplicates were marked using SAMBLASTER version 0.1.2.5 (ref. 69); GATK4 
version 4.1.9.0 was used to perform BAM recalibration; and HLA*LA70 was used 
to call HLA genotypes. Ethnicity was computed from whole-genome sequencing 
data by Peddy using 2,504 genome samples from The 1000 Genomes Project as 
background.

Bulk TCR and BCR repertoire. The CDR3 regions of TRB and IGH 
rearrangements present in PBMC samples were sequenced in a high-throughput 
manner using the immunoSEQ assay after amplification of the extracted DNA in a 
bias-controlled multiplex PCR. The resulting CDR3 sequences were collapsed and 
filtered to quantify the absolute abundance and frequency of each unique CDR3 
region with the Adaptive Biotechnologies pipeline71.

SHM rate was computed by first matching the germline sequences to IMGT 
gene identification and flagging the IGH assay mutations (mismatches) to V-gene 
segments as SHM in the same pipeline. Then, the number of detected SHMs 
was divided by the number of nucleotides in the region where each SHM set is 
observed (V gene region) to compute the fraction of clonotypes with greater than 
1% SHM rate per nucleotide.

We computed the bulk TCR and BCR repertoire statistics, including gene 
usage, using immunarch72. Gene usage was defined as the fraction of unique 
clonotypes per sample in which a given gene is present. SARS-CoV-2-specific 
breadth and depth of each sample was computed using the approach described 
in Snyder et al.71 by using the SARS-CoV-2-specific CDR3 sequences previously 
reported in the ImmuneCODE database73.

The R package ggpubr was used for visualization of the results with violin, 
bubble, box and density plots, whereas the non-parametric Wilcoxon rank-sum 
and Kruskal–Wallis testing and Pearson correlation calculations (along with 
regression lines showing the 95% confidence intervals) were also performed with 
ggpubr. The reported P values and significance levels are based on two-tailed 
testing.

CITE-seq experimental methods. Single-cell CITE-seq processing. Frozen PBMC 
samples were thawed, recovered and washed using RPMI media with 10% FBS and 
10 mg ml−1 of Dnase I (STEMCELL Technologies) and then processed as previously 
described25 for CITE-seq staining. In brief, samples from different donors were 
pooled, and different time points from the same donor were pooled separately so 
that each pool contains only one time point from one donor. PBMC pools were 
Fc blocked (Human TruStain FcX, 1:10 dilution, BioLegend) and stained with 
biotinylated SARS-CoV-2 S1 protein (0.4 µg, Acro Biosystems), TotalSeq-C human 
‘hashtag’ antibodies (1:100 dilution, BioLegend) and TotalSeq-C PE Streptavidin 
(1:500 dilution, BioLegend) and then washed with staining buffer (2% BSA in PBS). 
A fraction of the combined cells was used for sorting non-naive T and B cells (see 
below). For the unsorted cell fraction, hashtagged PBMC pools were combined, 
and cells were stained with a cocktail of TotalSeq-C human lyophilized panel 
(BioLegend) of 188 surface proteins (plus four isotype controls; see repository 

file 10, 50-µl reconstitution for 1 million cells staining). Then, cells were washed, 
resuspended in PBS and counted before proceeding immediately to the single-cell 
partition step.

Sorting of non-naive B and T cell populations. Pooled PBMC samples from different 
donors were washed with PBS and incubated with Zombie Red Fixable viability 
dye (1:1,000 in PBS, BioLegend) for 20 min at 4 °C protected from light. Then, cells 
were washed with flow staining buffer (10% FBS in PBS) and Fc blocked (Human 
TruStain FcX, BioLegend) for 15 min on ice. The fluorescence-labeled antibody 
cocktail against human CD45 (APC/Cyanine7, CD3 (AF488), CD19 (APC), 
CCR7 (BV786), CD95 (BV650), IgD (PerCP-Cy5.5) and CD27 (PE/Cyanine7); all 
antibodies were obtained from BioLegend, and all were used at 1:20 dilution) was 
added at the end of blocking and incubated for 20 min at 4 °C in the dark. Cells 
were washed and sorted on a BD Aria sorter (BD Biosciences) in a Biosafety Level 
3 laboratory. Non-naive B cell populations were gated by CD45+CD19+IgD− or 
CD27+, and non-naive T cell populations were gated by CD45+CD3+CCR7low or 
CD95+.

