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The consumption of sugar-sweetened beverages (SSBs) is associated with 
type 2 diabetes (T2D) and cardiovascular diseases (CVD). However, an 
updated and comprehensive assessment of the global burden attributable 
to SSBs remains scarce. Here we estimated SSB-attributable T2D and CVD 
burdens across 184 countries in 1990 and 2020 globally, regionally and 
nationally, incorporating data from the Global Dietary Database, jointly 
stratified by age, sex, educational attainment and urbanicity. In 2020, 2.2 
million (95% uncertainty interval 2.0–2.3) new T2D cases and 1.2 million 
(95% uncertainty interval 1.1–1.3) new CVD cases were attributable to SSBs 
worldwide, representing 9.8% and 3.1%, respectively, of all incident cases. 
Globally, proportional SSB-attributable burdens were higher among men 
versus women, younger versus older adults, higher- versus lower-educated 
adults, and adults in urban versus rural areas. By world region, the highest 
SSB-attributable percentage burdens were in Latin America and the 
Caribbean (T2D: 24.4%; CVD: 11.3%) and sub-Saharan Africa (T2D: 21.5%; 
CVD: 10.5%). From 1990 to 2020, the largest proportional increases in 
SSB-attributable incident T2D and CVD cases were in sub-Saharan Africa 
(+8.8% and +4.4%, respectively). Our study highlights the countries and 
subpopulations most affected by cardiometabolic disease associated with 
SSB consumption, assisting in shaping effective policies and interventions 
to reduce these burdens globally.

Sugar-sweetened beverages (SSBs) contribute to excess weight gain 
and cardiometabolic diseases such as type 2 diabetes (T2D) and cardio-
vascular disease (CVD), both directly and mediated by weight gain1,2. 
Despite progress in elucidating the role of SSBs in health, an updated 
and comprehensive assessment of the global disease burden attrib-
uted to SSBs remains scarce. Our previous study estimated that, in 
2010, intake of SSBs was responsible for 184,000 global deaths3. More 
recent analyses looking at 87 different risk factors in 2019, including 

SSB intake4, relied primarily on national per capita estimates of added 
sugar availability or sales data5, rather than individual-level dietary 
data6,7, limiting the validity and precision of estimates across popula-
tion subgroups.

Due to their liquid form, SSBs are rapidly consumed and digested, 
resulting in lower satiety, higher caloric intake and weight gain8. High 
doses of rapidly digested glucose also activate insulin and other regula-
tory pathways, which can result in visceral fat production, hepatic and 
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Tables 1 and 2) and Bayesian hierarchical modeling. Globally in 2020, 
consistent with findings reported in 201812, adults consumed an aver-
age of 2.6 8 oz (248 g) servings per week (95% uncertainty interval (UI) 
2.4–2.8). This ranged regionally from 0.7 (95% UI 0.5–1.1) in South Asia to 
7.3 (95% UI 6.7–8.1) in Latin America and the Caribbean (Supplementary 
Table 3), and nationally among the 30 most populous countries from 
17.4 in Colombia (95% UI 13.2–22.7), 9.6 in South Africa (95% UI 7.5–12.5), 
8.5 in Mexico (95% UI 7.8–9.4) and 6.9 in Ethiopia (95% UI 5.5–8.7) to 0.2 
in India, China and Bangladesh (Supplementary Table 4).

Globally, regionally and nationally, men had modestly higher 
energy-adjusted SSB intake than women. By age, SSB intakes were higher 
at younger compared with older ages in all world regions, though with 
varying absolute magnitudes of intakes and differences by region (Sup-
plementary Table 3). The largest variations by age were observed in Latin 
America and the Caribbean, and the lowest in South Asia. By region and 
education, intakes were higher among more versus less educated adults 
in sub-Saharan Africa, South Asia and Latin America and the Caribbean, 
but lower among more versus less educated adults in the Middle East and 
North Africa, with smaller differences by education in other regions12.

Global T2D and CVD burdens attributable to SSBs
SSB intakes and cardiometabolic disease rates were incorporated into 
a comparative risk assessment (CRA) model to assess risk. The CRA 
framework does not use ecologic correlations but is based on inde-
pendent lines of evidence14, including age-adjusted etiologic effects of 
SSBs on T2D, ischemic heart disease and ischemic stroke, both directly 
and mediated by body mass index (BMI), from previous meta-analyses 
and pooled analyses of prospective cohorts, supported by evidence 
from randomized controlled trials2,15–17. For each model, we ran 1,000 
Monte Carlo simulations and report the median and 2.5th and 97.5th 
values (95% UI).

In 2020, an estimated 2.2 million (95% UI 2.0–2.3) new T2D cases 
and 1.2 million (95% UI 1.1–1.3) new CVD cases were attributable to 
intake of SSBs globally, corresponding to 9.8% (95% UI 9.1–10.5) and 
3.1% (95% UI 2.8–3.4) of total incident cases, respectively (Supplemen-
tary Data 1 and Extended Data Fig. 1). SSBs contributed to 12.5 million 
cardiometabolic disability-adjusted life years (DALYs), including 5.0 
million (95% UI 4.6–5.4) from T2D (6.9% (6.4–7.4) of all T2D DALYs) and 
7.6 million (95% UI 6.9–8.3) from CVD (3.0% (2.7–3.3) of all CVD DALYs). 
SSBs were estimated to cause 80,278 (72,297–88,824) deaths from T2D 

skeletal muscle insulin resistance and weight gain. High doses of rapidly 
digested fructose directly activate hepatic fat synthesis, leading to 
ectopic fat deposition and metabolic dysfunction in liver and muscle9. 
SSBs may also replace other healthier foods in the diet, contributing to 
harms through their absence. Excess adiposity and metabolic dysfunc-
tion activate inflammatory cytokines and increase risk of hypertension, 
dyslipidemia and diabetes10. All these risk factors accelerate atheroscle-
rosis and plaque instability, contributing to ischemic cardiovascular 
events11. Hence, both direct and adiposity-mediated effects of SSBs are 
relevant to assessing their health effects.

Both SSB intake and cardiometabolic risk also can vary substan-
tially by key demographic factors within nations. For example, we 
recently reported that SSB intakes were higher among more versus 
less educated adults in sub-Saharan Africa, South Asia and Latin 
America and the Caribbean, while the inverse pattern was observed 
in Middle East and North Africa12. By area of residence, intakes were 
higher in urban versus rural areas in sub-Saharan Africa and South Asia, 
whereas the inverse was true in the Middle East and North Africa. Yet, 
assessments of the global disease burden attributable to SSBs by key 
demographics such as educational attainment and urban versus rural 
residence have yet to be reported at a global scale.

This study aims to estimate the burdens of cardiometabolic dis-
eases attributable to SSBs and the changes over time, in nations world-
wide as well as subnationally, by key sociodemographic factors, as 
highlighted by the substantial public health challenge of SSB intake in 
most world regions12. The findings would inform national, subnational 
and multinational surveillance and policy actions to address SSBs and 
their disease burdens, including inequities across nations and popula-
tion subgroups (Table 1).

Results
Distributions of SSB intakes
SSBs were defined as any beverage with added sugars and ≥50 kcal 
per 8 oz serving, including commercial or homemade beverages, soft 
drinks, energy drinks, fruit drinks, punch, lemonade and aguas frescas. 
This definition excluded 100% fruit and vegetable juices, noncaloric 
artificially sweetened drinks and sweetened milk. We derived SSB 
intakes from the Global Dietary Database (GDD)7,12,13, including 450 
surveys with data on SSBs, totaling 2.9 million individuals from 118 
countries representing 87.1% of the global population (Supplementary 

Table 1 | Policy summary

Background An updated and comprehensive assessment of the global, regional and national disease burdens attributable to SSBs remains scarce, 
particularly by key demographics such as education and urban or rural residence.

Main findings and 
limitations

In 2020, 2.2 million (95% UI 2.0–2.3) new T2D cases and 1.2 million (1.1–1.3) new CVD cases were attributable to SSBs worldwide, representing 
9.8% and 3.1%, respectively, of all incident cases. By world region, the highest absolute cases per million adults (20+ years) were in Latin 
America and the Caribbean (T2D: 1,263; CVD: 522) and Middle East and North Africa (T2D: 1,001; CVD: 815), while the highest proportional 
SSB-attributable cases were in Latin America and the Caribbean (T2D: 24.4%; CVD: 11.3%) and sub-Saharan Africa (T2D: 21.5%; CVD: 
10.5%). In 2020, the greatest absolute number of new T2D cases attributable to SSBs per million adults among the 30 most populous 
countries were in Mexico (2,007 per million adults; 30% of all T2D incidence cases), Colombia (1,971; 48.1%) and South Africa (1,258; 27.6%). 
For CVD, the greatest numbers were in Colombia (1,084; 23.0%), South Africa (828; 14.6%) and Mexico (721; 13.5%). Jointly considering 
education, urbanicity and world region, the highest proportions of incident T2D attributable to SSBs were among high-educated (31.9%) 
and mid-educated (34.2%) adults in urban sub-Saharan Africa, followed by high- and medium-educated adults in both urban and rural 
Latin America and the Caribbean (~26% each). Findings were similar for CVD, with the largest SSB-attributable proportions among 
higher-educated (19.5%) and mid-educated (17.6%) adults from urban areas in sub-Saharan Africa, but also among higher-educated and 
mid-educated adults from rural areas in sub-Saharan Africa and both urban and rural areas in Latin America and the Caribbean (~12–13% 
each). From 1990 to 2020, sub-Saharan Africa had the largest proportional increases in incident T2D and CVD (12.7–21.5% and 6.1–10.5%, 
respectively), while Latin America and the Caribbean experienced slight decreases. The findings represent estimates based on available 
data and reasoned assumptions and do not prove cause and effect.

