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Prediction of brain metastasis development 
with DNA methylation signatures

Jeffrey A. Zuccato    1,2, Yasin Mamatjan    1,3,14, Farshad Nassiri1,2,14, 
Andrew Ajisebutu1,14, Jeffrey C. Liu1,14, Ammara Muazzam    4, Olivia Singh1, 
Wen Zhang4,5, Mathew Voisin    1,2, Shideh Mirhadi4,5, Suganth Suppiah1,2, 
Leanne Wybenga-Groot    4,6, Alireza Tajik1,7, Craig Simpson    4,6, Olli Saarela8, 
Ming S. Tsao    9, Thomas Kislinger10,11, Kenneth D. Aldape    12, 
Michael F. Moran4,5,10, Vikas Patil    1   & Gelareh Zadeh    1,2,13 

Brain metastases (BMs) are the most common and among the deadliest 
brain tumors. Currently, there are no reliable predictors of BM development 
from primary cancer, which limits early intervention. Lung adenocarcinoma 
(LUAD) is the most common BM source and here we obtained 402 tumor and 
plasma samples from a large cohort of patients with LUAD with or without 
BM (n = 346). LUAD DNA methylation signatures were evaluated to build and 
validate an accurate model predicting BM development from LUAD, which was 
integrated with clinical factors to provide comprehensive patient-specific BM 
risk probabilities in a nomogram. Additionally, immune and cell interaction 
gene sets were differentially methylated at promoters in BM versus paired 
primary LUAD and had aligning dysregulation in the proteome. Immune cells 
were differentially abundant in BM versus LUAD. Finally, liquid biomarkers 
identified from methylated cell-free DNA sequenced in plasma were used 
to generate and validate accurate classifiers for early BM detection. Overall, 
LUAD methylomes can be leveraged to predict and noninvasively identify BM, 
moving toward improved patient outcomes with personalized treatment.

Brain metastases (BMs) are the most common intracranial cancer 
type and they lead to a very poor median overall survival (OS) of 10–16 
months, despite advances in standard-of-care treatment1,2. Lung adeno-
carcinoma (LUAD) primary cancers are the most prevalent source of 
BMs and more than 30% of patients with LUAD develop BMs2–4. Pres-
ently, BMs are primarily identified once patients develop headaches 
or neurological symptoms; unfortunately, treatment at this stage is 
mainly palliative with surgery or radiotherapy1,5. Accordingly, a major 

limitation in current clinical care of patients with cancer is the inability 
to reliably identify patients at risk of developing BMs so that early detec-
tion and treatment can be initiated, due to the absence of predictive 
biomarkers. Early detection of BMs while they are smaller in size allows 
for improved tumor control, decreased morbidity and ultimately longer 
OS5. The Cancer Genome Atlas (TCGA) Research Network6,7 performed 
an extensive multi-omic analysis of LUAD that has been informative; 
however, a limitation is the availability of follow-up clinical data on BM 
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of primary LUAD-BM with comprehensive clinical annotation. We built 
a methylation-based model that predicts BM development in patients 
with primary LUAD, with utility as a reliable biomarker to advance 
cancer care toward early BM detection and treatment, reduction of 
neurological morbidity and prolongation of survival.

Studying the methylation profiles of LUADs that develop or do 
not develop BMs as well as paired primary LUAD and BM tumors, we 
established the landscape of methylation and copy number (CN) dif-
ferences associated with BM development. Proteomics data from 
LUAD and BM were used to identify gene sets associated with BM that 
are both differentially methylated and have aligning upregulation or 

development, leaving a gap in the ability to build predictive models 
of BM8.

There is increasing recognition of the clinical utility of DNA meth-
ylation signatures to improve the accuracy of brain tumor diagnosis 
and classification9–12. Notably, our team and others showed that predic-
tive models using methylation signatures can also determine survival 
outcomes for brain tumors, including meningioma and, most recently, 
chordoma13–15. In this study, we investigated leveraging methylation 
signatures in primary LUAD to generate predictive models of BM devel-
opment. We generated a large LUAD methylation dataset of 402 tumor 
tissue and plasma samples from 346 patients, including paired samples 
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Fig. 1 | DNA methylation-based prediction of BM development from LUAD 
tissue. a, Flow diagram depicting the machine-learning approach used to build 
and evaluate the 5-year LUAD-BM predictor. b,c, Evaluation of the predictor 
model in the independent validation dataset. b, Kaplan–Meier plot and log-
rank test using the tertiles of the BM predictor outputs in the independent 
validation cohort, showing that high risk scores capture early BM events; few 
low-risk patients developed BM within 5 years. c, Results of the univariable Cox 
proportional hazards model using numeric methylome risk scores from the 
5-year predictor in the validation dataset samples, showing significant utility in 
predicting BM development (n = 60). The box with the whiskers displays the HR 

and 95% CI. d,e, Identification and validation of the features selected for model 
building. d, Hierarchical clustering of the discovery cohort LUAD tissue samples, 
using the 5,553 BM-predictive CpG sites identified within this discovery cohort, 
revealed one cluster (cluster 1) with a higher proportion of BM and shorter time 
to BM development, as expected. e, Hierarchical clustering of the validation 
cohort LUAD samples using the same features from the discovery dataset also 
identified more frequent BM in cluster 1, along with a higher event risk shown 
in a Kaplan–Meier plot with log-rank test for the independent data. * denotes a 
significant P value.
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downregulation in the proteome, including immune-related and cell 
interaction-related pathways.

Additionally, we previously demonstrated that tumor-specific 
methylome-based biomarkers circulating in the plasma of patients can 
be used to diagnose and discriminate between gliomas and between 
systemic cancers15–19. In this study, we explore the utility and accuracy 
of noninvasive plasma biomarkers for early BM identification. We show 
that plasma cell-free (cf) circulating tumor (ct) DNA methylomes can 
noninvasively differentiate BM from other main differential diagnoses 
with high accuracy via peripheral blood sampling, extending beyond 
previous work to focus on tumors that are difficult to differentiate on 
neuroimaging20.

Results
Clinical-methylomic BM prediction
DNA methylation-based BM prediction. We generated and analyzed a 
clinically annotated cohort of 166 primary LUAD tumors with detailed 
clinical data, including cancer stage and epidermal growth factor 
receptor (EGFR) mutational status (Extended Data Table 1) along with 
time to BM outcome data. We analyzed the methylation profiles of 
these 166 primary LUAD tumors. The flow diagram in Fig. 1a shows 
the modeling approach used to build a pipeline that is predictive of 
BM development in a discovery dataset (n = 106) and then evaluated 
in an independent validation dataset (n = 60). A total of 5,553 differ-
entially methylated CpGs significantly predicted BM development in 
the discovery dataset univariable Cox models and were used for model 
building. These features were used to develop the methylome-based 
predictor of BM development within 5 years from primary LUAD diag-
nosis, using a gradient-boosted regression model within the discovery 
dataset (Fig. 1a).

This BM predictor model was applied to the independent valida-
tion cohort, which was not used for feature selection or model building, 
to assess its performance. Tertiles of predictor output scores (high, 
intermediate and low risk) were observed to stratify patients according 
to BM risk in a Kaplan–Meier plot (P = 0.0031; Fig. 1b), demonstrating 
their predictive utility within independent data. Additionally, output 
scores predicted BM development in both univariable (hazard ratio 
(HR) = 5.65, 95% confidence interval (CI) = 1.85–17.2, P = 0.0023; Fig. 1c) 
and multivariable Cox models that controlled for relevant clinical 
variables (HR = 8.92, 95% CI = 1.97–40.5, P = 0.0046; Fig. 2a) in the 
validation dataset, showing the utility of the numeric output values 
(not grouped) while also establishing that their utility is independent 
of clinical factors. The accuracy of the predictor in identifying BM 
development within 5 years using averaged bootstrapped methylation 
predictor scores (area under the receiver operating characteristic curve 
(AUROC) = 0.81) was higher than that of an equivalent stage-based 
predictor (AUROC = 0.65) in the independent validation dataset (dAU-
ROC = 0.16; Fig. 2b), representing its utility over a representative clini-
cal approach.