Single-cell RNA sequencing. PBMC samples were partitioned into single-cell gel 
bead in emulsion (GEM) mixed together with the reverse transcription (RT) 
mix using 5′ Chromium Single Cell Immune Profiling Next GEM (version 
1.1 Chemistry) (10x Genomics), as previously described25. The RT step was 
conducted in the Veriti Thermo Cycler (Thermo Fisher Scientific). Single-cell 
gene expression, cell surface protein and TCR and BCR libraries were prepared as 
instructed by 10x Genomics user guides. All libraries were quality controlled using 
Bioanalyzer (Agilent) and quantified using Qubit Fluorometric (Thermo Fisher 
Scientific). 10x Genomics 5′ single-cell gene expression, cell surface protein tag 
and TCR and BCR libraries were pooled and sequenced on an Illumina NovaSeq 
platform (Illumina) using the sequencing parameters recommended by the 10x 
Genomics 5′ version 1.1 user guide.

Bulk RNA sequencing and single-cell sample demultiplexing. For each sample, 
100,000–500,000 cells were processed in TRIzol using the miRNAeasy Micro Kit 
(Qiagen), and standard RNA sequencing libraries were generated using Illumina 
TruSeq library preparation kits. The results of bulk RNA sequencing were used for 
demultiplex of CITE-seq samples by generating single-nucleotide polymorphism 
(SNP) calls for each donor. Sequencing results were demultiplexed and converted 
to FASTQ format using Illumina bcl2fastq software. The sequencing reads were 
adapter and quality trimmed and then aligned to the human genome using the 
splice-aware STAR aligner, and SNP calls were generated using the previously 
published protocol74. The software package demuxlet was used to then match 
single-cell gene expression data to each donor and identify empty droplets and 
doublets. Because multiple samples from different time points for each donor 
were collected and could not be demultiplexed by this method alone, ‘hashtag’ 
antibodies (BioLegend) were used to uniquely label the different time points.

CITE-seq quantification and statistical analysis. Single-cell data processing 
and clustering. Single-cell data processing, CITE-seq protein data denoise and 
clustering were performed as described previously25. Specifically, Cell Ranger (10x 
Genomics) version 3.1.0 was used to map cDNA libraries to the hg19 genome 
reference and to count antibody tag features. Data were further processed using 
Seurat (version 3.1.0) running in R version 3.6.1. After filtering to single cell based 
on demuxlet output, we further demultiplexed the time points using the hashtag 
antibody staining. We removed cells with less than 250 or more than 4,000 detected 
genes, more than 20% mitochondrial reads, cell surface protein tag greater than 
200,000 and hashtag antibody counts greater than 50,000. The protein data were 
normalized and denoised using the DSB method75. The following parameters 
were used in the DSB normalization function: define.pseudocount = TRUE, 
pseudocount.use = 10, denoise_counts = TRUE and use.isotype.control = TRUE. 
The DSB-normalized protein data, excluding the isotype control antibodies, were 
used to generate the Euclidean distance matrix computed for all single cells. Then, 
the shared nearest neighbor graph followed by k-nearest neighbors clustering 
were built using the FindNeighbors and FindClusters functions in Seurat (version 
3.1.0), respectively. Major cell clusters were then manually annotated using the 
surface protein together with gene expression. Major cell clusters identified based 
on protein expression profile and shown in Fig. 4a included: B_Mem: Memory 
B cells; CD4_Mem: Memory CD4 T cells; CD8_Mem: Memory CD8 T cells; 
CD4_isobinding: isotype antibodies binding CD4 T cells; cDC: Conventional 
dendritic cells; cKit+CD3- activated: cKit high cells with enrichment of activated 
T cell signatures but lacking surface CD3, CD4 and CD8 expression; dim: low 
quality, cell subsets with high mitochondria/ribosome genes and most surface 
markers lowly expressed; DNT: Double negative T cells; HSC: Hematopoietic stem 
or progenitor cells; MAIT: Mucosal-associated invariant T cells; Mono_Classical/
Intermediate/NonClassical: Classical/Intermediate/NonClassical Monocytes; and 
NK_CD16hi/NK_CD56hiCD16lo: CD16 highly expressed/CD56 highly and CD16 
lowly expressed NK cells.