Policy implications Our study offers a comprehensive analysis of the global burden of SSB-attributable T2D and CVD burdens, incorporating sociodemographic 
disparities and regional nuances. While some policies to curb SSB intakes are currently in place in some countries, our study suggests that 
more work is needed. In Latin America and the Caribbean, for instance, several nations have implemented policies to curb SSB intakes, 
yet this region had the largest SSB-attributable cardiometabolic burdens in 2020. Mid- and high-educated adults in rural and urban Latin 
America and the Caribbean and rural sub-Saharan Africa should be given particular attention. The increasing burdens in sub-Saharan Africa 
shed light on the necessity of acting quickly in this region. By highlighting the countries and subpopulations most affected, our research 
can assist in shaping effective policies and interventions to efficiently reduce the burden of cardiometabolic diseases attributed to SSB 
consumption globally.
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(5.1% (4.6–5.7) of all T2D deaths) and 257,962 (235,059–283,798) deaths 
from CVD (2.1% (1.9–2.3) of all CVD deaths).

Among the 30 most populous countries, the greatest absolute 
numbers of new T2D cases attributable to SSBs were in Mexico (2,007 
per million adults (1,754–2,338)), Colombia (1,971 (1,612–2,354)) and 
South Africa (1,258 (1,005–1,575)) (Fig. 1 and Supplementary Data 1). For 
CVD, the greatest numbers were in Colombia (1,084 (832–1,381)), South 
Africa (828 (645–1,083)) and Mexico (721 (612–889)). As a proportion of 
all new cases, the highest SSB burdens of T2D were in Colombia (48.1% 
(39.3–57.3)), Mexico (30.0% (26.4–35.0)) and South Africa (27.6% (22.1–
34.6)), and those of CVD were in Colombia (23.0% (18.0–29.2)), South 
Africa (14.6% (11.4–19.2)) and Mexico (13.5% (11.5–16.7)). Findings on 
cardiometabolic deaths and DALYs attributable to SSBs in 184 nations 
are presented in Supplementary Figs. 1 and 2 and Supplementary Data 1.

Regional T2D and CVD burdens attributable to SSBs
By world region, Latin America and the Caribbean had the highest 
absolute and proportional T2D incidence due to SSBs (1,263 new cases 

per 1 million (1,146–1,400); 24.4% (22.3.0–26.9)), and Southeast and 
East Asia had the lowest (119 new cases per 1 million (103–145); 3.1% 
(2.7–3.8)) in 2020 (Fig. 2 and Supplementary Table 5). SSB-attributable 
CVD incidence ranged from 815 new cases per 1 million (674–980) in the 
Middle East and North Africa to 46.8 new cases per 1 million (41.0–57.1) 
in Southeast and East Asia (Fig. 2 and Supplementary Table 6). SSBs 
were estimated to have caused more than 1 in 10 new CVD cases in Latin 
America and the Caribbean (11.3% (10.1–12.8)) and sub-Saharan Africa 
(10.5% (8.1–13.3)), compared with less than 1 in 100 cases in South Asia 
(0.60% (0.6–0.8)). Cardiometabolic mortality and DALYs from SSBs in 
different world regions are presented in Supplementary Figs. 3–6 and 
Supplementary Tables 5 and 6.

Global heterogeneity by age, sex, education and urbanicity
Globally, SSBs were estimated to cause more T2D cases in men (447 
per 1 million adults (413–491); 10.1% (9.3–11.10) of total cases) ver-
sus women (388 per 1 million adults (358–422); 9.5% (8.8–10.4)), 
higher-educated (531 per 1 million adults (486–620); 11.1% (10.1–12.9)) 

0 200 400 700 1,000 1,300 1,600+

a

T2D incident cases per 1 million adults

0 100 200 300 400 500 600+

b

CVD incident cases per 1 million adults

Fig. 1 | Incidence of T2D and CVD per 1 million adults attributable to SSB 
intake among adults (20+ years) in 184 countries in 2020. a,b, Absolute 
SSB-attributable T2D incidence (a) and absolute SSB-attributable CVD incidence 
(b). The SSB-attributable absolute burden per 1 million adults was calculated by 
dividing the country absolute number of SSB-attributable cases by the country 

adult population (20+ years) in that same year and multiplying by  
1 million. Values were truncated at 1,600 for a and at 600 for b to better reflect 
the absolute case distribution globally for T2D and CVD. The analysis of the data 
was done using the rworldmap package (v1.3-6). Source data are provided in 
Source Data Fig. 1.
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versus lower-educated adults (360 per 1 million adults (326–398); 
9.1% (8.2–10.1)) and urban (543 per 1 million adults (502–592); 11.3% 
(10.5–12.2)) versus rural adults (244 per 1 million adults (233–267); 
7.0% (6.4–7.7)) in 2020 (Fig. 2 and Supplementary Table 5). By age, 
absolute burdens of SSB-attributable T2D cases were highest at ages 
45–49 years (601 per 1 million adults (539–711); 10.9% (9.7–12.8)), while 
proportional risk was highest at ages 25–29 years (301 per 1 million 
adults (274–338); 15.6% (14.2–17.6)).

For CVD, absolute SSB-attributable incident cases per 1 million 
adults were higher among men (285 per 1 million adults (258–317)) 
than women (176 per 1 million adults (159–194)) in 2020, owing to 
both higher SSB intake and higher baseline CVD risk (Fig. 2 and Sup-
plementary Table 6). SSB-attributable CVD incidence was also higher 
in urban adults (273 per 1 million adults (247–300)) than in rural adults 
(172 per 1 million adults (153–192)), for similar reasons. By contrast, 
global SSB-attributable CVD incidence was similar across education 
levels. Absolute incidence of SSB-attributable CVD increased with 
age, while proportion risk decreased with age. For example, SSBs were 
estimated to contribute to 585 new CVD cases (520–677) per 1 million 
adults among adults aged 80–84 years (1.2% (1.1–1.4) of total incident 
CVD in this age group) versus 26.2 new CVD cases (23.6–29.8) per 1 mil-
lion among adults aged 20–24 years (12.0% (10.6–13.5) of total incident 
CVD in this age group). T2D and CVD mortality and DALYs attributable 
to SSBs followed similar patterns as for T2D and CVD incidence (Sup-
plementary Figs. 3–6 and Supplementary Tables 5 and 6).

Regional and national heterogeneity by age, education and 
urbanicity
In all world regions, the proportion of SSB-attributable T2D and CVD 
cases was highest at the youngest ages (Extended Data Fig. 2), with most 
pronounced variations by age in high-income countries, Latin America 
and the Caribbean, Middle East and North Africa, and sub-Saharan 
Africa. By world region and age, the highest proportional incidence due 
to SSBs was seen among younger adults in Latin America and the Car-
ibbean: 43.7% (39.0–50.4) in 20–24-year-olds and 41.2% (36.1–48.8) in 
25–30-year-olds. Patterns were similar for proportions of CVD attribut-
able to SSBs (Extended Data Fig. 2). Cardiometabolic deaths and DALYs 
by age and world region are shown in Supplementary Figs. 7 and 8.

Cardiometabolic burdens due to SSB varied by education and 
urban or rural residence across world regions (Fig. 3). When education, 
urbanicity and world region were jointly considered, it was revealed 
that the highest proportions of incident T2D attributable to SSBs were 
among high-educated (34.2% (26.8–42.7)) and mid-educated (31.9% 
(25.7–38.4)) adults in urban sub-Saharan Africa, followed by high- and 
medium-educated adults in both urban and rural Latin America and 
the Caribbean (~26% each). Our findings were similar for CVD, with the 
largest SSB-attributable proportions among higher-educated (19.5% 
(14.6–26.1)) and mid-educated (17.6 % (13.5–22.4)) adults from urban 
areas in sub-Saharan Africa, but also among higher-educated and 
mid-educated adults from rural areas in sub-Saharan Africa and both 
urban and rural areas in Latin America and the Caribbean (~12–13% 
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Fig. 2 | Incidence of T2D and CVD attributable to SSB intake by key 
sociodemographic factors at the global level and by world region in 2020. 
a–d, The bars represent the central estimate (median) of the proportional SSB-
attributable T2D incidence (a), the absolute SSB-attributable T2D incidence per 
1 million adults (b), the proportional SSB-attributable CVD incidence (c) and 
the absolute SSB-attributable CVD incidence per 1 million adults (d). The error 
bars represent the 95% UI derived from the 2.5th and 97.5th percentiles of 1,000 
multiway probabilistic Monte Carlo model simulations. The SSB-attributable 
absolute burden per 1 million adults was calculated by dividing the stratum 

absolute number of SSB-attributable cases by the stratum adult population 
(20+ years) in that same year and multiplying by 1 million. In previous GDD 
reports, the region ‘Central and Eastern Europe and Central Asia’ was referred to 
as ‘Former Soviet Union’, and ‘Southeast and East Asia’ was referred to as ‘Asia’. 
See Supplementary Table 2 for a list of countries included in each world region. 
Source data are provided in Source Data Fig. 2. Centr/East Eur Centr Asia, Central 
or Eastern Europe and Central Asia; Latin Amer/Caribbean, Latin America and the 
Caribbean; Mid East/North Africa, Middle East and North Africa.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 31 | February 2025 | 552–564 556

Article https://doi.org/10.1038/s41591-024-03345-4

each). Patterns for SSB-attributable deaths and DALYs were consistent 
with these results (Supplementary Figs. 9 and 10).

Changes over time in T2D and CVD attributable to SSBs
Globally from 1990 to 2020, the proportion of T2D incidence attribut-
able to SSBs increased by 1.3% absolute percentage points (0.9–1.7), 
and that of CVD decreased by −0.1% (−0.3 to 0.0). By region, the 
greatest percentage increase in T2D and CVD burdens due to SSBs 
was in sub-Saharan Africa (Fig. 4 and Supplementary Data 2), where 
SSB-attributable T2D increased by 8.8 percentage points (6.8–11.0) 
and CVD by 4.4 percentage points (3.1–5.8). More moderate increases 
were also identified in the Middle East and North Africa and Central or 
Eastern Europe and Central Asia. By contrast, T2D and CVD proportional 

burdens were generally stable over time in other regions, while Latin 
America and the Caribbean and high-income countries experienced 
a slight decrease. Similar patterns were identified in SSB-attributable 
deaths and DALYs (Supplementary Fig. 11).