The features used for model building were used for hierarchical 
clustering of both discovery (Fig. 1d) and validation datasets (Fig. 1e) 
after all model building and evaluation were complete to demonstrate 
the distribution of the beta values in each cohort. One cluster in each set 
(‘cluster 1’) contained higher proportions of primary LUAD tumors that 
developed BM over 5 years of follow-up (71.0 and 66.7%, respectively) 
compared to cluster 2 (24.0 and 24.4%, respectively) and had different 
methylome signals in the heatmaps.

To define risk groups using methylome risk scores, an optimal 
methylome risk score cutoff of 0.456 was identified in an analysis to 
maximize the Youden index in the discovery cohort data and applied 
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Fig. 2 | Utility of DNA methylation-based prediction of BM development 
over stage-based prognostication. a, Multivariable Cox proportional hazards 
modeling of BM development demonstrating that methylome risk scores 
have prognostic utility that is independent of clinical factors, including TNM 
component cancer staging scores (n = 56). The boxes with whiskers display 

the HR and 95% CI. b, AUROC performance metrics showing higher accuracy in 
differentiating patients who develop BM within 5 years using methylome-based 
predictor scores compared to stage-based prediction in the validation dataset 
(n = 42). * denotes a significant P value.
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to the validation dataset to derive high-risk and low-risk groups. The 
corresponding high-risk LUAD group had statistically significantly 
poorer BM outcomes than the low-risk LUAD group in a log-rank test 
(Kaplan–Meier plot, P = 0.0034; Extended Data Fig. 1a), univariable Cox 
model (HR = 3.53, 95% CI = 1.44–8.63, P = 0.0058; Extended Data Fig. 1b) 
and multivariable Cox model (HR = 3.56, 95% CI = 1.27–9.95, P = 0.0156; 
Extended Data Fig. 1c) using the validation dataset.

We evaluated the potential utility of methylome risk scores for 
predicting extracranial metastases. For patients without BM in the 
validation cohort, we assessed whether BM risk scores were predictive 
of the development of extracranial metastases. Methylome risk scores 
did not statistically significantly predict extracranial metastases in a 
univariable Cox model in the validation dataset (HR = 2.1, 95% CI = 0.2–
20.5, P = 0.517), as expected given that they were trained to predict BM. 
Additionally, we did not find an association between methylome risk 
scores and patient age (Pearson R2 = 0.0024, P = 0.71).

Representative clinical cases that illustrate the opportunity for 
potential escalation of treatment based on patient methylome-based 
BM risk scores are shown in Extended Data Fig. 1d. The first case is a 
stage I patient considered lower risk for BM development based on 
clinical factors; however, they had a high methylation-based score 
and in fact developed a BM after 1.8 years. The second case is a stage III 
patient considered as a high-risk individual based on clinical factors; 
however, they did not develop a BM over 8.1 years; the BM predictor 
score was indeed low.

Comprehensive clinical-methylomic BM-predictive nomogram. 
Next, we aimed to build a comprehensive nomogram model that 
incorporates methylation-based predictor scores with prognostic 
clinical factors independently in univariable Cox models (Extended 
Data Fig. 2a), complementary in a minimum redundancy maximum 
relevance ensemble analysis, and contributory to nomogram out-
puts together with predictor scores. Using this approach, TNM 
staging scores were identified for inclusion together with numeric 
methylome-based predictor values, which better discriminated risk 
compared to risk score groups. Figure 3a shows the final nomogram 
incorporating these variables to estimate composite 5-year BM devel-
opment probabilities.

The performance of the nomogram was then evaluated in the 
independent validation dataset using the nomogram output scores. 
Nomogram scores stratified according to the median into higher-risk 
and lower-risk groups had significantly different BM event rates 
(Kaplan–Meier plot, P < 0.0001; Fig. 3b). In a univariable Cox model, 
numeric nomogram scores significantly predicted BM development 
(HR = 17.2, 95% CI = 4.13–71.3, P < 0.0001; Fig. 3c), with a higher HR than 
that of methylome scores alone (Fig. 1e) or individual clinical factors 
alone (Extended Data Fig. 2a), including T and N scores, which would 
currently be used clinically to predict outcomes in patients with non-
metastatic cancer (M0) who have a more favorable prognosis and may 
benefit most from BM prevention or early management, compared 
to M1 patients who have already developed metastases. Additionally, 
nomogram evaluation with a mean-time-dependent 5-year AUROC in 
the validation dataset showed reliable detection of tumors that devel-
oped BM within 5 years (AUROC = 0.82, 95% CI = 0.77–0.86; Fig. 3d).

Predictor and nomogram utility across the spectrum of disease. 
We next assessed whether the methylome-based BM predictor was 
built to discriminate BM risk in different cancer stages representing 
the degree of disease burden. We also compared these scores strati-
fied according to EGFR mutant and wild-type (WT) status as major 
molecular subtypes of LUAD. Predictor score tertiles stratified patients 
into high, intermediate and low BM risk subsets across all these patient 
groups, showing that the predictor was developed for the spectrum 
of LUAD disease (Fig. 4a). High BM risk determined by the optimal 
Youden cutoff was also well correlated with BM development within 

5 years across the spectrum of LUAD disease (Extended Data Table 2). 
Nomogram risk scores were also built to discriminate BM risk in both 
EGFR mutant and WT tumors (Fig. 4b).

Methyloproteomic/CN alterations associated with BM
Methyloproteomic alterations in primary LUAD that develop BM. 
To characterize alterations in LUAD that develop BM, we analyzed the 
methylation signatures and CN alterations in primary LUAD that sub-
sequently developed BM over 5 years versus those that did not develop 
BM. We identified differentially methylated CpGs in primary tumors 
that developed BM and characterized gene sets differentially methyl-
ated at promoters using a gene set enrichment analysis (GSEA). The key 
pathways identified in the GSEA related to hypomethylated immune 
and hypermethylated differentiation and development pathways in 
LUAD that developed BM (Extended Data Fig. 3a).

We then generated proteomics data from LUAD tumors and identi-
fied gene sets upregulated and downregulated in the proteome in LUAD 
that developed BM over 5 years compared to those that did not. Upregu-
lated gene sets were mainly immune-related (Extended Data Fig. 4a); 
downregulated gene sets were mainly cell interaction and differentia-
tion and development-related (Extended Data Fig. 4b). Aligning gene 
sets upregulated in the proteome and hypomethylated in LUAD with BM 
or downregulated in the proteome and hypermethylated in LUAD with 
BM are shown in Extended Data Fig. 3b, with immune pathway upregu-
lation and hypomethylation in LUAD with BM being the main finding.

Additional LUAD proteomics data were acquired from the publicly 
available National Cancer Institute’s Clinical Proteomic Tumor Analysis 
Consortium (CPTAC) dataset for assessment in an independent cohort 
with matched DNA methylation data. The methylome-based predictor 
from Figs. 1 and 2 was used to obtain methylome-based BM risk scores for 
this dataset; patients were split into high-risk and low-risk groups based 
on the optimal risk score cutoff (Extended Data Fig. 1a–c). We identified 
gene sets upregulated and downregulated in the proteome in LUAD with 
high versus low BM risk scores. Upregulated gene sets were related to 
mainly immune and cell cycle pathways (Extended Data Fig. 4c) while 
downregulated gene sets were related to mainly immune and cell inter-
action pathways (Extended Data Fig. 4d). The alignment of gene sets 
both upregulated in the proteome and hypomethylated in LUAD with 
BM or downregulated in the proteome and hypermethylated in CPTAC 
LUAD with high BM risk scores is shown in Extended Data Fig. 3c. Immune 
pathway upregulation and hypomethylation in LUAD with high BM risk 
scores is again the main finding that aligns closely with the result derived 
from the study proteomic data (Extended Data Fig. 3b).