Label transfer for cell annotations. To compare the cell population frequencies 
directly with patients with aCOVID-19 and to avoid potential annotation 
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batch effect, the previously published aCOVID-19 dataset25 was projected onto 
CITE-seq data—query from this experiment in Seurat (version 3.1.0) using the 
FindTransferAnchors function. log-normalization and the first 30 principal 
components were used for the integration. Cell annotations were then predicted 
using the TransferData function, and the predicated labels were added to the 
metadata as predicated.id column.

Pseudo-bulk differential expression and GSEA. Pseudo-bulk gene differential 
expression analysis and GSEA were performed as described previously25. In brief, 
all unsorted cells in a given sample were computationally ‘pooled’ according to 
their cluster assignment by summing all reads for a given gene. Pseudo-bulk 
libraries made up by few cells and, therefore, likely not modeled properly by 
bulk differential expression methods were removed from analysis for each cell 
type separately to remove samples that contained fewer than five cells and fewer 
than 40,000 unique molecular identifier counts detected after pooling. Lowly 
expressed genes were removed for each cell type individually using the filterByExpr 
function from edgeR76. Differentially expressed genes were identified using the 
limma voom77 workflow, which models the log of the counts per million (CPM) 
of each gene. Scaling factors for library size normalization were calculated with 
the calcNormFactors function with method = ‘RLE’. Genes were ranked using 
the moderated T statistics for the relevant coefficient from the limma voom 
model. Enriched gene sets were identified using the pre-ranked GSEA algorithm 
implemented in the fgsea R package. Gene set lists used for enrichment assessment 
(including GO BP, KEGG, Reactome, the Molecular Signatures Database’s Hallmark 
collection, Blood Transcriptomic Modules and a few published datasets) were 
the same as described in Liu et al.25. P values were adjusted using the Benjamini–
Hochberg method for the whole gene set list. Selected pathways shown in figures 
were manually curated to select gene sets relevant to immunology and often 
enriched in several cell types across the various differential expression comparisons.

Models used for differential expression: patients with MIS-C and patients with 
pCOVID-19 versus pHCs. Using the pseudo-bulk limma voom workflow as 
described in ‘Pseudo-bulk differential expression and GSEA’, differentially 
expressed genes between patient samples (with admission days <41) and pHCs 
were identified with a model with the following formula in R: ~0 + mis-c_vs_
pediatric_healthy + age and ~0 + pediatric_covid_vs_healthy + age, where 
patient_vs_healthy is a factor variable with two levels. The contrasts.fit function 
was then used to compare the estimated means between patients and pHCs.

Models used for differential expression: patients with MIS-C versus patients with 
pCOVID-19. Similarly, differentially expressed genes between MIS-C samples 
(with admission days <41) and pCOVID-19 samples were identified with a model 
with the following formula in R: ~0 + mis-c_vs_pediatric_covid + days_since_
admission + age, where mis-c_vs_pediatric_covid is a factor variable with two 
levels, and time effect was considered using the days_since_admission term. The 
contrasts.fit function was then used to compare the estimated means between 
MIS-C and pCOVID-19.

Models used for differential expression: time effect on gene expression in patients 
with MIS-C and patients with pCOVID-19. Differentially expressed genes of 
MIS-C samples and pCOVID-19 samples associated with time, respectively, were 
identified with a model with the following formula in R: ~days_since_admission + 
age. The contrasts.fit function was then used to estimated changes associated with 
disease time course of MIS-C and pCOVID-19, respectively.