Among the 30 most populous countries, the largest increase over 
time in SSB-attributable new T2D cases per 1 million adults was in 
Colombia with 793 more cases (627–972), followed by the United States 
(671 (576–985)), Argentina (544 (432–682)), Myanmar (522 (364–772)) 
and Thailand (512 (249–982)) (Fig. 5). Incident SSB-attributable CVD 
cases increased most in Nigeria (291 (188–464)), Russia (274 (213–414)), 
Colombia (216 (125–335)) and Thailand (166 (79.6–340)). By contrast, 
Turkey (−156 (−234, −59.7)) experienced the largest decrease in incident 
T2D due to SSBs, while the largest reductions in incident CVD due to 
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Fig. 3 | Proportional incidence of T2D and CVD attributable to SSB intake 
among adults (20+ years) jointly stratified by world region, area of 
residence and education level in 2020. a,b, The bars represent the central 
estimate (median) of the proportional SSB-attributable T2D incidence (a) and 

CVD incidence (b). The error bars represent the 95% UI derived from the 2.5th 
and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo model 
simulations. Values were truncated at 35 for a, and 95% UIs above 35 are shown 
with diagonal lines. Source data are provided in Source Data Fig. 3.
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SSBs were in Turkey (−541 (−789, −378)), the United States (−382 (−536, 
−322)), South Africa (−202 (−304, −111)) and the United Kingdom (−172 
(−245, −133)). Changes over time in SSB-attributable T2D and CVD 
deaths and DALYs among the 30 most populous countries are presented 
in Supplementary Figs. 12 and 13.

To better understand relationships of these trends with national 
development, we investigated findings by sociodemographic index 
(SDI), a composite measure of national development based on fer-
tility rate under age 25, mean education level among people aged 
15+ years and income per capita18. In 1990, the national SDI was not 
correlated with SSB-attributable T2D or CVD disease burdens. How-
ever, by 2020, the national SDI was inversely correlated with both 
incident T2D (r = −0.30, P < 0.01) and CVD (r = −0.33, P < 0.01), with 
higher SSB-attributable health burdens occurring among nations with 
lower SDI (Extended Data Figs. 3 and 4, Supplementary Figs. 14–17 and 
Supplementary Data 3).

Discussion
This investigation provides updated estimates of T2D and CVD health 
burdens attributable to SSBs worldwide, with stratification by age, sex, 
education, and rural or urban residence3. Globally, we found that 2.2 
million new cases of T2D and 1.2 million new cases of CVD in 2020 were 
attributable to SSBs—representing about 1 in 10 new T2D and 1 in 30 
new CVD cases. In addition, we estimated that about 340,000 people 
died in 2020 from SSB-related T2D and CVD. Important trends over 
time were identified by world region and demographic subgroups.

These SSB-attributable health burdens are informed by indepen-
dently derived etiologic effects incorporated into our CRA model, 

identified from published meta-analyses of prospective cohort stud-
ies and randomized controlled trials of SSBs and cardiometabolic 
outcomes. A larger global effect on T2D than on CVD can be explained 
by the greater impact of adiposity on T2D versus CVD, as well as T2D 
onset generally occurring at younger ages (when SSB intakes are much 
higher) compared with CVD. Also, competing risk factors for CVD, such 
as smoking, LDL cholesterol and blood pressure, lower the relative 
impact of SSBs on CVD compared with T2D19.

We identified important heterogeneity in these cardiometabolic 
disease burdens. Regionally, sub-Saharan Africa experienced the larg-
est increases in SSB-attributable burdens between 1990 and 2020, 
while Latin America and the Caribbean, despite modest declines over 
this period, retained significant burdens compared with other regions. 
We also identified relatively high SSB-related health burdens among 
individuals with higher educational attainment in Latin America and 
the Caribbean, South Asia and sub-Saharan Africa; lower educational 
attainment in the Middle East and North Africa; and both urban and 
rural residence in South Asia and sub-Saharan Africa. Proportional 
burdens were largest among younger versus older adults in most world 
regions, whereas absolute burdens were more substantial among 
middle-aged and older adults. Proportional SSB-attributable burdens 
were lower among older adults owing to other competing risk factors 
for cardiometabolic disease later in life, absolute numbers of cases and 
deaths were substantial.

The large SSB-attributable burdens in sub-Saharan Africa are 
consistent with reports of substantial increases in SSB intakes and, 
separately, in cardiometabolic disease rates in the region between 1990 
and 202012,20. Our findings provide a clarion call that the ‘nutrition tran-
sition’ from traditional toward Western diets has already occurred in 
much of the region, requiring urgent policy and public health attention. 
Yet, many sub-Saharan African nations have not implemented any meas-
ures to curb SSB intakes, perhaps owing to both industry opposition 
and previous lack of credible country-specific data21,22. As SSB intakes 
have leveled or started to decline in high-income nations12, the beverage 
industry has turned to emerging markets where populations are highly 
susceptible to marketing appeal of aspirational ‘Western’ lifestyles23,24. 
Critically, we found in many such regions that SSB-attributable heath 
burdens are now largest among more educated adults, in line with 
regional economic growth and burgeoning middle classes23,25. In South 
Africa, for example, SSB advertising is mainly directed at wealthy males 
under 45 years old, who also show the highest SSB consumption in the 
country26. Although South Africa has implemented an SSB tax, the 
beverage industry increased their advertising to offset negative effects 
on sales27. Independent advertising regulations—that is, not designed 
or policed by industry—have been largely missing26,27. Our findings 
highlight the need to address high and increasing health burdens from 
SSBs in these nations. Our results further suggest, given higher intakes 
and health burdens among more versus less educated adults in many 
regions, that general education alone is unlikely to effectively reduce 
SSB intakes (and could even augment intakes and health burdens).

The modest decreases in SSB-related cardiometabolic burdens 
identified in Latin America and the Caribbean are consistent with 
slowly decreasing consumption of SSBs in this region12. Nations in 
this region have implemented several policy efforts targeting SSBs, 
including taxes, marketing regulations, front-of-package warnings 
and education campaigns28,29. Yet, SSB-attributable health burdens 
remain high in the region, and absolute burdens per million adults 
continue to rise owing to continuing increased rates in obesity, T2D 
and CVD. While declining SSB intake may have slowed regional growth 
in obesity, SSB intake remains high, while other risks such as high 
refined grain intake and physical inactivity remain prevalent30. Given 
the lag between obesity and development of T2D and CVD, as well as the 
persistent impact of early life influences on later cardiometabolic risk, 
concerted multigenerational efforts over many years may be needed 
to reverse these challenges.
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Fig. 4 | Change in proportional incidence of T2D and CVD attributable to 
intake of SSBs among adults (20+ years) from 1990 to 2020 by world region. 
a,b, The bars represent the central estimate (median) of the difference between 
1990 and 2020 for the proportional T2D incidence (a) and CVD incidence (b) 
attributable to SSB. The error bars represent the 95% UI derived from the 2.5th 
and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo model 
simulations. Source data are provided in Source Data Fig. 4.
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Compared with other regions, South Asia and Southeast and 
East Asia had the lowest SSB-attributable cardiometabolic burdens, 
consistent with their much lower intakes12. Other competing die-
tary risks, such as large T2D burdens attributable to refined rice31, 

may also lower relative SSB-attributable burdens. In line with these 
findings, a set of prospective cohorts across 21 countries found 
that incident T2D associated with refined rice intake was highest in 
South Asia32. Our lack of data on sweetened teas could also partly 
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Fig. 5 | Change in incident cases per 1 million adults of T2D and CVD 
attributable to SSB intake among adults (20+ years) from 1990 to 2020 
among the 30 most populous countries. a,b, The bars represent the central 
estimate (median) of the difference between 1990 and 2020 of the absolute 
SSB-attributable T2D incidence (a) and CVD incidence (b) per 1 million 
adults. The error bars represent the 95% UI derived from the 2.5th and 97.5th 
percentiles of 1,000 multiway probabilistic Monte Carlo model simulations. 
Values were truncated from −200 to 870 for T2D (a) and from −545 to 300 for 
CVD (b). The 95% UIs above or below these values are shown with diagonal lines. 

The SSB-attributable absolute burden per 1 million adults was calculated by 
dividing the country absolute number of SSB-attributable cases by the country 
adult population (20+ years) in that same year and multiplying by 1 million. 
The difference in the absolute burden per 1 million adults was calculated by 
subtracting per 1 million adult burdens in 1990 from per 1 million adult burdens 
in 2020. From left to right, the countries are ordered from most to least populous 
based on 2020 adult (20+ years) population data. Source data are provided in 
Source Data Fig. 5.
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underestimate burdens attributable to these beverages, given their 
expanding market in Asia33.

In nations with high SSB intakes and T2D rates among younger 
adults, resulting attributable burdens will be greater. Too large or too 
low nation-specific findings should be interpreted within their esti-
mated uncertainty ranges. For example, Colombia had high central 
estimates of SSB-attributable burdens (48.1% for T2D incidence; 23.0% 
for CVD incidence), and these estimates’ lower bounds (39.3% and 18.0%, 
respectively) are also plausible SSB-attributable burdens in this country. 
Given imperfections of global modeling, a reasonable conclusion is that 
Colombia’s SSB-attributable T2D harms are at least as high as in other 
high-burden nations such as Mexico (30.0%) or South Africa (27.6%).