CN alterations in primary LUAD that develop BM. Next, we evalu-
ated all significant chromosome-level and gene-level CN alterations in 
primary tumors that develop BM (q < 0.25 in a, P < 0.05 in b; Extended 
Data Fig. 5a,b) within univariable Cox models to assess their prognostic 
utility for BM. Those that were predictive of BM development were 
8q23.2, 21q21.3, ACTG2, BLM, FGFR3, MCL1, CCND1, EGFR, MDM2 and 
MYC (Extended Data Fig. 5c); only the last four have been well described 
in BM from LUAD previously21. These CN alterations were then evalu-
ated in separate multivariable Cox models using the validation dataset, 
together with the nomogram risk scores, to determine whether any of 
the CN alterations predicted BM development independently of our 
nomogram scores and found that none were independently prognostic 
(Extended Data Fig. 5c). Therefore, these CN alterations were consid-
ered genomic correlates of nomogram risk scores with amplifications 
of EGFR, 8q23.2, MCL1, MYC, MDM2, CCND1 and FGFR3 plus deletions 
of ACTG2 correlating with higher BM risk scores while deletions of BLM 
and 21q21.2 were correlates of lower scores (Extended Data Fig. 5c).

Cell type abundance in primary LUAD that develop BM. We also 
deconvoluted methylation profiles into fractions of microenviron-
mental cells for both LUAD that develops BM and LUAD that did not 
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develop BM. Many immune cell types plus fibroblasts and endothelial 
cells were differentially abundant in the microenvironment of LUAD 
that developed BM (Extended Data Fig. 6), particularly cytotoxic T 
lymphocytes and monocytes. Cell fractions of cytotoxic T lymphocytes 
and monocytes were not significantly predictive of BM development 

in univariable Cox models (P = 0.1510 and P = 0.1570, respectively) or 
in multivariable Cox models adjusting for DNA methylation-based 
risk scores (P = 0.2713 and P = 0.4711, respectively). A multivariable 
Cox model incorporating methylome risk scores with the ratio of 
cytotoxic T lymphocytes to monocytes incorporating both cell types 
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significantly increased BM risk with increasing nomogram score (n = 60). The box 
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demonstrated the prognostic utility of methylome scores (HR = 7.5, 
95% CI = 2.4–23.5, P = 0.0006) independently of the ratio of immune 
cell fractions that was not prognostic (P = 0.7479). Of the 5,553 
BM-predictive CpGs (Fig. 1a), 106 were included within the 1,184 CpG 
signatures used for methylCIBERSORT modeling, representing the 
overlap between these two signature sets.

Methyloproteomic alterations in matched LUAD-BM pairs. We 
next built a unique cohort of BM tumors paired to the matched pri-
mary LUAD tumor and evaluated differential methylation, CN and cell 

deconvolution between BM and primary lung tumors. Differentially 
methylated CpGs between paired tumors were mapped to gene pro-
moters and evaluated in a GSEA that showed immune, differentiation 
and development, and cell interaction-related pathways differentially 
methylated and mainly hypermethylated at promoters in BM tumors 
(Extended Data Fig. 7a).

Publicly available paired BM and primary LUAD proteomic data 
were acquired22. Gene sets upregulated and downregulated in BM 
versus paired LUAD were identified; aligning gene sets upregulated 
in the proteome and hypomethylated in BM or downregulated in 
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both EGFR mutation statuses (bottom). b, Kaplan–Meier plots with log-rank 
tests showing that BM nomogram scores stratified according to the median 
distinguish high-risk and low-risk patients across both EGFR mutation statuses.
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the proteome and hypermethylated in BM are shown in Extended 
Data Fig. 7b. Alignment was mainly in immune-related and cell 
interaction-related pathways downregulated in the proteome and 
hypermethylated in BM compared to paired primary LUAD.

We then generated proteomics data from BM tumors and per-
formed nonnegative matrix factorization for clustering to further 
assess and characterize proteomic alterations within the BM data-
set. Five main metaprograms were identified, which were related to 
immune function, cell interaction, cell cycle and central nervous system 
(CNS) development (Extended Data Fig. 7c).

CN and cell type abundance in matched LUAD-BM pairs. Addition-
ally, we examined chromosome-level and gene-level CN alterations in 
BM relative to paired LUAD tumors to further characterize alterations 
in LUAD-BM pairs. BM samples showed deletions across 7q, 8p, 9, 10, 
12–16 and 22q (q < 0.25) and greater deletion to GLI2 and FGFR1, greater 
amplification in NF1 and KDM2A, less deletion to ALK and less amplifica-
tion in STK11 relative to paired LUAD tumors (P < 0.05) (Extended Data 
Fig. 8a). We also deconvoluted methylation profiles into fractions of 
cancer cells and microenvironmental cell types, and showed that many 
immune cell types plus fibroblasts made up significantly different frac-
tions of the BM tumor microenvironment than that of paired primary 
LUAD tumors (Extended Data Fig. 8b). The overall lower abundance of 
immune and extracellular matrix-related cell types in the BMs aligns 
with the hypermethylation of promoters and downregulation in the 
proteome of related pathways (Extended Data Fig. 7b).

Plasma methylome biomarkers for BM liquid biopsy
We next aimed to determine whether plasma methylation signatures 
can be used to noninvasively distinguish BM from other brain lesions, 
which may be used to diagnose BM once they develop in patients pre-
dicted to be at high risk using our nomogram. For this analysis, we 
developed and evaluated 50 iterations of plasma methylome-based 
glmnet classifiers of BM versus main tumors within a typical differ-
ential diagnosis (gliomas and CNS lymphoma), plus non-brain-tumor 
controls, as shown in the flow diagram in Fig. 5a and as we have used 
previously15–17. For each model iteration, plasma samples were split into 
a random 80% discovery dataset used for feature selection for model 
building. Features used were the combination of the top 300 differen-
tially methylated regions (DMRs) in each pairwise class comparison 
within the discovery dataset; these features were observed to clearly 
cluster BM from other classes in a multidimensional scaling (MDS) 
plot of all samples, demonstrating their discriminative value (Fig. 5b).

The 20% independent validation datasets were used to assess 
model performance where the BM-versus-others classifiers accurately 
distinguished BM samples from those of main clinical differential 
diagnoses and non-CNS cancer controls (median AUROC = 0.80, 95% 
CI = 0.68–0.93; Fig. 5c). Therefore, the plasma methylome-based mod-
els were able to noninvasively identify and confirm BM diagnoses in 
patients with LUAD who developed brain lesions with high accuracy. 
Additionally, BM plasma methylome signals were well correlated 
with BM tissue methylation values in patients with matched paired 
plasma and tissue samples (median Spearman rank correlation coef-
ficient = 0.62, 95% CI = 0.55–0.69, P < 2.2 × 10−16; Fig. 5d). This correla-
tion is similar to what we showed previously for other tumor types and 
provides further support for the recovery of ct methylomes using our 
plasma-based approach15–17, which we now leveraged for ctDNA-based 
BM classification from clinical differential diagnoses and non-CNS 
tumor controls.

Representative cases of the BM-versus-others classifiers accu-
rately identifying a BM in Fig. 5e and a non-BM (that is, ‘other’) in Fig. 5f 
are shown, with the box plots depicting probability values of a BM 
classification for each of the cf methylated DNA immunoprecipitation 
and high-throughput sequencing (cfMeDIP–seq)-based models where 
the case was within the testing dataset and not used in model building.

Additional independent assessment and validation
All three methylome-based models underwent further validation in 
additional independent datasets. The methylome-based BM predic-
tor and clinical-methylomic nomogram were both evaluated in the 
external publicly available TCGA validation cohort for their utility in 
predicting distant metastases from primary LUAD, which is the most 
relevant available clinical variable in this cohort as BMs are the most 
common site of distant lung metastases23,24. When applied to the TCGA 
cohort for further validation, metastasis development was predicted by 
both the methylome-based predictor (multivariable Cox HR = 2.8, 95% 
CI = 1.1–7.4, P = 0.0391; Fig. 6a) and the composite nomogram (mean 
time-dependent AUROC = 0.78 95% CI = 0.76–0.79; Fig. 6b).

The methylome-based BM predictor was also evaluated in TCGA 
methylation data from lung squamous cell carcinoma (LUSC) with 
distant metastasis clinical data to determine whether it is generaliz-
able to another lung cancer subtype. Methylome risk scores did not 
statistically significantly predict distant metastases (univariable Cox 
HR = 1.20, 95% CI = 0.48–2.95, P = 0.698; Extended Data Fig. 2b). Addi-
tionally, TCGA LUAD clustered distinctly from TCGA LUSC using the 
5,553 BM-predictive CpGs sites (Fig. 1a), showing significant differences 
in the methylomes of these two tumor types (Extended Data Fig. 2c).