Gene set module scores calculation. Selected module scores (gene set signature 
score) representing enriched pathway activities were calculated for each 
sample as reported previously25. Specifically, LE genes identified by GSEA 
from the MIS-C versus pCOVID-19 model above were used to enhance 
signal-to-noise ratio and highlight mainly the differences between MIS-C 
versus pCOVID-19. The pseudo-bulk gene counts were normalized with the 
varianceStabilizingTransformation function from DESeq2 (ref. 78) for the score 
calculation. The scores were generated using the gene set variation analysis (GSVA) 
method from the GSVA R package.

TCR and BCR data processing. Cell Ranger (10x Genomics) version 3.1.0 was used 
to assemble V(D)J contigs (https://support.10xgenomics.com/single-cell-vdj/
software/pipelines/latest/algorithms/annotation). For TCR data, the V(D)
J assignment and clonotype were from 10x Cell Ranger output of the filtered_
contig_annotations.csv file. For BCR data, V(D)J sequencing contigs from 10x Cell 
Ranger output were processed using Immcantation version 3.0.0 toolbox (https://
immcantation.readthedocs.io/en/latest/index.html). IgBLAST and IMGT germline 
sequence databases and Change-O package79 were used for sequence alignment 
and V(D)J annotations. BCR sequence genotype inference and mutation load 
quantification were performed with reference to the pipeline from Mathew et al.80 
using the TIgGER R package81 and the ShazaM R package79. The TCR and BCR 
sequence data, contig assignments and estimated BCR mutation frequencies were 
combined, respectively, using scRepertoire R package and integrated with the 
single-cell RNA sequencing Seurat object in the metadata.

CITE-seq data visualization. For heat maps showing pseudo-bulk gene expression 
profiles, the log of counts per million (CPM) for each sample and gene for a given 
cell type was calculated by pooling cells as described in ‘Pseudo-bulk differential 
expression and GSEA’. Library size normalization was performed without 
additional scaling factors, and heat maps were scaled to Z-score among samples 
for each gene. ComplexHeatmap82 and pheatmap were used for plotting heat maps 
using R. The ggplot2 and ggpubr R packages were used for box, bubble and scatter 
plot visualization.

Validation of gene set enrichments in external single-cell RNA sequening data from 
ref. 13. Single-cell data from the cohort of Ramaswamy et al.13 were downloaded 
from fastgenomics (the Ramaswamy2021_MIS-C_10x_PBMC dataset). Using 
the pre-annotated cell clusters from the original publication, single-cell gene 
expression data were pooled into pseudo-bulk libraries, and differential expression 
and GSEAs of patients with MIS-C versus pHCs were done as described in 
‘Pseudo-bulk differential expression and GSEA’ and ‘Models used for differential 
expression: patients with MIS-C and patients with pCOVID-19 patients versus 
pHCs’. Age was included in the model as a covariate.

HuProt auto-antibody analysis. Auto-antibody analysis was performed 
using HuProt version 4.0 human protein microarrays and processed by CDI 
Laboratories. IgG profiling was performed for 15 serum samples from five children 
with pCOVID-19 and ten children with MIS-C, of whom four had received 
IVIG. In brief, the arrays were blocked and probed with the samples at 1:1,000 
dilution and incubated at room temperature for 1 h. Then, the arrays were washed 
and probed with Alexa Fluor 647 anti-human IgG (Fc) for signal detection as 
previously described. Using CDI software, quantile normalization of the raw signal 
intensities (F635 median for IgG and F532 median for IgA) was performed on all 
arrays. The data of several proteins that directly bind with secondary antibodies 
detected through buffer incubation without any serum were excluded (such as 
IGHG1, IGHG3 and so on) alongside the controls (such as rhodamine+IgG64, 
anti-human IgG and GST 10 ng µl−1). The quantile-normalized IgG binding 
intensities of the remaining 23,040 protein targets were then visualized using 
Morpheus (https://software.broadinstitute.org/morpheus). The t-test was used to 
compare the different groups, and candidates were identified using the following 
criteria: the variance for the data points was greater than 10,000,000; the fold 
change of average signal intensity was greater than 4 between the two groups; and 
the FDR was less than 0.5.