Between 1990 and 2020, SSB-attributable T2D incidence increased 
1.3% globally while SSB-attributable CVD incidence remained stable, 
although with wide variations by region and nation. For instance, 
sub-Saharan Africa experienced an increase in T2D incidence due to 
SSBs of 8.8 percentage points, while Latin America and the Caribbean 
experienced a decrease of −3.2 percentage points. Among largely popu-
lated nations, the largest increases in SSB-related T2D incidence was in 
Colombia, USA and Argentina, and in CVD incidence, Nigeria, Russia, 
Colombia and Thailand. These changes generally align with rises in SSB 
consumption in these nations, except in the US where slight declines 
in SSB consumption were offset by increased burdens of diabetes12. 
Similarly, declining SSB-related cardiometabolic burdens in Turkey, 
Brazil, and the United States and the United Kingdom for CVD are 
consistent with their decreasing SSB consumption from 1990 to 202012.

Commercial interests of multinational and local SSB manufactur-
ers, who invest in supply chain and marketing efforts to increase sales 
while opposing policy efforts to curb intakes, are probably drivers of 
increased SSB intakes and attributable cardiometabolic burdens in 
many nations34. Mexico faces industry opposition to its soda tax, includ-
ing industry-supported reports questioning the efficacy of the tax to 
reduce intakes and suggesting harms to jobs and the national economy, 
as well as amplified marketing through advertising, price reductions 
and bonus products34. Colombia’s 2016 efforts to pass an SSB tax were 
blocked by industry opposition, although renewed efforts were suc-
cessful in 202235. In Nigeria, increased SSB intake has motivated studies 
looking into potential SSB taxation and other policies to curb intakes36. 
However, increasing SSB sales in Nigeria have likewise motivated the 
expansion of the soda industry, supported by the vulnerability of the 
youthful population and the availability of relevant natural resources for 
SSB production37. The case of Nigeria highlights a reality that growth in 
SSB sales frequently greatly outpaces consideration, development and 
implementation of countering policies. When Thailand implemented an 
SSB tax in 2017 in response to high intakes, promising effects were seen 
among older and lower-income individuals, but not in youth38, which may 
relate to heavy advertising targeting youth in Thailand39. In the United 
Kingdom, a 2018 SSB graduated tax encouraged industry reformulation 
to lower sugar content, but the total volume of SSBs purchased went 
up40, potentially owing to counteracting industry marketing strategies41. 
Beyond commercial interests, insufficient availability of safe drink-
ing water can contribute to rising SSB-related health burdens in many 
nations, such as among rural areas in Colombia, Mexico and Thailand42–44. 
Clean water scarcity and commercial interests can go hand in hand: 
in one Mexican town, water scarcity was partly attributable to water 
concessions for soda companies45. Our findings show the downstream 
health consequences, which are high and often rising, of these realities.

Addressing cardiometabolic diseases is crucial to several United 
Nations 2030 Sustainable Development Goals, including promoting 
good health and well-being, reducing inequalities, promoting respon-
sible consumption and reducing poverty46. Our research contributes 
to these endeavors by quantifying SSB-attributable cardiometabolic 
burdens, including population subgroups with the largest risk and 
increases over time, to more accurately inform national strategies. Poli-
cies targeting the food environment, including taxes and food labeling, 

are gaining traction and can influence consumer behavior47–49. Taxation 
based on sugar density also influences product reformulation, promot-
ing the availability of lower-sugar options50. Currently, a higher propor-
tion of people in low- and lower-middle-income countries is exposed 
to SSB taxes compared with those living in upper-middle-income and 
high-income countries51. Yet, these taxes are generally new (many 
implemented after 2018) and often authorized at low levels to raise 
revenue, rather than higher levels needed to reduce consumption. 
Our findings also reveal that lower-SDI nations are more likely to 
have higher T2D and CVD SSB-attributable burdens than higher-SDI 
nations—a worrisome change since 1990, and consistent with other 
recent reports52. Lower-SDI countries can face significant constraints 
in policy implementation, including lower tax rates, implementa-
tion oversight and administration capacity53, as well as challenging 
population-wide access to clean water, which may hinder the declines 
in SSB consumption54. Our findings suggest the need for national and 
multilateral design, implementation and evaluation of policy to reduce 
SSBs, such as taxes, front-of-package labeling, marketing regulations, 
school food regulations and water sanitation efforts55,56, with particu-
lar focus on nations and subgroups with the largest SSB-attributable 
cardiometabolic burdens.

Some industry segments have initiated sugar reduction in certain 
products and regions57,58. In Europe, Coca-Cola and PepsiCo have cut 
sugar contents by 30–50% in some products including Sprite and 
7-Up58. SSB marketing and distribution are often replaced by those 
for beverages with nonnutritive sweeteners. While short-term weight 
effects of the latter may be less problematic, growing evidence sug-
gests that such compounds are not innocuous and may have harms on 
the microbiome and glucose tolerance59–61. Given the widespread and 
increasing use of nonnutritive sweeteners, additional research on their 
health effects is critically needed, as well as public health messaging 
for avoidance whenever possible.

The GBD recently estimated, among other risk factors, 
SSB-attributable cardiometabolic burdens globally52,62,63, although 
incidence was not reported, which is the primary focus of our study. 
Considering deaths, the GBD estimated 52,882 SSB-attributable T2D 
deaths in 2020, representing 3.4% of total T2D deaths63. In comparison, 
we estimated 80,278 SSB-attributable T2D deaths, or 5.1% of the total. 
The GBD estimated only 13,691 SSB-attributable CVD deaths in 2020, 
compared with 257,962 in our analysis. Important methodologic dif-
ferences between these estimates include (1) our use of a much larger 
number of individual-level dietary surveys with data on SSBs (GDD: 
450; GBD: 44)64; (2) individual dietary data derived from more coun-
tries (GDD: 118; GBD: 17); (3) our use of individual-level surveys as the 
primary input to estimate global SSB intakes, rather than sales data and 
Food and Agriculture Organization (FAO) food balance estimates of 
national per capita added sugar availability used by GBD12,65; and (4) our 
incorporation of updated findings on both direct and BMI-mediated 
etiologic effects of SSBs, compared with GBD that did not include 
mediation by BMI65. We consider the latter to be important given 
effects of SSBs on adiposity, contributions of overweight and obesity 
to cardiometabolic risk, and the fact that SSB–disease estimates in 
the literature generally adjust for BMI2,17. Ultimately, differing careful 
global investigations such as these are critical to help triangulate the 
reality on the ground in the absence of uniformly available data in all 
nations, while similarities and differences between studies can help 
identify how differences in reasoned assumptions and methods might 
influence results.

Our study has several strengths. To our knowledge, previous inves-
tigations have not reported global, regional and national estimates of 
T2D and CVD SSB-attributable burdens jointly stratified by age, sex, 
education, and urban or rural residence. About 85% of dietary inputs 
were derived from individual-level dietary surveys (that is, 24 h recalls, 
food records and food frequency questionaries), and uncertainty in 
the individual data sources, their methods and representativeness 
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is incorporated into our hierarchical Bayesian model to help address 
potential bias from less reliable dietary collection methods, variability 
in representativeness and survey level stratification, and sampling and 
model uncertainties. Compared with previous studies, our final GDD 
dietary estimates are stratified by education and area of residence, 
in addition to sex and age. Our CRA incorporated etiologic effects of 
SSBs from meta-analyses of prospective cohorts or randomized tri-
als that facilitate inference of independence and temporality, rather 
than performing cross-sectional correlational analyses that can be 
strongly limited by reverse causation and cross-national confound-
ing. The cohort-derived effects were multivariable adjusted for soci-
odemographic, lifestyle and other dietary factors and are consistent 
with randomized trials of SSBs, representing reasonable estimates of 
long-term health effects. Studies of etiologic effects with increased risk 
of bias, such as retrospective or cross-sectional studies, were excluded2. 
We incorporated sampling and modeling uncertainty from each of our 
model inputs, providing central estimates and measures of uncertainty 
representing the 95% most probable values12.

Limitations should be considered. Our estimates are based on best 
available data and reasoned assumptions, and do not prove cause and 
effect. The CRA framework is not a microsimulation estimating the 
impact of a specific intervention to reduce future SSB intakes, but a 
counterfactual approach that estimates the health effects of current 
SSB intakes compared with the scenario in which such an exposure 
was not present. While etiologic effects of SSBs on weight gain, T2D 
and CVD were obtained from multiple cohorts across world regions, 
these were mostly from high-income countries especially for weight 
gain that used pooled US studies, which could imperfectly represent 
other populations if health effects of SSBs are in the future shown to 
biologically vary by world region or over time. While we varied such 
estimates by age and baseline BMI, current evidence is likewise insuf-
ficient to vary such risk estimates by other population characteristics. 
Although etiologic effects were obtained from multivariable-adjusted 
studies and, where available, were consistent with findings from trials, 
measurement error, residual confounding and publication bias cannot 
be ruled out, which could alter findings in unpredictable directions. 
We did not incorporate other likely SSB-related health harms, such as 
dental caries, other effects of adiposity, hepatic steatosis or microbi-
ome dysfunction; thus, our findings probably underestimate the full 
health burdens of SSBs. Despite extensive efforts of the GDD, dietary 
data were limited for several time periods and countries, particularly 
lower-income nations12. Accordingly, estimated burdens in countries 
with fewer individual-level surveys have higher uncertainty. All dietary 
assessments include some error; however, validated methods such as 
multiple 24 h recalls, food records and food frequency questionaries 
included in the GDD are considered realistic and reliable tools for 
individual-level dietary collection in large-scale demographic studies66. 
Our SSB definition did not include 100% fruit juices or sugar-sweetened 
milk, which have shown inconsistent evidence for cardiometabolic 
effects2,9. Global dietary surveys often did not collect information on 
sugar-sweetened tea or coffee, highlighting a future surveillance need, 
particularly in Asia33.