Furthermore, the plasma methylome-based BM-versus-others 
(glioma, CNSL, non-tumor control) classifiers were applied to an addi-
tional independent BM plasma cohort, where they reliably classified 
BM samples as BM (median accuracy = 74.2%, 95% CI = 63.0–85.3%; 
Fig. 6c) for further validation. The set of DMRs identified between all 
four entities in plasma cfMeDIP–seq data were used for MDS plotting of 
an independent external publicly available tissue methylation dataset 
for additional validation and demonstration of tumor specificity of 
plasma-based features. The resulting MDS plot in Fig. 6d shows distinct 
clustering of BM tissue samples from gliomas, CNSLs and non-brain 
tumor controls using independently identified, plasma-based features.

Discussion
A continued limitation in the management of patients with cancer is 
the inability to reliably predict who is at risk of developing BM and 
thereby experiencing worse outcomes. In this study, we demonstrated 
the first use of primary lung cancer tissue methylation signatures to 
accurately predict and estimate the risk of BM development, using 
a validated predictive model that has significantly greater utility 
than current clinical approaches using cancer staging to predict BM. 
Building on the strength of this methylation-based predictor is our 
validated comprehensive clinical-methylomic nomogram that also 
takes into consideration and integrates TNM scores as statistically sig-
nificant complementary clinical variables. The composite nomogram 
robustly determined patient-specific composite BM risk probabilities; 
we illustrate the nomogram as a visual calculator to demonstrate fea-
sibility for future clinical use. We believe that accurate prediction of 
BM development will move us toward a transformation in care, with 
individualized, biomarker-driven management decision. Specifically, 
high-risk patients may receive more aggressive initial primary cancer 
management to reduce BM risk, potentially offering radiotherapy and 
chemotherapy in early-stage patients with high risk scores, as well as 
frequent early surveillance brain imaging to detect BMs that develop 
at an early stage rather than once they enlarge and cause neurological 
symptoms, where treatment has less morbidity and is more likely to 
achieve tumor control25. More patient-specific risk profile information 
may also be used for patient counseling regarding the prognosis and 
outcomes of their disease.

The methylation landscape of metastatic LUAD to the brain has 
not been comprehensively explored previously. Pathways related 
to immunity, differentiation and development, and cell interaction 
were differentially methylated at promoters in BM compared to 
paired primary LUAD tumors. Immune-related and differentiation 
and development-related gene sets were also differentially methylated 
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Fig. 5 | Plasma methylome-based detection of BM development. a, Flow 
diagram of the approach used to build and evaluate classifiers of BM versus 
other main brain tumors in a clinical differential diagnosis and non-CNS tumor 
controls. b, MDS plot using DMRs selected between each class (BM, glioma, 
CNSL and control) during model building, with BM plasma samples clustering 
separately from other entities. c, Ensemble of ROC curves evaluating 50 
iterations of BM-versus-others classifiers in the validation dataset plasma, 
demonstrating reliable discrimination of BM from others, including glioma, 
CNSL and non-CNS tumor controls. d, Box plot of Spearman correlation 

coefficient values, showing alignment between methylation signatures in paired 
BM tumor and plasma samples (n = 25). e,f, Representative individual clinical 
cases of a BM (e) and a glioma (f) that were accurately identified as a BM and 
non-BM (that is, ‘other’), respectively, based on testing dataset class probabilities 
from the BM-versus-others cfMeDIP–seq models. In the box plots, the central 
bars correspond to the median; the upper and lower distribution quartiles are 
displayed using boxes; and the 1.5× interquartile range (IQR) is represented by 
the whiskers.
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early in the tumor evolution process (at the time of the initial LUAD 
diagnosis) in patients who developed BMs. These findings add a new 
epigenetic layer to our understanding of the metastatic process, a layer 
that to date has not been well described. Immune and cell interaction 
differentially methylated pathways associated with BM also showed 
aligning dysregulation in the proteome. Additionally, many immune 
cell types were differentially abundant in BM versus paired LUAD, and 
in LUAD that developed BM compared to those that did not, in cell 
deconvolution analyses. Overall, immune pathways were consistently 
dysregulated across multiple datasets and analyses in this study; thus, 
they may be preferential targets of future studies on potential preven-
tive treatments. Accordingly, we await with great interest the outcomes 
of ongoing clinical trials of immunotherapy in LUAD, which are increas-
ingly including more patients with BMs26–28.

In this study, we also took advantage of plasma methylation sig-
natures in patients with BMs to confirm the diagnosis of BM without 
the need for invasive diagnostic neurosurgical tissue biopsies29. This 
would allow for a BM diagnosis to be made based on ctDNA before 
treatment to ensure that other clinical differential diagnoses are ruled 
out before the initiation of treatment and that optimal treatment is 
promptly initiated. A noninvasive BM diagnosis would be particularly 
valuable for patients without active disease after initial LUAD treatment 
who develop brain lesions much later in the follow-up and for patients 
who have undiagnosed cancer at the time of BM. Importantly, we also 

provide data to support additional work to establish methylation-based 
plasma biomarkers for the early detection of BM diagnosis, as well as 
serving as a biomarker of response to treatment or recurrence.

This work is limited in sample size, with samples obtained from a 
single institution; the dataset was collected retrospectively. Applica-
tion of the predictive nomogram prospectively in additional centers 
and in future prospective trials will allow for its incorporation into 
management decisions and to allow for an assessment of its impact on 
patient outcomes. These models have utility in LUAD only and they are 
expected to lead to the development of additional methylome-based 
BM predictors for other cancer types. This work explores dysregulated 
pathway networks in LUADs that develop BMs at the methylome and 
proteome levels, but it is limited in the evaluation of these pathways. It 
will be important for future mechanistic studies to assess their poten-
tial role in the metastatic process or as potential new treatment targets. 
CN assessment from methylome data is limited; thus, further work 
evaluating the CN alterations shown in this study in genomic data is 
required. The liquid biopsy models shown distinguish BM from other 
representative clinical differential diagnoses but do not differentiate 
between patients with LUAD with and without BM. Future work opti-
mizing model features to those specific to BM may allow for utility in 
screening for BM.

Overall, we showed an invaluable nomogram that can predict BM 
development and has the potential to transform care for patients with 
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LUAD. Implementing the DNA methylation-based nomogram into clini-
cal practice in future trials will allow for its power and clinical utility to 
be established. Moreover, the DNA methylation and proteomics data-
sets generated in this study serve as an important research resource 
for the field30,31, providing an improved understanding of the biology 
of BM development that can enable future treatment advance.
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Methods
Patient cohort
Institutional research ethics board (REB) (University Health Network) 
approval was obtained for all samples used in this study and written 
informed consent was obtained as required by the REB. A unique set 
of 402 tumor and plasma samples was compiled from 346 patients. A 
total of n = 166 primary LUAD tumors, n = 68 BM tumors (30 paired to 
primary LUAD tumors) and n = 123 BM plasma (25 paired to patients 
with paired BM and LUAD tumors) were included. We obtained plasma 
on 13 CNSL together with 32 non-brain tumor controls and used pub-
lished plasma cfMeDIP–seq data on 62 gliomas17 to build a reference 
cohort to compare to BM. All patients were managed at the University 
Health Network in Toronto and were selected based on availability 
of tissue samples and comprehensive clinical data. An Excel (v.16) 
spreadsheet was created with patient demographics; cancer staging 
with traditional tumor (T), lymph node (N) and metastasis (M) involve-
ment and composite stage I–IV; tumor EGFR mutation status (mutant 
or WT) as clinically relevant LUAD molecular subgroups; and details of 
BM development and survival. LUAD samples were acquired procedur-
ally between 2004 and 2017. Time to BM development was defined as 
the duration between LUAD and BM first identification on imaging.

Publicly available LUAD cell line (n = 63) methylation data were 
used for the cell deconvolution analyses32. External tumor tissue meth-
ylation datasets were assembled for model validation including TCGA 
LUAD6, BM12 and German Cancer Research Centre gliomas, CNSL and 
normal brain tissue9. The external National Cancer Institute’s CPTAC 
LUAD cohort with matched DNA methylation and proteomics data 
available was used for the differential gene expression analyses33 along 
with a cohort of 20 paired BM and LUAD samples with proteomics 
data22. External tumor tissue methylation data were also obtained from 
330 TCGA LUSC samples to evaluate another lung cancer subtype34.