Multiplex particle-based anti-cytokine auto-antibody screening assay and 
functional evaluation. Plasma samples were screened for auto-antibodies against 
IFN-α, IFN-β, IFN-ω and IFN-γ in a multiplex particle-based assay83, in which 
differentially fluorescent magnetic beads were covalently coupled to recombinant 
human proteins (2.5 μg per reaction). Beads were combined and incubated for 
30 min with diluted plasma samples (1:100 dilution). Beads were then washed 
and incubated with PE-labeled goat anti-human IgG (1 µg ml−1) for an additional 
30 min. Beads were washed again, resuspended in assay buffer and analyzed 
on a BioPlex X200 instrument. Plasma samples with a fluorescence intensity 
greater than 1,500 were tested for blocking activity. The blocking activity of 
auto-antibodies was determined by assessing STAT1 phosphorylation in healthy 
control cells after stimulation with the appropriate cytokines in the presence of 
10% healthy control or patient plasma. Surface-stained healthy control PBMCs 
were cultured in serum-free RPMI medium with 10% healthy control or patient 
plasma and were either left unstimulated or stimulated with 10 ng ml−1 of IFN-α, 
IFN-β, or IFN-ω or 400 units per milliliter of IFN-γ for 15 min at 37 °C. Cells 
were fixed, permeabilized and stained for intranuclear pSTAT1 (Y701). Cells 
were acquired on a BD LSRFortessa cytometer, gated on CD14+ monocytes, and 
analyzed with FlowJo software.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Source data and Supplementary Datasets are provided for Figs. 1–5 and Extended 
Data Figs. 1–7. CITE-seq and single-cell TCR and BCR repertoire data have been 
deposited on Zenodo, with the following link:
https://zenodo.org/record/5524378#.YUzcFy1h3GJ.
Bulk TCR/BCR repertoire data are available at https://clients.adaptivebiotech.com/
pub/sacco-2021-misc using the following login credentials: email: sacco-review@
adaptivebiotech.com; password: sacco2021review. Whole-genome sequencing 
data that were used for inputting HLA typing are accessible at https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002245.v1.p1 (Genetic 
Determinants of Susceptibility to Severe COVID-19 Infection). Source data are 
provided with this paper.