In summary, our study offers a comprehensive analysis of the 
global burden of SSB-attributable T2D and CVD, incorporating sociode-
mographic disparities and regional nuance. The largest proportional 
T2D and CVD attributable burdens in 2020 were in Latin America and 
the Caribbean and sub-Saharan Africa, and the largest increases from 
1990 to 2020 were in sub-Saharan Africa. These findings emphasize the 
need for targeted interventions, accounting for social inequities and 
aligned with global health objectives. While some policies to curb SSB 
intakes are currently in place in some countries, our study suggests that 
more work is needed. By highlighting the countries and subpopulations 
most affected, our research can assist in shaping effective policies and 
interventions to ultimately reduce the cardiometabolic heath burdens 
of SSBs globally.
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Methods
Inclusion and ethics statement
Data informing the GDD modeling estimates for this study, includ-
ing from LMICs (low- and middle-income countries), were collected 
between 1980 and 2018 from GDD consortium members and publicly 
available sources in the form of dietary intake surveys. If nationally 
representative surveys were not available for a country, we also con-
sidered national surveys without representative sampling, followed 
by regional, urban or rural surveys, and finally large local cohorts, 
provided that selection and measurement biases were not apparent 
limitations (for example, excluding studies focused on a selected 
population with a specific disease, a certain profession or following a 
particular dietary pattern). For countries with no surveys identified, 
other sources of potential data were considered, including the WHO 
Infobase, the STEP database and household budget survey data. As of 
August 2021, we identified and retrieved 1,634 eligible survey years of 
data from public and private sources. Of these, 1,224 were checked, 
standardized and included in the GDD model, including 450 surveys 
informing SSB intake estimates12.

Most surveys identified were privately held or, if public, not avail-
able in relevant format for GDD modeling (for example, not jointly 
stratified by age, sex, education, and urban or rural status). We thus 
relied almost entirely on direct consortium member contacts for each 
survey to provide us with exposure data directly. Roles and responsibili-
ties of GDD consortium members were determined and agreed upon 
before data sharing as part of a standardized data sharing agreement. 
The draft manuscript was shared with all GDD consortium members 
before submission for peer review, and all members are included as 
coauthors of this work. We endorse the Nature Portfolio journals’ 
guidance on LMIC authorship and inclusion and are committed to 
the inclusion of researchers from LMICs in publications from the 
GDD. We share the GDD data with the entire consortium, encourage 
authors from LMICs to take the lead on analyses and papers, and can 
provide technical and writing support to LMIC authors. For more 
details on the collaborative GDD data collection process, please visit 
our website at https://www.globaldietarydatabase.org/methods/
summary-methods-and-data-collection.

This research is locally relevant to all countries included, given 
that it disaggregates findings nationally and subnationally by key 
demographic factors such as age, sex, education level and urbanicity, 
providing decision-makers with the CVD and diabetes risk associated 
with SSB intakes over time.

This modeling investigation was exempt from ethical review board 
approval because it was based on published data and nationally repre-
sentative, de-identified datasets, without personally identifiable infor-
mation. Individual surveys underwent ethical review board approval 
required for the applicable local context.

Study design
A CRA model14 estimated the numbers, proportions and uncertainty 
of global T2D and CVD incidence, DALYs and mortality attributable 
to intake of SSBs among adults aged 20+ years. Importantly, the CRA 
framework does not use ecologic correlations to estimate risk, but 
incorporates independently derived input parameters and their uncer-
tainties on sociodemographics, population size, risk factor (that is, 
SSBs) their multivariable-adjusted estimated etiologic effects on dis-
ease based on external studies, and background disease incidence, 
mortality and DALYs14. These parameters are entered into the model to 
estimate the disease burdens and their uncertainties. Specifically for 
this investigation, we leveraged input data and corresponding uncer-
tainty in 184 countries including (1) population SSB intake distributions 
based on individual-level survey data from the GDD (https://www.
globaldietarydatabase.org/)7,12,13; (2) optimal SSB intake levels from 
previous analyses67; (3) direct age-adjusted etiologic effects of SSBs on 
T2D, ischemic heart disease and ischemic stroke adjusted for BMI2,68–70, 

and of weight gain on T2D15, ischemic heart disease16 and ischemic 
stroke15 from previous meta-analyses and pooled analyses of prospec-
tive cohorts, as well as linear, BMI-stratified effects of SSBs on weight 
gain or loss17; (4) population overweight (BMI ≥ 25 kg m−2) and under-
weight (BMI < 18.5 kg m−2) distributions from the (non-communicable 
disease) NCD Risk Factor Collaboration (NCD-RisC)71; (5) total T2D, 
ischemic heart disease, and ischemic stroke incidence, DALYs and mor-
tality estimate distributions from the GBD study72,73; and (6) population 
demographic data from the United Nations Population Division74,75 and 
the Barro and Lee Educational Attainment Dataset 201376, as previously 
reported31 (Supplementary Table 7).

Bias and reliability were addressed in each of the independent 
data sources used in our model. The GDD selected national and sub-
national dietary surveys without apparent measurement or selection 
biases7, and leveraged a Bayesian model to incorporate differences 
in data comparability and sampling uncertainty. In GBD, bias adjust-
ment of underlying rates of T2D and CVD not specifically meeting 
the gold-standard definition of these causes was done using network 
meta-regression before estimation in DisMod, while implausible or 
unspecified causes of death were redistributed to valid underlying 
causes of death using reclassification algorithms73,77. Etiologic effects 
were obtained from published meta-analyses or pooled analyses of 
prospective cohorts and randomized control trials including multi-
variable adjustment for age, sex, BMI and other risk factors to reduce 
bias from confounding2,68–70. Studies with increased risk of bias such 
as retrospective or cross-sectional studies were excluded2. Underlying 
adiposity rates were obtained from the NCD-RisC, which used national 
or subnational surveys that collected measured height and weight data 
to avoid bias in self-reported data71.

The GBD study uses a different approach to dietary assessment, 
primarily relying on adjusted United Nations (UN) and FAO national 
per capita availability of sugar as primary data to estimate SSBs, with 
a limited set of individual-level dietary surveys (N = 44). In compari-
son, the GDD uses a much more comprehensive database of largely 
individual-level dietary surveys to estimate SSB intake (N = 450), with 
other data (such as UN FAO sugar) used as covariates rather than as 
primary data. Thus, in addition to novel stratification by educational 
level and area of residence, the GDD dietary estimates may be more 
valid and informative. Our investigation leverages published diet–dis-
ease etiologic effects from extensive meta-analyses identified through 
reviews conducted by our team, includes both direct and BMI-mediated 
effects, and incorporates new data on prevalence of overweight and 
obesity from the NCD-RisC. Our study also estimates incident cases, 
which is not a measure reported in previous global studies.

Compared with our previous 2010 estimates3, our present investi-
gation includes major expansion of individual-level dietary surveys and 
global coverage through 2018; updated modeling methods, covariates 
and validation to improve estimates of stratum-specific mean intakes 
and uncertainty; inclusion of updated dietary and disease data that 
are jointly stratified subnationally by age, sex, education level, and 
urban or rural residence; and updated SSB etiologic effect estimates on 
T2D, ischemic stroke and ischemic heart disease. This present analysis 
focused on adults aged 20+ years given the low rates of T2D and CVD 
globally at younger ages.

Global distributions of SSB intakes
The GDD systematically searched for and compiled representative 
data on individual-level dietary intakes from national surveys and 
subnational surveys7,12. The final GDD model incorporated 1,224 dietary 
surveys representing 185 countries from 7 world regions and 99.0% 
of the global population in 2020. Of these, 450 surveys reported data 
on SSBs, totaling 2.9 million individuals from 118 countries repre-
senting 86.8% of the global population. Most surveys were nationally 
or subnationally representative (94.2%), collected at the individual 
level (84.7%), and included estimates in both urban and rural area of 
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residence (61.6%). Further details on characteristics of surveys with 
data on SSBs, including availability of surveys per world region, are 
available in Supplementary Table 1. The world region classification 
used in our study was based on groupings that are likely to have consist-
ent exposures to disease risk and rates of disease outcomes, and this 
or similar classifications have been previously used by our team and 
others73. Countries included in each world region are listed in Supple-
mentary Table 2. Global, regional and national estimates among the 30 
most populous countries, by population characteristics in 2020, are 
available in Supplementary Tables 3 and 4.

SSBs were defined as any beverages with added sugars and ≥50 kcal 
per 8 oz serving, including commercial or homemade beverages, soft 
drinks, energy drinks, fruit drinks, punch, lemonade and aguas frescas. 
This definition excluded 100% fruit and vegetable juices, noncaloric 
artificially sweetened drinks and sweetened milk. All included surveys 
used this definition. We used an average sugar content per SSB serv-
ing, an assumption that probably has little influence on large-scale 
demographic estimates such as these but could be a problem for more 
focused local studies. Home-sweetened teas and coffees (which often 
would have less than 50 kcal per serving) were not explicitly excluded 
from the SSB definition at the time of data collection, but total tea and 
coffee intake were separately collected in the dietary surveys and by the 
GDD as separate variables. Compared with soda and other industrial 
SSBs, 100% fruit juices and sugar-sweetened milk, coffee and tea have 
shown inconsistent evidence for health effects, and were therefore 
excluded from our definition of SSBs2,9. Differences in health effects 
may relate to additional nutrients in those drinks, such as calcium, vita-
min D, fats, and protein in milk, caffeine and polyphenols in coffee and 
tea, and fiber and vitamins in 100% juice, or to differences in the rapidity 
of consumption and/or drinking patterns of these beverages. Notably, 
each of these other beverages is also generally excluded in policy and 
surveillance efforts around SSBs12. At high intakes, alcoholic beverages 
have been associated with T2D and CVD in prospective cohorts and 
genome-wide association studies78,79. However, the effect of alcoholic 
beverages on T2D and CVD differs from the effect of SSBs on these 
diseases, and thus, alcohol and SSB should be analyzed separately2,79,80. 
Moreover, the exclusion of alcoholic beverages ensures comparability 
across diverse populations, given variations in alcohol consumption 
due to religious and cultural factors81. Regulatory shortcomings in 
labeling 100% fruit and vegetable juices may have led to underestima-
tions in SSB intake and attributable burdens for certain populations82,83.