Tissue methylation profiling
Tumor tissue from n = 166 LUAD and n = 30 paired BM samples was 
profiled on the Infinium MethylationEPIC BeadChip (850k) array (Illu-
mina) according to the manufacturer’s instructions after DNA extrac-
tion, bisulfite conversion, and restoration. For methylation profiling, 
all LUAD samples were from formalin-fixed and paraffin-embedded 
(FFPE) tissue, 29 of 30 BM samples were obtained from FFPE and 1 of 
30 BM samples were from fresh-frozen tissue. Both FFPE and frozen 
methylation profiles obtained from the same six BM samples clustered 
together according to patient with hierarchical clustering using the 
top 1,000 most variable CpG sites, showing close alignment between 
methylomes obtained from FFPE and frozen tissue for each patient 
pair (Extended Data Fig. 2d). The external dataset tumor tissue meth-
ylation data outlined above were previously profiled on the Infinium 
HumanMethylation450 BeadChip (450k) array (Illumina). Methyla-
tion array data were processed using the minfi package in R v.4.0.3 (R 
Foundation for Statistical Computing) and with ssNoob normalization. 
Low-quality data (detection P > 0.01), single-nucleotide polymor-
phisms, and cross-reactive CpGs were removed35. Overlapping CpGs 
between the 850k and 450k data were selected for analyses that used 
samples from both arrays36.

Methylome-based BM predictor development
Primary LUAD tumors were randomly divided into discovery (106 of 
166) and validation (60 of 166) datasets, which were used for model 
development and evaluation only, respectively. A ‘predictor’ model 
was developed to predict the risk of 5-year BM development from LUAD 
using the gbm package as follows with utilization of Partek Genomics 
Suite software in feature selection. CpG sites predicting time to BM 
development in the discovery dataset (univariable Cox false discov-
ery rate (FDR) Padj < 0.025) were used to build a generalized boosted 
regression classification model in the discovery dataset that provided 
methylome-based scores reflecting the risk of developing BM within  

5 years. Predictor BM risk scores were evaluated in the validation data-
set to assess performance independently in Kaplan–Meier plots with 
score tertiles (high, intermediate and low risk) and univariable and 
multivariable Cox models (numeric predictor scores and relevant 
clinical variables).

A bootstrap resampling approach was then performed using 
the boot package to obtain mean methylation risk scores across 50 
bootstraps of different discovery and validation dataset splits, which 
were evaluated using 5-year AUROC metrics in each dataset. The same 
approach described was used to develop a stage-based BM predictor 
representing standard-of-care practice; the AUROC differential (dAU-
ROC) comparing the methylation-based and stage-based predictors 
was calculated.

An optimal predictor risk score cutoff was identified by maxi-
mizing the Youden index in the discovery cohort data only using the 
cutpointr package. High-risk and low-risk score groups stratified 
according to the optimal cutoff in the validation dataset were assessed 
using a Kaplan–Meier plot, univariable Cox model, multivariable Cox 
model with relevant clinical factors and Yule correlation coefficients 
between risk group and the development of BM within 5 years.

After model generation and evaluation, heatmaps of the probes 
included in model generation were plotted in both discovery and vali-
dation datasets to demonstrate the distribution of beta values in each 
cohort. Methylation predictor score tertiles across cancer stages and 
EGFR mutation status were assessed in Kaplan–Meier plots as relevant 
clinical and molecular subgroups of LUAD.

Comprehensive nomogram development
A multistep, iterative nomogram variable selection approach was used 
to identify clinical variables that significantly predicted BM in a multi-
variable Cox model, had an absolute value of importance greater than 
0.1 in a minimum redundancy, maximum relevance ensemble analysis 
with methylome scores using the mRMRe package, and ultimately 
contributed more than 5% of total nomogram points to ensure that fea-
tures were relevant, reliable, and complementary. The final nomogram 
was built on Cox modeling with the hdnom package using methylome 
scores plus each TNM staging category, with tenfold cross-validation 
used for tuning and a one standard error selection rule.

The nomogram diagram functions to scale variable values to a 
linear point calculator that provides a 5-year BM risk value. Nomogram 
score performance was evaluated in a Kaplan–Meier plot (split from 
the median) and univariable Cox analysis (numeric scores) within the 
validation dataset only. Time-dependent 5-year AUROCs were calcu-
lated in both sets separately using a 10,000 bootstrap resampling 
approach. Kaplan–Meier plots display nomogram utility for both EGFR 
mutation status to establish their value for both the EGFR mutant and 
WT molecular subgroups of LUAD.

Differential methylation, copy number and cell type 
abundance analyses
Differentially methylated CpGs (delta beta > 0.1, FDR-corrected 
P < 0.05) identified using the limma package, between (1) primary 
LUAD tumors with and without BM development across 5 years and 
(2) BM tissue and paired primary LUAD, were mapped to gene pro-
moters, averaged per promoter, and evaluated in a GSEA using rank 
scores incorporating P and delta values with the Human_GOBP_All-
Pathways_no_GO_iea_November_01_2020_symbol.gmt set and 2,000 
permutations. Enrichment maps were built with a Jaccard coefficient 
greater than 0.25 and P < 0.001 (refs. 37,38).

CN data were inferred from raw methylation data and normalized 
using the conumee package. Significant CN amplifications and dele-
tions (q < 0.25) between groups 1 and 2 were identified using genomic 
identification of significant targets in cancer (GISTIC) 2.0 software 
with the default parameters of focal length cutoff = 0.5 and confidence 
level = 0.9 (ref. 39). Relative CN differences between groups within 
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specific genes of interest related to LUAD6, LUAD metastasis40 and 
CNS malignancy9 were identified by comparing the log2 CN ratios. 
CN alterations between LUAD with and without BM through 5 years of 
follow-up were explored for potential inclusion in the comprehensive 
clinical nomogram, including those with q < 0.25 in one group (GISTIC) 
or P < 0.05 (at the gene level). Prognostic CN alterations in univari-
able Cox models, also with aligning HR directionality to the GISTIC or 
gene-level results, were assessed in separate multivariable Cox models 
together with nomogram scores using the validation dataset to assess 
whether they were independently prognostic.

The microenvironmental composition in primary LUAD versus 
paired BM tissue, and in LUADs that develop BMs within 5 years versus 
those that did not, was estimated using a methylCIBERSORT-based cell 
deconvolution of methylation data incorporating the LUAD cell line 
data (delta beta > 0.2, FDR < 0.01, features and comparison ≤ 100)41. 
The abundances of cancer cells, neutrophils, B lymphocytes, natural 
killer cells, cytotoxic T lymphocytes, monocytes and macrophages, 
regulatory T lymphocytes, effector T lymphocytes, endothelial cells, 
fibroblasts and eosinophils were compared between groups. The 
MethylCIBERSORT package has undergone pan-cancer validation, 
including in LUAD42–44.

Tissue proteomic profiling
For 49 LUAD tumors, proteins were extracted from tissue samples, 
mixed with equal amounts of super-SILAC standard and otherwise 
prepared and analyzed as done previously45,46. Samples were reduced 
with dithiothreitol (4.5 mmol l−1 at 60 °C for 20 min), alkylated with 
iodoacetamide (10 mmol l−1 in the dark for 30 min), digested over-
night with trypsin and desalted and purified with Pierce C18 Spin Tips 
(cat. no. 84850, Thermo Fisher Scientific). Purified peptides were 
separated using an ultrahigh performance liquid chromatography 
(LC) device (Easy-nLC 1000, Thermo Fisher Scientific) coupled to a 
mass spectrometer (Orbitrap Elite, Thermo Fisher Scientific) through 
a nanoelectrospray ion source (EASY-Spray, Thermo Fisher Scientific). 
Peptides were resuspended in 0.1% formic acid, loaded into a 50-cm 
column (75 μmol l−1 inner diameter, packed with PepMap RSLC C18 
resin) and heated to 60 °C. The flow rate was 250 nl min−1 from 5% to 30% 
acetonitrile in 0.1% formic acid over 224 min, then 30–90% acetonitrile 
in 0.1% formic acid over 2 min and finally 90% acetonitrile in 0.1% formic 
acid over 12 min for column cleanup. One full mass spectrometry (MS) 
scan (400–1,200 m/z) in the mass analyzer plus ten data-dependent 
MS2 scans were used to obtain the mass spectra. The MS scan approach 
included an automatic gain control target of 1,000,000, maximum 
ion injection time of 200 ms and a resolution of 240,000 (full-width, 
half-maximum) at 400 m/z. The MS2 scan approach included up to ten 
of the most intensive ions selected and fragmented, normalized col-
lision energies of 30 in the ion trap, an automatic gain control target 
of 10,000 and a maximum ion injection time of 50 ms. A 50-s dynamic 
exclusion duration and a 500 maximum exclusion list were used.