Code availability
R scripts that were used in the immune repertoire and gene expression analysis are 
publicly available on GitHub: https://github.com/cihangenome/multiomics-misc.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Differences in soluble biomarker levels among pediatric (pCOVID-19), adult COVID-19 (aCOVID-19), and pediatric and adult 
healthy controls (pHC, aHC). a, Children with mild pCOVID-19 (n = 39) in the first 7 days since symptom onset have significantly higher IFN-α2a 
levels compared to healthy pediatric controls [pHC] (n = 16), healthy adult controls [aHC] (n = 40), children with MIS-C (both in the first 7 days since 
hospitalization: MIS-C Early, n = 36) and later in the course of the disease (MIS-C Late, n = 32)), and adults with moderate acute COVID-19 (aCOVID-19, 
n = 26). Maxima of box plots represent median values, and bars represent interquartile range. Statistical analysis was performed with Kruskal-Wallis 
test with adjustment for multiple comparisons. b-d, Comparison of soluble biomarkers measured within 7 days of symptom onset in children (n = 9) and 
within 7 days of admission in adults (n = 26) with moderate acute COVID-19, as well as pHC (n = 53) and aHC (n = 45), both unadjusted (left graphs, 
Kruskal-Wallis test) and adjusted for the baseline differences in healthy subjects of the same age group (right graphs, two-tailed Mann-Whitney test). 
Bars represent median values and interquartile range. b, Biomarkers whose serum levels were significantly different in pHC and aHC, but not in diseased 
subjects, indicating that the difference of unadjusted blood levels observed between pCOVID-19 and aCOVID-19 is probably driven by age, rather than 
COVID-19 itself. c, Biomarkers that differed significantly in pCOVID-19 vs. aCOVID-19, but not between pHC and aHC, suggesting that the nature and 
severity of inflammatory responses induced by SARS-CoV-2 infection differentially affects patients of different age. d, Biomarkers for which both age and 
SARS-CoV-2 infection independently contributed to differences in levels in children and adults. In all panels, significance is indicated as follows: *, P < 0.05; 
**, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Extended Data Fig. 2 | Profile of soluble biomarkers and results of COVID-19 serology in pediatric COVID-19 (pCOVID-19), children with MIS-C and 
pediatric healthy controls (pHC). a, Analysis of IFN-α2a, IFN-γ, IL-10, CXCL10, CCL2 and ferritin levels over time in 110 pCOVID-19 patients, for 34 
of which more than one sample was obtained during hospitalization. The X-axis shows time from onset of symptoms or (for asymptomatic children) 
positive PCR. b, Comparison of serum biomarker levels in children with early (n = 48, within 7 days since admission) and late (n = 60, >7days) MIS-C, 
pCOVID-19 within 7 days from symptom onset (n = 57) and pHC (n = 53). Median values with IQR are shown. Univariate analysis by Kruskal-Wallis test 
with adjustment for multiple comparisons. P values are marked as follows: * <0.05, ** <0.01, *** <0.001, **** <0.0001. c, Levels of anti-Spike (anti-S) and 
anti-Nucleocapsid (anti-N) antibodies in MIS-C (n = 68) and pCOVID-19 (n = 104) patients and in pHC (n = 53). Blood samples were obtained at a median 
of 4 days after hospitalization (IQR, 1.75-13 days) for MIS-C patients, and at a median of 3 days (IQR, 1-14 days) after onset of symptoms or positive 
PCR for pCOVID-19 patients. Values are expressed in Light Units. Positive values are shown above the grey areas. Positivity cut-off values are 45,000 for 
anti-S, and 125,000 for anti-N antibodies, respectively. Statistical analysis was done with Mann-Whitney test with two-tailed P values. ***, P < 0.001; ****, 
P < 0.0001.
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Extended Data Fig. 3 | Schematic diagram of timing of blood sample collection and administration of therapeutic modalities compared to day of 
admission (day 0) in MIS-C patients. Red circles identify first blood samples collected prior to administration of glucocorticoids, IVIG or biologics. For 
PIMS-006, PIMS-016, PIMS-023, PIMS-032, PIMS-036, PIMS-055, TO-006, TO-034, NAP013, the first blood sample was obtained the same day (and 
immediately prior to) therapeutic interventions with glucocorticoids, IVIG and/or biologics were started. *Levels of soluble biomarkers were not measured 