For our present analysis, we updated SSB intake estimates for 2020 
using similar methodology as previously reported12, but with updated 
food availability data released by FAO for 2014–2020 as covariates. 
Because FAO updated its methodology for these new estimates, the FAO 
estimates from this period versus their estimates from earlier years are 
not directly comparable (for example, a ‘step change’ in FAO estimates 
was noted comparing 2013 versus 2014 data for most countries). To 
account for this and retain the relative ranking between nations, we 
calculated a nation-specific adjustment factor for each FAO covariate, 
based on the ratio of that nation’s 2013 versus 2014 data, and applied 
this to each nation’s FAO estimates from 2014 to 2020.

A Bayesian model with a nested hierarchical structure (with ran-
dom effects by country and region) was used to estimate the mean 
consumption level of SSBs and its statistical uncertainty for each of 
264 population strata across 185 countries from 1990 through 2020, 
incorporating and addressing differences in data comparability and 
sampling uncertainty12,84. The model then estimated intakes jointly 
stratified by age (22 age categories from 0 to 6 months through 
95+ years), sex (female, male), education (≤6 years of education, 
>6 years to 12 years, >12 years) and urbanicity (urban, rural). Although 
this analysis focuses only on adults aged 20+ years, the model used all 
age data to generate the strata estimates.

Of the 188 countries with survey data, 3 were dropped from the 
GDD estimation model owing to unavailability of FAO food availability 

data (Andorra, Democratic People’s Republic of Korea and Somalia), 
an important covariate in the estimation model. Uncertainty of each 
stratum-specific estimate was quantified using 4,000 iterations to 
determine posterior distributions of mean intake jointly by country, 
year and sociodemographic subgroup. The median intake and the 
95% UI for each stratum were computed at the 50th, 2.5th and 97.5th 
percentiles of the 4,000 draws, respectively.

Global, regional, national and within-country population 
subgroup intakes of SSBs and their uncertainty were calculated as 
population-weighted averages using all 4,000 posterior estimates 
for each of the 264 demographic strata in each country–year. Popu-
lation weights for each year were derived from the United Nations 
Population Division74,75, supplemented with data for education and 
urban or rural status from a previous study85. Intakes were calculated 
as 8 oz (248 g) servings per week. For our present analysis, GDD SSB 
estimates were collapsed for adults aged 85+ years using the 4,000 
simulations corresponding to the stratum-level intake data derived 
from the Bayesian model. In this study, regression-based methods 
were used to estimate the standard deviation corresponding to each 
estimated, stratum-specific mean from the dietary survey input data. 
These mean–standard deviation pairs were then used to generate 
gamma distribution parameters for usual dietary intake as detailed in 
the following section.

Estimation of gamma parameters for the distribution of usual 
intake
Dietary intakes cannot be negative, and the usual intake distributions 
tend to be skewed to the right86,87. Gamma distributions were shown 
to be more appropriate than normal distributions for SSBs based on 
the analysis of GDD input data (for example, NHANES data) in a previ-
ous study88 and other research on assessment of population dietary 
intake89,90, as it is nonnegative and includes a wide range of shapes with 
varying degrees of skewness91. Standard deviation (s.d.) needed to be 
obtained to construct the gamma distribution of intakes. Parameters 
for gamma distribution were generated using the mean estimate from 
the GDD estimation model and the estimated s.d. for the mean estimate 
from 1,000 simulations.

Standard deviation estimates for the distribution of usual dietary 
intake. Stratum-level GDD input survey data were used to fit a lin-
ear regression of the s.d. of intake on mean intake (both adjusted 
for total energy). To determine the appropriate transformation of 
the input data used for fitting the linear regression, scatter plots 
of energy-adjusted means versus energy-adjusted s.d. were cre-
ated. Using this approach, we concluded that a natural log trans-
formation for both mean and s.d. was most appropriate. We also  
explored excluding demographic and health surveys, household 
surveys and outlier data owing to the potential unreliability of such 
surveys for estimating s.d., but determined that no one dietary assess-
ment method contributed unevenly to the observed linear trend. 
Thus, all available data were included, allowing for the largest pos-
sible sample size and greatest generalizability. We also investigated 
whether the log mean and log s.d. relationship differed by world 
region, but did not find strong evidence for such heterogeneity.  
A regression model was used for each individual diet factor to cal-
culate the s.d.:

Yi = β0 + β1xi + εi

where i refers to each survey stratum, Yi is the natural log of the 
s.d. of stratum-specific intake, xi is the natural log of the mean of 
stratum-specific intake and εi is the random error that follows N(0, σ2).

Monte Carlo simulations for generating standard deviation distribu-
tions. Estimates for β0 and β1 were used to predict 1,000 ln(s.d.) values 
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corresponding to 1,000 iterations (k) of the predicted mean intake for 
each population stratum (j) using Monte Carlo simulations.

Ŷjk = β̂0 + β̂1X̂jk

in which X̂jk  is the kth sample draw of the posterior distribution 
for mean intake for population stratum j. We propagated uncertainty 
from the model estimates, as well as variation within the sampling data 
itself, by randomly drawing from a t-distribution with n − 1 degrees of 
freedom using the following equation:

ln (ŝ.d.jk) = ̂Yjk + σ̂
√

1 + ( 1n )× tn−1k ,

in which σ̂  is the estimate for σ, n is the number of survey strata, 
tn−1k  is the kth sample drawn from a t-distribution with n − 1 degrees of 
freedom and ŝ.d.jk is the kth sample draw of the predicted s.d. distribu-
tion for population stratum j.

Estimation of gamma parameters for the distribution of usual 
intake. The posterior distributions for each stratum-specific s.d. were 
used to generate 1,000 corresponding shape and rate gamma param-
eters for the distribution of usual intake, a primary input in the CRA 
model, using the following equations:

ˆShapejk = (
X̂jk

ŝ.d.jk
)
2

R̂atejk =
X̂jk

ŝ.d.2jk

Estimated SSB–disease relationships
The direct risk estimates between SSB intake and T2D, ischemic heart 
disease and ischemic stroke were obtained from published systematic 
reviews and evidence grading, based on published meta-analyses of 
prospective cohort studies and randomized controlled trials includ-
ing multivariable adjustment for age, sex, BMI and other risk factors 
to reduce bias from confounding (Supplementary Table 8)2,68–70. The 
methods and results for the review, identification and assessment of 
evidence for the SSB–disease relationships have been described2,67. 
Briefly, evidence for each SSB–disease relationship was first evaluated 
by grading the quality of evidence according to nine different Bradford 
Hill criteria for causation: strength, consistency, temporality, coherence, 
specificity, analogy, plausibility, biological gradient and experiment. 
This evidence grading was completed independently and in duplicate 
by two expert investigators. Based on these assessments, probable or 
convincing evidence was determined independently and in duplicate, in 
accordance with the criteria of the FAO and World Health Organization92 
and with consideration of consistency with similar criteria of the World 
Cancer Research Fund and the American Institute for Cancer Research93. 
SSBs had at least probable association for direct etiologic effects (BMI 
independent) on T2D, ischemic heart disease and ischemic stroke risk, 
as well as on weight gain. See Supplementary Table 9 for further details 
on the evidence grading criteria and results of this evaluation. All SSB–
disease estimates were standardized from the originally reported 250 ml 
serving size to 8 oz servings (248 g), the unit used in our analysis.

Given that these studies adjusted for BMI, we separately assessed 
the BMI-mediated effects (BMI change in kg m−2) based on pooled analy-
ses from long-term prospective cohort studies of changes in diet and 
changes in BMI (Supplementary Table 8)17. Specifically, we used data 
from three separate prospective cohort studies: the Nurses’ Health 
Study (1986–2006), involving 50,422 women with 20 years of follow-up; 
the Nurses’ Health Study II (1991–2003), including 47,898 women 
with 12 years of follow-up; and the Health Professionals Follow-up 

Study (1986–2006) with 22,557 men with 20 years of follow-up. Par-
ticipants included in these analyses were initially free of obesity (that 
is, BMI < 30 kg m−2) or chronic diseases and had complete baseline 
data on weight and lifestyle habits. The associations between SSBs 
and weight gain were estimated separately for overweight and obese 
(BMI ≥ 25 kg m−2) and non-overweight adults (BMI < 25 kg m−2), given 
observed effect modification by baseline BMI status17. We used linear 
regression with robust variance, accounting for within-person repeated 
measures, to assess the independent relationships between changes 
in SSB intake and changes in BMI over 4 year periods. Women who 
became pregnant during follow-up were excluded from the analysis. 
BMI-mediated effects did not specifically differentiate between over-
weight and obesity, which could have led to an underestimation in the 
BMI-mediated effects among adults with obesity.

To examine the BMI-mediated associations, we assessed the 
impact of differences in BMI on the risk of T2D, ischemic heart disease 
and ischemic stroke (Supplementary Table 8)15,16. These relationships 
were obtained from pooled analyses of multiple cohort studies investi-
gating the quantitative effects of BMI on T2D15, ischemic heart disease16 
and ischemic stroke15. The risk estimates were transformed from the 
originally reported 5 kg m−2 to 1 kg m−2.

Heterogeneity in diet–disease relationships using age-specific 
relative risks
Age-specific relative risks were calculated for each SSB–disease etio-
logic relationship based on evidence showing decreasing proportional 
effects of metabolic risk factors on cardiometabolic disease incidence 
at older ages (for example, due to other competing risk factors)15,67. The 
age-specific relative risks were calculated based on the age at event and 
were assumed to have a log-linear age association, although the true 
age relationship may differ.