For 50 BM samples from LUAD, samples were processed as 
described previously47 with the following modifications: lysis buffer 
for protein isolation for each sample was 100 µl of 0.5 M Tris, pH 8.0, 
50 mM NaCl, 2% SDS, 1% NP-40, 1% Triton X-100, 5 mM EDTA, 10 mM 
Tris(2-carboxyethyl)phosphine hydrochloride, 40 mM chloroaceta-
mide, 1 mM β-glycerophosphate, 1 mM NaF and 0.5 mM Na3VO4. Sam-
ples were sonicated for 10–15 s and incubated at 95 °C (20 min with 
mixing at 900 rpm) before centrifugation (20,000g, 5 min, 18 °C). A 
total of 140 ml of supernatant was transferred to microcentrifuge tubes, 
pelleted with chloroform and methanol precipitation, and incubated 
overnight in 200 µl of 100 mM HEPES, pH 8.5, and 6 mg of trypsin/
Lys-C (cat. no. V5072, Promega Corporation). Trifluoroacetic acid 
was added to 1% final and samples were centrifuged (10,000g, 5 min, 
at room temperature).

For BM spectral library generation, 2 µl of each sample was pooled, 
dried using a SpeedVac vacuum and suspended in 4.5 mM ammonium 

formate in 2% acetonitrile. Peptides were fractionated using high-pH 
reverse phase high-pressure LC, dissolved in 2% acetonitrile and 0.1% 
formic acid, and analyzed using LC tandem MS with an EASY-nLC 1000 
system (Thermo Fisher Scientific) with a 1-h analysis and a timsTOF Pro 
mass spectrometer (Bruker). The LC analysis used an IonOpticks Aurora 
Ultimate column, a 250 nl min−1 flow rate, buffer A (0.1% formic acid in 
water) and buffer B (0.1% formic acid in 80% acetonitrile). The buffer 
B gradient increased from 3% at 0 min to 22% at 40 min, then to 30% at 
55 min, then to 100% at 56 min; it was held at 100% until 60 min. The 
timsTOF Pro mass spectrometer was set to parallel accumulation–serial 
fragmentation (PASEF) mode; precursor ions with a 2–5 charge state 
were selected, ten PASEF tandem MS (MS/MS) scans were acquired for 
each MS/MS cycle, target intensity was 14,500, ramp time was 100 ms 
and dynamic exclusion time was 0.4 min. MS and MS/MS spectra were 
recorded from 100 to 1,700 m/z, with an ion mobility window between 
0.70 and 1.5 Vs cm−2. Advanced collision energy ranged from 20.0 to 
77.32 eV.

For individual BM analysis, dried peptides in the remaining sample 
were dissolved in 2% acetonitrile plus 0.1% formic acid and quantified 
using absorbance at 205 nm with Scopes correction on a NanoDrop One 
(Thermo Fisher Scientific). Peptides were diluted to 325 ng 5 µl−1 with 
100 fmol of Pierce Peptide Retention Time Calibration Mixture (cat. 
no. 88321, Thermo Fisher Scientific) and analyzed using LC–MS/MS, 
separated as above but over 90 min with a buffer B gradient increased 
from 3% at 0 min to 20% at 65 min, then to 35% at 85 min and finally to 
100% at 86 min; it was held at 100% until 90 min. The timsTOF mass 
spectrometer was used in data-independent acquisition PASEF mode. 
Defined isolation windows in the m/z versus ion mobility plane were 
optimized based on the spectral library data using pydiAID48. Spectra 
were recorded from 100 to 1,700 m/z; the ion mobility window was 
0.70–1.5 Vs cm−2, the advanced collision energy ranged from 20.0 to 
77.32 eV and ramp and accumulation times were 100 ms.

Analysis of BM-related gene set enrichment in proteome
Raw LUAD sample MS files were analyzed using MaxQuant software 
with the UniProt human reference proteome from September 2023 
(https://www.uniprot.org/proteomes/) with the parameters we out-
lined previously45. The BM sample spectral library was generated with 
FragPipe software using raw MS files as done previously but with mass 
tolerances of 50 ppm for precursor and 0.1 Da for fragment; up to three 
missed trypsin cleavages were allowed, and phosphorylation of serine, 
threonine and tyrosine were additional variable modifications49. The 
independent BM sample analysis of the data-independent acquisi-
tion was searched with DIA-NN software using the generated spectral 
library. Default settings were used except for the included charge states 
being +1 to +5; the fragment ion range was 100–1,700 m/z, precur-
sor and fragment ion mass tolerances were 20 ppm, match between 
runs was enabled, all identifications were filtered for FDR ≤ 0.1%, the 
cleavage reagent was trypsin and up to three missed cleavages were 
allowed. Carbamidomethylation of cysteine was a fixed modifica-
tion while oxidation of methionine, acetylation of protein N termini, 
and phosphorylation of serine, threonine and tyrosine were variable 
modifications50.

In addition to proteomics data generated in this study, the external 
CPTAC33 and paired LUAD-BM22 proteomics datasets described in the 
‘Patient cohort’ section of the Methods were acquired. Missing values 
were imputed from the Gaussian distribution centered around a mini-
mal value of the protein using DEP. Differential protein expression anal-
yses were conducted using the limma package between primary LUAD 
tumors with and without BM development over 5 years in the study LUAD 
data, between LUAD tumors with high and low methylome risk scores in 
the CPTAC data and between BM and paired LUAD in the data in ref. 22. 
Differentially expressed proteins were evaluated in GSEAs. Rank scores 
incorporating P and log2 fold change values were assessed with the 
Human_GOBP_AllPathways_no_GO_iea_November_01_2020_symbol.
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gmt set and with 2,000 permutations. Normalized enrichment scores 
were generated and enrichment maps were built with a Jaccard coef-
ficient greater than 0.25 and P < 0.001 (refs. 37,38). A nonnegative 
matrix factorization (NMF) analysis was carried out using the study BM 
data for proteins detected in more than 75% of BM samples. Expression 
values were centered by subtracting the average expression across all 
samples. The NMF package was applied to relative expression levels 
after transforming negative values to zeros, with factor k ranging from 
two to six. Proteins were ranked using NMF scores for each identified 
expression program. Seventeen expression programs were identified 
in the tumor samples, with an emphasis on robustness through a 70% 
overlap criterion. Hierarchical clustering of programs, based on shared 
proteins, was conducted using the top 50 genes in each program to 
identify meta-signatures.

Methylated cfDNA sequencing
All plasma for BM, CNSL and non-brain tumor controls was obtained at 
the time of surgery at the University Health Network from peripheral 
blood, which had undergone centrifugation at 2,500g and 20 °C for 
15 min using tubes containing acid citrate dextrose. Samples were 
subsequently cryopreserved. cfDNA extracted from 0.5–3 ml of plasma 
(QIAamp Circulating Nucleic Acid Kit, cat. no. 55114, QIAGEN) under-
went the cfMeDIP–seq protocol; data were processed as described 
elsewhere15–17,19. In summary, 1–10 ng per sample of cfDNA quanti-
fied using a Qubit fluorometer (Qubit 4, Thermo Fisher Scientific) 
underwent library preparation (KAPA HyperPrep Kit, cat. no. KK8504, 
Roche), methylated cfDNA immunoprecipitation with 5-mC monoclo-
nal antibody 33D3 (MagMeDIP Kit, 0.16 μg used per reaction, cat. no. 
C02010021, Diagenode), purification (IPure Kit v2, cat. no. C03010015, 
Diagenode), library amplification, and cleanup. Optimal fragment 
size selection was confirmed on Bioanalyzer traces (2100 Bioana-
lyzer, Agilent). Samples were sequenced with the Illumina NovaSeq 
6000 (100-bp paired end reads, median 62 million reads per sample). 
Sequencing reads were aligned to the human genome with the Bowtie2 
software, deduplicated, indexed with SAMtools software and converted 
to counts per million values using the MEDIPS package at 300-bp 
genomic windows covering regulatory CpG islands, shores, shelves 
and FANTOM5 enhancers.