in the first blood samples obtained from NAP012 and TO-053.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Effect of treatment on levels of soluble biomarkers in MIS-C. a, Biomarker changes following systemic glucocorticoids in 12 MIS-C 
patients. Samples were drawn at a median of 0 days (IQR -1 to 0) prior to (left) and 5 days (IQR 4 to 7.5) after (right) treatment with glucocorticoids 
and IVIG (black lines) or glucocorticoids alone (red lines). Two patients (indicated by blue circles and lines) had received IVIG prior to blood sampling. 
Wilcoxon matched-pairs signed rank test with two-tailed P value was used for comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. b, Comparison of soluble 
biomarker levels in MIS-C Early children (within 7 days since admission) who had not (untreated, n = 12) and in those who had (treated, n = 36) received 
glucocorticoids and/or IVIG prior to blood sampling. Results are compared to levels in MIS-C Late (>7 days since admission) patients (n = 60) and 
pediatric healthy controls (pHC, n = 53). Maxima of box plots represent median values, and bars represent interquartile range. Statistical analysis was 
performed by Kruskal-Wallis test with adjustment for multiple comparisons. P values are marked as follows: * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
c, Random forest classification comparing MIS-C Early (n = 46) to pHC (n = 52), with treatment prior to blood sampling included among the variables. The 
sample cohort is the same as in Fig. 2e.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Immune cell atlas and cell-type specific gene expression profile of MIS-C and pediatric COVID-19 (pCOVID-19). a, CITE-seq 
label transfer from previous adult COVID-19 experiments. Heatmap shows the overlap percentage of predicted markers from label transfer (x-axis) and 
annotated cell populations in this pediatric dataset (y-axis). b, Frequencies of immune cell clusters for non-classical monocytes, plasmacytoid dendritic 
cells (pDC) and CD8 memory T cells in adult healthy controls (aHC, n = 13), adult patients with less severe (disease severity matrix low, DSM_low, n = 13) 
COVID-19, adult patients with more severe (DSM_high, n = 13) COVID-19, pediatric HC (pHC, n = 7), pediatric COVID-19 (pCOVID-19,n = 8) and MIS-C 
patients (n = 7). P values shown were obtained using two-sided Wilcoxon test between indicated two groups. Adult COVID-19 data are from Liu et al, 
2021 (ref. 25). To avoid potential batch effects of independently annotated adult and pediatric populations, cell frequencies of pediatric dataset shown were 
obtained by label transfer from adult data (See Methods and panel a). Each dot indicates a subject. Only the first timepoint from each subject is shown. 
Box plot elements are the same as in Fig. 4e. c, Enrichment Analysis of pCOVID-19 (n = 7) vs. pHC (n = 7) at timepoints within 40 days of admission. 
Selected gene sets are grouped into functional/pathway categories. Dot color denotes normalized gene set enrichment score and size indicates –
log10(adjusted p value). P values were adjusted using the Benjamini-Hochberg method. d, From left to right: UMAP of monocyte RNA expression clusters, 
surface CD163 expression (FDR adjusted p value comparing surface CD163 expression of MIS-C monocytes vs. pHC and pCOVID-19 monocytes is shown) 
and expression of S100A family inflammatory genes which are differentially expressed in monocytes of MIS-C versus pHC. Cells from all time points are 
shown (pHC, n = 7; pCOVID-19, n = 8; MIS-C, n = 10, with two timepoints included for 3 MIS-C patients).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | SARS-CoV-2 specific clonotypes, characteristics of TRBV11-2 + clonotypes, and correlation with soluble biomarkers. a, Breadth 
of SARS-CoV-2 specific TRB clonotypes in pHC, pCOVID-19 and MIS-C patients. b, Ratio of SARS-CoV-2 specific CDR3 clonotypes among unique 
TRBV11-2-positive versus TRBV11-2-negative clonotypes in pHC, pCOVID-19 and MIS-C. c, Simple linear regression analysis, correlating frequency of 
TRBV11-2 clonotypes and soluble biomarker levels. R squared goodness of fit and p values are shown. d, Gene expression of TRBV11-2 positive (TRBV11-2pos) 
compared to TRBV11-2 negative (TRBV11-2neg) CD4 + T cells within MIS-C samples (n = 10, 3/7 patients with 2 time points). Differentially expressed genes 
with adjusted p value < 0.2 are marked with an asterisk (*). Scaled average gene expression level of TRBV11-2neg and TRBV11-2pos CD4 + T cells is shown in 