To calculate the age at event for each SSB–disease pair, we 
obtained relevant data from the original studies. This included the 
average age at baseline in years, the follow-up time in years, the type of 
follow-up time reported (for example, maximum, median or mean) and 
the study weight for each study in each meta-analysis (Supplementary 
Tables 10–12 and Supplementary Data 4). In cases in which the age at 
baseline was reported as a range rather than as the average, we used 
the central value to estimate the mean. If follow-up time to events was 
not reported, we estimated it based on the duration of the study. For 
studies that reported maximum follow-up time, we estimated the mean 
time to event as half of the maximum follow-up, and for studies that 
reported mean or median follow-up times, as two-thirds of the mean 
or median follow-up. The unweighted mean age at event for each study 
was calculated by summing the mean age at baseline and the appropri-
ate mean time to event, and the weighted mean age at event for the 
meta-analysis as the weighted age at event across all studies. In cases in 
which specific studies were excluded from the meta-analysis owing to 
limitations in study quality, or when the meta-analysis was conducted 
for multiple outcomes, the weights were adjusted accordingly. When 
study weights were not reported, we assigned equal weights to each 
study when calculating the mean overall age at event.

Given limited evidence of significant effect modification by sex, 
we incorporated similar proportional effects of risk factors by sex67. In 
previous research, we evaluated the proportional differences in rela-
tive risk for key diet-related cardiometabolic risk factors, including 
systolic blood pressure, BMI, fasting plasma glucose and total cho-
lesterol, across six 10 year age groups from 25–34 years to 75+ years67. 
Given similarities across these four risk factors, the mean proportional 
differences in relative risk across all risk factors were applied to the 
SSB–disease relative risks. In this study, we disaggregated the mean 
proportional differences into 14 5 year age groups from 20–24 years to 
85+ years. This was achieved by linearly scaling between each 10 year 
mean proportional difference in log relative risk, anchoring at the 
calculated mean age at event for each SSB–disease.
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We used Monte Carlo simulations to estimate the uncertainty in 
the age-distributed log relative risk, sampling from the distribution of 
log relative risk at the age at event. On the basis of 1,000 simulations, 
we used the 2.5th and 97.5th percentiles to derive the 95% UI.

Global distributions of adiposity
Prevalence of overweight (BMI ≥ 25 kg m−2) and underweight 
(BMI < 18.5 kg m−2) in each country–year–age–sex–urbanicity stratum 
and their uncertainty was obtained from the NCD-RisC. The NCD-RisC 
collected data from 1,820 population-based studies encompassing 
national, regional and global trends in mean BMI, with measurements 
of height and weight taken from over 97 million adults71,94. Surveys were 
excluded if they relied solely on self-report data, focused on specific 
subsets of the population or involved pregnancy. The NCD-RisC used 
a Bayesian hierarchical model to estimate age-specific mean BMI and 
prevalence of overweight and obesity by country, year and sex. The 
model incorporated data-driven fixed effects to account for differences 
in BMI by rural and urban area of residence. A Gibbs sampling Markov 
Chain Monte Carlo algorithm was used to fit the model, producing 
5,000 samples of the posterior distributions of the model parameters. 
These samples were then used to generate posterior distributions of 
mean BMI and prevalence of overweight and obesity for each stratum. 
Estimates were age standardized using age weights from the WHO 
standard population. Weighting was also used at the global, regional 
and national levels, taking into account the respective age-specific 
population proportions by country, year and sex. The estimates of 
mean BMI and overweight and obesity prevalence were presented 
along with their respective 95% credible intervals, representing the 
uncertainty around the estimates. To further stratify the NCD-RisC 
overweight and obesity prevalence estimates by education level and 
urbanicity, we assumed that the prevalence did not vary across different 
education levels or between urban and rural residences. In addition, 
it was assumed that these estimates remained constant between 2016 
and 2020 (as NCD-RisC reports only through 2016, but this CRA analysis 
assesses estimates for 2020), a conservative assumption that probably 
underestimates the prevalence of overweight and obesity and, thus, 
SSB-attributable burdens.

Characterization of optimal intake
The optimal intake level of SSBs served as the counterfactual in our CRA 
modeling analysis, allowing the quantification of impacts of SSBs on 
disease risk at the population level. We determined the optimal intake 
level based on probable or convincing evidence for effects of SSBs on 
cardiometabolic outcomes. The methodology for defining the optimal 
intake level has been described67. Briefly, it was determined primarily 
based on disease risk (observed consumption levels associated with 
lowest disease risk in meta-analyses) with further considerations of 
feasibility (observed national mean consumption levels in nationally 
representative surveys worldwide)95,96, and consistency with existing 
major food-based dietary guidelines97,98. The term ‘optimal intake’ can 
be considered analytically analogous to what has been referred to as 
the ‘theoretical minimum risk exposure level’ in other analyses99,100. We 
prefer the former term as it is more relevant to dietary risks, which can 
serve as a benchmark for quantifying disease risk, informing dietary 
guidance and informing policy priorities.

Global distributions of T2D, ischemic heart disease and 
ischemic stroke
The estimates of underlying cardiometabolic disease burdens at global, 
regional and national levels were obtained from the GBD 2021. The 
GBD collected data from censuses, household surveys, civil registra-
tion, vital statistics and other relevant records to estimate incidence, 
prevalence, mortality, years lived with disability (YLDs), years of life 
lost (YLLs) and DALYs for 371 diseases and injuries73. These estimates 
were stratified by 204 countries and territories, 23 age groups and sex, 

yearly from 1990 to 2021. For this analysis, we used GBD estimates of 
incidence, mortality and DALYs for T2D, ischemic heart disease and 
ischemic stroke for 1990 and 2020. The GBD defined T2D as fasting 
plasma glucose greater than or equal to 126 mg dl−1 (7 mmol l−1) or 
reporting the use of diabetes medication73. Estimated cases of type 1 
diabetes were subtracted from the overall diabetes cases at the most 
stratified level of age, sex, location and year to estimate T2D cases. 
Ischemic heart disease was estimated in the GBD as the aggregate of 
myocardial infraction (heart attack), angina (chest pain) or ischemic 
cardiomyopathy (heart failure due to ischemic heart disease). Ischemic 
stroke was defined as rapidly developing clinical signs of (usually focal) 
cerebral function disturbance lasting over 24 h, or leading to death, 
according to the WHO criterion of sudden occlusion of arteries sup-
plying the brain due to a thrombus101.

GBD mortality estimates were generated using the Cause of Death 
Ensemble Model framework, which incorporated various models 
including different sets of covariates testing the predictive validity, 
and generating cause-specific mortality estimates73,102,103. Cause of 
Death Ensemble Model estimates were scaled among all causes such 
that the sum of cause-specific deaths did not exceed all-cause mortality. 
YLLs were calculated as the product of the number of deaths for each 
cause by age, sex, location and year times the standard life expectancy. 
Life expectancy was first decomposed by cause of death, location and 
year to represent the cause-specific effects on life expectancy102. Then, 
the sum across age groups was taken to estimate the impact of a given 
cause on the at-birth life expectancy from 1990 to 2021. Incidence 
was modeled using DisMod, a meta-regression tool that used epide-
miologic data to estimate the occurrence disease within a population 
and determines whether cases remain prevalent, go into remission or 
result in death. YLDs were calculated by splitting the prevalence of each 
cause into mutually exclusive sequela, each defined by a health state; 
each health state was then weighted by the corresponding disability 
weight73. Finally, DALYs were calculated as the sum of YLLs and YLDs.

Disaggregation of T2D and CVD burdens by education level 
and urbanicity
The GBD provides underlying disease estimates at global, regional 
and national levels for 1990 to 2021, jointly stratified by age and sex. 
Extensive previous evidence shows that T2D and CVD outcomes vary by 
educational attainment and urbanicity104–122. We further stratified the 
1990 and 2020 GBD estimates by education level (low, medium, high) 
and area of residency (urban, rural) to examine potential variations in 
risk within these subpopulations and to align with the demographic 
and GDD dietary data stratifications available. This approach required 
assumptions on distributions of disease burdens by these demographic 
factors and potentially underestimated uncertainty in our results 
stratified by these factors.

To stratify the GBD estimates, we conducted a search of scientific 
literature to identify recent meta-analysis, pooled analyses and large 
surveys evaluating the association between educational attainment 
and urbanicity with the risk of T2D and CVD. Because we hypothe-
sized that country income level was a potential effect modifier for the 
relationships of educational attainment and urbanicity with T2D and 
CVD risk, we further collected and collated risk estimates stratified 
by country income level. We limited our analysis to studies adjusting 
only for age and sex, when possible, to avoid the attenuating effects of 
adjusting for additional covariates104–122.

We conducted fixed-effects meta-analysis of collated effect sizes 
(associations between education or urbanicity and disease rates), 
stratified by country income level. Published estimates were standard-
ized to high versus low education level, matched as closely as possible 
to the GDD definitions (low: 0–6 years of education; high: >12 years 
of education), as well as to urban versus rural residence. We pooled 
estimates within studies when (1) multiple estimates were reported for 
different CVD outcomes, (2) separate estimates were provided for men 
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and women, (3) estimates were reported for different locations (except 
by country income) or (4) an intermediate category matched our defini-
tions for education level or area of residence. The characteristics of the 
studies used to calculate the effect estimates, including their original 
and calculated effect sizes, can be found in Supplementary Data 5 and 
6 for education level and area of residence, respectively.

We conducted a separate fixed-effect meta-analysis for the 
relationship of education or urbanicity to T2D and CVD, stratified 
by country income level. We distributed the central estimate of our 
meta-analyzed risk estimate equally for high versus low education, 
and urban versus rural residence, by taking its square root and inverse 
square root (Supplementary Table 13). This approach assumed simi-
lar differences from high to medium education as from medium to 
low education. We also explored distributing the central estimate by 
incorporating information on the actual distance (for example, grade 
years) from high to medium education and medium to low education, 
when such information was available. As the results did not appreciably 
differ, we used the square root and inverse square root approach to 
maintain consistency across studies, particularly given heterogene-
ity in categorizations of education levels. The final calculated effect 
estimates for the association between education level and area of 
residence with T2D and CVD, by income country level, can be found in 
Supplementary Table 13.