Noninvasive BM detection
A total of 92 of 123 (75%) BM plasma samples along with all glioma, 
CNSL and non-brain cancer control plasma were split into fifty 80% 
discovery and 20% validation datasets using a random class balanced 
split approach. The remaining 31 (25%) BM plasma samples were used 
as an additional independent validation dataset after being randomly 
split from the above cohort. Binomial glmnet models classifying BMs 
from others were built with the glmnet package in each discovery 
dataset iteration using the top 300 DMRs in each pairwise comparison 
between entities using moderated t-statistic with limma-trend as we 
have described previously15–17. All BM-versus-others models under-
went three iterations of tenfold cross-validation for optimization. 
Model performance was assessed with AUROC metrics in the 20% 
validation dataset. All DMRs from model building were used to assess 
sample clustering in an MDS plot. For each of 25 patients with BMs with 
matched plasma cfMeDIP–seq data and tumor tissue EPIC array data, 
the correlation between plasma counts per million values for each 
window and mean CpG beta value within the window was evaluated 
with Spearman correlation coefficients. For representative cases, BM 
classification probabilities from all BM-versus-others models with the 
case in the validation dataset were evaluated.

Assessment of model features in additional datasets
The methylation predictor of BM development and clinical-methylomic 
nomogram of BM development were applied to the external TCGA 
LUAD set using distant metastases as the most relevant available 

outcome for further validation, most of which have been shown to be 
BM23,24. A multivariable Cox model assessed methylome risk score util-
ity after controlling for age, sex, smoking status, EGFR status, and TNM 
scores. Time-dependent 5-year AUROC values using 10,000 bootstraps 
assessed nomogram utility.

BM-versus-others cfMeDIP–seq classifiers were applied to the 
additional n = 31 BM plasma validation dataset for further validation, 
and classifier accuracy was calculated. The top 300 DMRs in each 
pairwise comparison between all four plasma entities were used for 
MDS plotting of independent publicly available tissue data from the 
same entities using CpGs within these DMRs.

Statistical analysis and data presentation
Descriptive statistics are expressed as n (percentage) or mean (range). 
Groups were compared using Wilcoxon’s rank sum (interval variables) 
and log-rank (Kaplan–Meier plots) tests. Pearson or Spearman (numeric 
data) and Yule’s Q (nominal data) correlation coefficients were used as 
indicated. Two-tailed P < 0.05 was considered statistically significant 
unless stated otherwise, after correction for multiple comparisons with 
FDRs where required. Cohort sizes for model building and evaluation 
were determined based on our previous experience14–18. In the box plots 
the central bars represent the median, the boxes represent the upper 
and lower distribution quartiles, and the whiskers represent 1.5× the 
IQR. The GSEA gene sets are represented by nodes, whose size cor-
relates to the number of genes; the internodal connections represent 
gene set overlap. The following colors have been used to aid with the 
interpretation of the results: blue denotes clinical factors; red shows 
the methylation predictor; purple is used for the nomogram; and yel-
low or orange are used for BM.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The glioma plasma cfMeDIP–seq data were previously published and 
can be accessed at Zenodo https://doi.org/10.5281/zenodo.3715312 (ref. 
51). The LUAD cell line methylation data for cell deconvolution were 
accessed from the Gene Expression Omnibus (GEO) under accession 
no. GSE68379. The TCGA LUAD and LUSC tissue methylation data-
sets were acquired from the Genomic Data Commons Data Portal at 
https://portal.gdc.cancer.gov/analysis_page?app=Projects. External 
BM methylation data were accessed from the GEO under accession no. 
GSE108576. The German Cancer Research Centre methylation data are 
accessible from the GEO under accession no. GSE109381. The CPTAC 
LUAD tissue proteomics data were acquired from the Proteomic Data 
Commons Data Portal at https://pdc.cancer.gov/pdc/cptac-pancancer 
(Proteome_BCM_GENCODE_v34_harmonized_v1.zip). External LUAD 
and LUAD-BM tissue proteomics data were acquired from ref. 22 (Sup-
plementary Table S1). The DNA methylation data for all tissue samples 
in this study have been deposited with the GEO under accession no. 
GSE220838. The cfMeDIP–seq data for the plasma samples can be 
accessed via Zenodo (https://doi.org/10.5281/zenodo.7338401)52. The 
proteomics data in the study are accessible from PRIDE in the Pro-
teomeXchange Consortium under accession no. PXD048525.

Code availability
Publicly available open source R (v.4.0.3) packages used for the analysis 
include minfi (v.1.46.0), caret (v.6.0-94), gbm (v.2.1.8), survival (v.3.5-8), 
hdnom (v.6.0.0), boot (v.1.3-25), cutpointr (v.1.1.2), mRMRe (v.2.1.2), 
limma (v.3.56.2), conumee (v.1.38.0), MethylCIBERSORT (v.0.2.1), DEP 
(v.1.22.0), NMF (v.0.26), MEDIPS (v.1.22.0), glmnet (v.4.1-8) and Rtsne 
(v.0.16). Publicly available open source software used for the analy-
sis includes Partek Genomics Suite (v.6.6), GSEA (v.4.0.3), cytoscape 
(v.3.6), GISTIC (v.2.0), MaxQuant (v.2.4.7.0), FragPipe (v.22.0), DI-ANN 
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(v.1.8.1), FASTQC (v.0.11.5), bowtie2 (v.2.5.1) and SAMtools (v.1.3.1). 
Custom code has been deposited at https://github.com/patilvikas/
BrainMetsPrediction/tree/main.
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Extended Data Fig. 1 | Evaluation of optimal 5-year methylome-based BM 
predictor risk score cutoff in validation set and representative clinical 
cases illustrating use of the predictor. a, Kaplan Meier plot and log-rank test 
in validation cohort using risk groups stratified by the optimal cutoff, showing 
worse BM outcomes in the high risk group. b, Univariable Cox proportional 
hazards model of risk groups stratified by the optimal cutoff in validation set 
samples showing BM prediction (N = 60). c, Multivariable Cox proportional 
hazards modeling of BM development in validation set samples, demonstrating 
that methylome risk groups stratified by the optimal cutoff have prognostic 

utility independent of clinical factors (N = 56). d, Representative patient cases 
demonstrating the opportunity for potential escalation of treatment based 
on patient methylome-based predictor scores. In the upper panel case, a BM 
developed 1.8 years after diagnosis, which was not predicted by clinical factors 
as they were overall lower risk, but was consistent with the high methylome risk 
score. In the lower panel case, the patient did not develop a BM across 8.1 years of 
follow-up which was accurately predicted with a low methylome score but may 
not have been expected based on higher risk clinical factors. Boxes with whiskers 
display HR and 95% CI. * denotes a significant P value.
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Extended Data Fig. 2 | Utility of clinical factors for BM prediction in LUAD, 
evaluation of LUAD BM predictive modeling in lung squamous cell cancer 
(LUSC), and comparison between fresh frozen and FFPE paired methylation 
data. a, Univariable Cox proportional hazards modeling of BM development 
using clinical factors demonstrates that TNM component cancer staging scores 
have prognostic utility. b, Univariable Cox proportional hazards model results 

using numeric methylome risk scores from the 5-year LUAD-BM predictor in 
TCGA LUSC samples (N = 330). c, tSNE plot using the 5553 BM predictive CpG sites 
in both TCGA LUAD and LUSC cohorts for clustering. d, Hierarchical clustering 
using the top 1,000 most variably methylated CpGs across the 12 samples from 
6 tumors. 1, N = 166; 2, N = 157; 3, N = 165. Boxes with whiskers display HR and 95% 
CI. * denotes a significant P value.
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Extended Data Fig. 3 | See next page for caption.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03286-y