all 3 groups (pHC, pCOVID-19, and MIS-C). e, Heatmap showing the marker genes of TRBV11-2pos MIS-C CD4 + T cells compared to TRBV11-2neg CD4 + T 
cells. f, Gene set pathway enrichment analysis (GSEA) of apoptosis signature in TRBV11-2pos CD4 + T cells from MIS-C patients (n = 7, 3/7 patients with 
2 time points). Dot color denotes normalized gene set enrichment score and size indicates –log10(adjusted p value). P values were from GSEA test of 
the whole gene sets (see: Methods) and adjusted using the Benjamini-Hochberg method. g, Pearson correlation coefficient values between indicated 
variables. The top 50th percentile predictors of TRBV11-2 gene usage are shown. Analysis conducted on 92 samples collected at various timepoints after 
hospitalization from 56 MIS-C patients who received glucocorticoids. Time interval and glucocorticoid interval are defined as days since admission and 
since initiation of systemic glucocorticoids, respectively. h, Pairwise interaction strengths derived from random forest regression analysis. Columns identify 
predictors, and rows correspond to targets. Input data are the same as in panel f. In panels a and b, values are for 21 samples from 21 pCOVID-19, 96 
samples from 58 MIS-C, and 13 samples from 13 pHC subjects. Box plots show the median, first and third quantiles (lower and upper hinges) and smallest 
(lower hinge - 1.5*interquartile range) and largest values (upper hinge + 1.5* interquartile range) (lower and upper whiskers). Statistical analysis was done 
with two-tailed Wilcoxon test. In panels d and e, average log fold change (logFC) threshold 0.2 and p value 0.2 were used for marker gene cutoff, and P 
values were calculated using the Wilcoxon Rank Sum test and adjusted using FDR method.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | IGHV gene usage, mutation frequency and surface markers associated with mutation frequency. a, Usage of IGHV genes in 
pediatric healthy controls (pHC, n = 13 samples from 13 subjects), children with acute COVID-19 (pCOVID-19, n = 18 samples from 15 patients) and MIS-C 
(n = 23 samples from 19 patients). ns, not significant; *,p ≤ 0.05; **p ≤ 0.01; ***, p ≤ 0.001; ****, p ≤ 0.0001. Statistical analysis was done with Kruskal-
Wallis test with unadjusted P values, with box plot showing the median, first and third quantiles (lower and upper hinges) and smallest (lower hinge - 
1.5*interquartile range) and largest values (upper hinge + 1.5* interquartile range) (lower and upper whiskers). b, Frequency of IGHV4-34 B cell clonotypes 
in pHC (n = 7), pCOVID-19 (n = 8) and MIS-C (n = 8, 2 of which with 2 timepoints) within 40 days of admission. P values shown were obtained using two-
sided Wilcoxon test between indicated two groups. Each dot indicates a sample. Box plot elements are the same as Fig. 4e. c, Fraction of IGHV clonotypes 
with a somatic hypermutation (SHM) rate >1% among unique clonotypes identified by high-throughput sequencing. Unadjusted P values (Wilcoxon 
rank sum test) were as follows: pHC versus pCOVID-19, P = 0.514; pHC versus MIS-C, P = 0.028; pCOVID-19 versus MIS-C, P = 0.016. d, Quantification of 
somatic hypermutation in memory B cells from pHC (n = 7), pCOVID-19 (n = 8) and MIS-C (n = 7, 3 of which with 2 timepoints) patients. P values shown 
were obtained by applying two-sided Wilcoxon test between indicated two groups. Each dot indicates a cell. Box plot elements are the same as Fig. 4e. e, 
B cell surface markers correlating with mutation frequency in memory B cells from MIS-C patients. Pearson correlation values are shown (x-axis). Top 10 
and a few selected significant markers are shown. S1 probe: SARS-CoV-2 spike protein probe. f, Plasmablast cell surface markers correlating with mutation 
frequency from MIS-C patients. Pearson correlation values are shown (x-axis). Top 10 significant markers are shown.
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Extended Data Table 1 | Statistical analysis of differences in individual biomarker levels in two-group comparisons
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Extended Data Table 2 | Biomarkers with significantly different concentrations in the first 7 days of illness (for pCOVID-19) or 
hospitalization (for MIS-C) by multivariate analysis adjusted for gender, age and ethnicity
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Extended Data Table 3 | HLA allele composition in Italian patients with MIS-C compared to children with COVID-19 and healthy 
children
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