Extended Data Fig. 3 | Characterization of pathways differentially 
methylated at gene promoters and also dysregulated in the proteome 
within LUAD tumors that developed BM within 5 years or had high 
methylome-based risk scores. a, GSEA of pathways differentially methylated 
at gene promoters in LUAD that developed BM compared to LUAD without 
BM throughout 5-years of follow-up. Pathways shown are mainly immune and 

differentiation and development related as shown with yellow boxes. b, GSEA 
showing shared pathways of differential proteomics and methylation analyses 
within the study cohort comparing LUAD that developed BM versus those 
without BM over 5 years. c, GSEA of shared pathways of differential proteomics 
and methylation analyses using CPTAC dataset comparing proteomes from LUAD 
with high versus low methylome-based BM predictor risk scores.
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Extended Data Fig. 5 | Characterization of chromosome and gene-level 
copy number alterations in LUAD tumors that developed BM within 5 years 
compared to LUAD that did not develop BM within 5 years of follow-up. a, 
GISTIC analysis results with significantly amplified (red) and deleted (blue) 
chromosome regions depicted as peaks extending beyond the green significance 
cutoff (q < 0.25). b, Heatmap comparing gene-level copy number data between 
LUAD with and without 5-year BMs along with associated mean difference (yes vs. 
no BM) and Wilcoxon’s rank sum test p-values. c, Chromosome-level and gene-

level CN alterations as genomic correlates of nomogram risk scores (prognostic 
in univariable Cox proportional hazards models but not independent of 
nomogram scores in multivariable analyses). Correlates of increased BM risk 
include amplifications of EGFR, 8q23.2, MCL1, MYC, MDM2, CCND1, and FGFR3 as 
well as deletions of ACTG2. Correlates of a lower BM risk were BLM and 21q21.2 
deletions. *Multivariable models include each amplification or deletion together 
with nomogram risk scores.
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Extended Data Fig. 6 | Cell deconvolution analysis comparing cell type 
fractions between LUAD tumors that did and did not develop BM within 5 
years. Boxplots of deconvoluted cell compositions from bulk tissue methylation 
data in BM and paired LUAD showing greater fractions of monocytes and natural 
killer cells as well as lower fractions of cytotoxic T lymphocytes, eosinophils, 

fibroblasts, regulatory T lymphocytes, and endothelial cells in LUAD that develop 
BM (N = 133). Wilcoxon’s rank sum test p-values shown. FC, fold change. Boxplots 
display medians with central bars, upper and lower distribution quartiles using 
boxes, and 1.5x interquartile range with whiskers.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Characterization of pathways differentially 
methylated at gene promoters and also dysregulated in the proteome within 
paired patient BM tissue and primary LUAD tumors. a, GSEA of pathways 
differentially methylated at gene promoters in BM samples compared to 
LUAD including those related to immune function, tissue differentiation and 

development within the nervous system and other systems, and cell interaction. 
b, Proteomics analysis in paired primary LUAD and matched BM dataset showing 
shared pathways between differential proteomics analysis (data in ref. 22) and 
differential methylation analysis (study data). c, Metaprograms characterized by 
non-negative matrix factorization for clustering of proteomics data.
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Extended Data Fig. 8 | Chromosome-level and gene-level copy number 
alterations as well as cell deconvolution analysis comparing cell type 
fractions in BM tumor samples compared to paired LUAD primary tumors.  
a, GISTIC analysis results showing significantly amplified (red) and deleted (blue) 
chromosome regions as peaks with extension beyond the green significance 
cutoff (q < 0.25). b, Heatmap comparing gene-level copy number data between 
BM and paired LUAD with mean difference (BM vs. LUAD) and p-values.  

c, Boxplots of deconvoluted cell compositions from bulk tissue methylation data 
in BM and paired LUAD showing an overall greater immune cell and fibroblast 
abundance in LUAD tumors compared to paired BM samples (N = 60). FC, fold 
change. Boxplots display medians with central bars, upper and lower distribution 
quartiles using boxes, and 1.5x interquartile range with whiskers. Wilcoxon’s rank 
sum test p-values shown.
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Extended Data Table 1 | Characteristics of the methylome-based predictor patient cohort

! "!

Characteristic Full cohort BM within 5 
years

No BM over 
5 years

Discovery 
Set

Validation 
Set

Mean 
(Range)

Mean 
(Range)

Mean 
(Range)

Mean 
(Range)

Mean 
(Range)

Age Years 64.1 (41 84) 60.7 (42 80) 65.6 (41 84) 64.5 (41-84) 63.3 (42-84)
Smoking 
extent

Pack-
years

16.8 (0 100) 17.8 (0 100) 14.7 (0 60) 17.6 (0-100) 15.3 (0-80)

Number (%) Number (%) Number (%) Number (%) Number (%)
EGFR 
mutational 
status

Mutant 101 (61.2) 35 (66.0) 55 (69.6) 63 (60.0) 38 (63.3)
Wildtype 64 (38.8) 18 (34.0) 24 (30.4) 42 (40.0) 22 (36.7)

T 
component 
score

T1 47 (28.5) 8 (15.4) 32 (40.0) 30 (28.6) 17 (28.3)
T2 81 (49.1) 27 (51.9) 37 (46.2) 52 (49.5) 29 (48.3)
T3 4 37 (22.4) 17 (32.7) 11 (13.8) 23 (21.9) 14 (23.3)

N 
component 
score

N0 104 (62.7) 23 (43.4) 62 (77.5) 66 (62.3) 38 (63.3)
N1 28 (16.9) 14 (26.4) 11 (13.8) 17 (16.0) 11 (18.3)
N2 3 34 (20.5) 16 (30.2) 7 (8.8) 23 (21.7) 11 (18.3)

M 
component 
score

M0 151 (91.0) 39 (73.6) 80 (100) 96 (90.6) 55 (91.7)
M1 15 (9.0) 14 (26.4) 0 (0) 10 (9.4) 5 (8.3)

Cancer 
stage

Stage I 84 (50.6) 13 (24.5) 55 (68.8) 53 (50.0) 31 (51.7)
Stage II 33 (19.9) 14 (26.4) 15 (18.8) 21 (19.8) 12 (20.0)
Stage III 33 (19.9) 10 (18.9) 10 (12.5) 21 (19.8) 12 (20.0)
Stage IV 16 (9.6) 16 (30.2) 0 (0) 11 (10.4) 5 (8.3)

Initial 
treatment

Resection 161 (97.0) 48 (90.6) 80 (100) 102 (96.2) 59 (98.3)
Radio-
therapy

23 (13.9) 9 (17.0) 9 (11.2) 17 (16.0) 6 (10.0)

Systemic 
therapy

79 (47.6) 36 (67.9) 27 (33.8) 51 (48.1) 28 (46.7)
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Extended Data Table 2 | Proportion of patients who developed BM within 5 years in high-risk and low-risk groups based on 
maximizing the Youden index according to EGFR mutational status and staging variables

Characteristic High risk 
(above cutoff)

Low risk 
(below cutoff)

Coefficient of 
correlation

BM proportion 
(%)

BM proportion 
(%)

EGFR 
mutational status

Mutant 4/5 (80.0) 8/26 (30.8) 0.80
Wildtype 4/6 (66.7) 1/5 (20.0) 0.78

T component 
score

T1 2/4 (50.0) 1/10 (10.0) 0.80
T2 3/3 (100) 6/17 (35.3) 1.00
T3 4 3/4 (75.0) 2/4 (50.0) 0.50

N component 
score

N0 5/8 (62.5) 3/18 (16.7) 0.79
N1 2/2 (100) 4/7 (57.1) 1.00
N2 3 1/1 (100) 2/6 (33.3) 1.00

M component 
score

M0 5/8 (62.5) 7/29 (24.1) 0.68
M1 3/3 (100) 2/2 (100)

Cancer stage Stage I 3/5 (60.0) 1/15 (6.7) 0.91
Stage II III 2/3 (66.7) 6/14 (42.9) 0.45
Stage IV 3/3 (100) 2/2 (100)
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