The T2D, ischemic heart disease and ischemic stroke estimates 
for each year–country–age–sex stratum (mean and 95% UI) were mul-
tiplied by their respective population proportion, education effect 
and urban effect. This process created six de novo strata with the raw 
(unscaled) fully proportioned burden estimates and their uncertainty. 
The global population proportions for each year were derived from 
the United Nations Population Division75, supplemented with data 
on education attainment from a previous study76. Finally, to prevent 
under- or overestimation of the absolute number of T2D, ischemic heart 
disease and ischemic stroke cases globally, the raw fully proportioned 
burden estimates were scaled to match the total burden estimate for 
each stratum. This scaling ensured that the overall burden estimates 
remained consistent. Supplementary Table 14 provides a fictitious, 
illustrative example of how 1,000 T2D cases in a single age–sex popula-
tion stratum (low-income country) in a given year were disaggregated 
into the 6 finer education–urbanicity strata using the central estimate 
of the meta-analyzed education and urban effects. The population 
proportioned only burden estimates is also provided as a comparison. 
While uncertainty was incorporated in all the modeling parameters, 
we were unable to include uncertainty in the stratification of T2D and 
CVD cases by educational attainment and urban or rural residence as 
rigorous data to do so were not available.

Statistical analysis: CRA analysis
The CRA framework incorporated the data inputs and their uncertainty 
to estimate the absolute number, rate (per million adults 20+ years) 
and proportion of T2D, ischemic heart disease and ischemic stroke 
cases attributable to intake of SSBs in 1990 and 2020 (Supplementary 
Fig. 18). For each stratum, the model calculated the percentage (popu-
lation attributable fraction (PAF)) of total T2D, ischemic heart disease 
and ischemic stroke incidence, mortality and DALYs attributable to 
intake of SSBs. For BMI-mediated effects, the model considered the 
associations between observed SSB intakes and changes in BMI at 
the stratum level. This association was weighted by the prevalence of 
overweight (BMI ≥ 25), normal weight (BMI >18.5 to <25) and under-
weight (BMI < 18.5; assumed to have no effect) in each stratum. The 
resulting weighted BMI change was combined with the relative risk 
(RR) of BMI change and T2D or CVD using the same continuous PAF 
formula. Further details on each calculation for the PAF can be found 
in the sections below.

Given that summing direct and BMI-mediated PAFs would over-
estimate the combined effect, for each disease stratum (that is, 

country–year–age–sex–education–residence), the PAF was calculated 
using proportional multiplication of the direct and BMI-mediated 
PAFs as follows:

PAF = 1 − ((1 − direct PAF) × (1 − BMI-mediatedPAF))

The resulting PAF was then multiplied by the corresponding num-
ber of disease cases to calculate the attributable burden in each stra-
tum. Findings were evaluated globally, regionally and nationally, and 
by specific population subgroups of age, sex, education and urbanicity. 
The results are presented as proportional attributable burden (percent-
age of cases) and attributable rate (per one million adults). This repre-
sentation of the proportional multiplication for a single risk factor 
(that is, SSBs) is equivalent to the formula commonly reported for 
several risk factors: PAF = 1 − ∏n

i=1 1 − PAFi

Direct-effect PAF. The PAF formula is used to quantify the burden of 
disease attributable to a particular exposure. It involves comparing 
the disease cases associated with the observed exposure levels in the 
population to a counterfactual scenario with an optimal intake distri-
bution, given a known etiologic exposure–disease risk relationship.

In this analysis, we aimed to estimate the burden of incidence, 
mortality and DALYs for T2D, ischemic heart disease and ischemic 
stroke attributable to intake of SSBs.

PAF =
∫m
x=0RR (x)P (x)dx − 1
∫m
x=0RR (x)P (x)dx

,

The PAF formula used is as follows:

PAF =
∫m
x=0RR (x)P (x)dx − 1
∫m
x=0RR (x)P (x)dx

,

where P(x) is the usual SSB intake distribution in a specific population 
stratum, assumed to follow a gamma distribution as used in previous 
analyses3,31,88; RR(x) is the age-specific relative risk function for T2D or 
CVD risk; and m is the maximum exposure level.

RR(x) is defined as:

{
exp(β(x − y(x))) ∶ x − y(x) ≥ 0

1 ∶ x − y(x) < 0

where β is the stratum-specific change in log relative risk per unit of 
exposure, x is the current exposure level and y(x) is the optimal expo-
sure level. y(x) is defined to be Foptimal(F−1x (x)), where Foptimal is the cumula-
tive distribution function of the optimal intake and F−1x  is the inverse 
cumulative distribution function of the current exposure distribution. 
Implicit in how we characterize the relative risk function are certain 
assumptions, including a linear relationship between the log relative 
risk (beta) and the unit of exposure. This model assumes that no further 
risk is associated with exposure beyond the optimal intake level, and 
that both x and the optimal intake level for an individual at exposure 
level x are the qth quantile of their respective distributions (the 
observed exposure distribution and the optimal intake distribution, 
respectively).

PAF calculation. In practice, simple numerical integration using Rie-
mann sums can be used to compute the integrals in the PAF formula88.

PAF =
∑n

i=1Pi(RRi − 1)
∑n

i=1Pi(RRi − 1) + 1

PAF =
∑n

i=1Pi(RRi − 1)
∑n

i=1Pi(RRi − 1) + 1
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n categories are determined by dividing the exposure range (cho-
sen here to be 0, F−1x (Φ (−6))) into 121 intervals, each of length 0.1 when 
converted to the standard normal scale (except for the first one). Φ is 
defined as the cumulative distribution function of the standard normal 
distribution (N(0,1)). More precisely, the range of exposure groups i 
can be described as:

(0, F−1x (Φ (−6))) ∶ i = 1

(F−1x (Φ (−6 + 0.1 (i − 2))) , F−1x (Φ (−6 + 0.1 (i − 1)))) ∶ i = 1

BMI-mediated effects PAF. The association of change in BMI with 
change in SSB intake was assessed in three pooled US cohorts using 
multivariate linear regression accounting for within-person repeated 
measures, as described in an earlier study17. Separate linear relation-
ships were estimated for underweight (BMI < 18.5), normal weight 
(BMI > 18.5 to <25) and overweight (BMI ≥ 25 to <30), given observed 
effect modification by baseline BMI status17. Because individuals with 
obesity were excluded in these previous analyses, we used the risk 
estimate for individuals with overweight for individuals with obesity, 
which could underestimate the full effects of SSB on weight change.

To assess the BMI-mediated effects of SSB intake on incidence, 
mortality and DALYs of T2D, ischemic heart disease and ischemic 
stroke, we first calculated the monotonic effect of SSB intake on 
BMI change for each population stratum by weighting the baseline 
BMI-specific effect by the respective prevalence of underweight, nor-
mal weight and overweight (including obesity) within each stratum. 
We obtained overweight and underweight population distributions 
from the NCD-RisC71 and calculated the prevalence of normal weight 
as 1 minus the sum of these prevalences71. The NCD-RisC estimates go 
up to 2016, and thus, for our 2020 analysis, we used data from 2016 as 
a proxy for 2020. Given increasing adiposity globally, this assumption 
could result in underestimation of disease burdens due to SSBs in 2020. 
We assumed that individuals with underweight did not experience 
increased risk of T2D, ischemic heart disease or ischemic stroke with 
increased consumption of SSBs. As such, the monotonic effect for this 
population segment was set at 0:

SSB − to − BMIeffect = βBMI≥25 × (overweight prevalence) + βBMI18.5−25

× (normal weight prevalence) + 0

× (underweight prevalence)

We then estimated the BMI-mediated log(RR) by multiplying the 
log(RR) per unit increase in BMI and the SSB-to-BMI effect (associated 
increase in BMI per one-unit-associated increase in SSB intake).

Quantification of uncertainty using Monte Carlo simulations. We 
used Monte Carlo simulations to quantify the uncertainty around the 
PAF estimate. In this calculation, we incorporated uncertainty of mul-
tiple key parameters, including the usual intake distribution of SSBs 
in each stratum; underlying T2D, CVD and DALY burden estimates in 
each stratum; the etiologic estimates (RR) for SSB–BMI, SSB–T2D and 
SSB–CVD relationships; and the prevalence of individuals with under-
weight, normal weight or overweight in each stratum. For each SSB–
disease combination and stratum, we drew randomly 1,000 times from 
the respective probability distributions. This included drawing ran-
domly from the normal distribution of the estimate of disease-specific 
changes in the log(RR) of BMI-mediated and direct etiologic effects for 
a one-unit increase in SSB intake, the posterior distributions for shape 
and rate parameters for usual dietary intake and the normal distribu-
tion of the estimate for the prevalence of underweight, normal weight 
and overweight. Draws of proportions that were less than 0 or greater 
than 1 were truncated at 0 or 1, respectively, and draws of mean intake 

that were 0 or less were truncated at 0.00001. Each set of random draws 
was used to calculate the PAFs and, multiplied by the stratum-specific 
disease rates, the associated absolute attributable disease burden. Cor-
responding 95% UIs were derived from the 2.5th and 97.5th percentiles 
of 1,000 estimated models.

Sociodemographic development index
We assessed national-level findings by SDI in 1990 and 2020. The SDI 
is a composite measure of a nation’s development based on factors 
such as income per capita, educational attainment and fertility rates18.

Changes in SSB-attributable burdens over time
To compare estimates across different years (1990 and 2020), we cal-
culated differences for absolute and proportional burdens from 1990 
to 2020 (that is, 2020 minus 1990). We performed this calculation for 
each simulation resulting in a distribution of differences, and we report 
the median and 95% UIs for each difference. We did not formally stand-
ardize comparisons over time by age or sex. This decision was made to 
ensure that findings would reflect the actual population differences in 
attributable burdens that are relevant to policy decisions. However, we 
also performed analyses stratified by age and sex, taking into account 
changes in these demographics over time. All analyses were conducted 
using R statistical software, R version 4.4.0 (ref. 123) on the Tufts High 
Performance Cluster.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this analysis are publicly available from the follow-
ing sources: (1) population SSB intake distributions based on 
individual-level survey data from the GDD (https://www.globaldi-
etarydatabase.org/data-download)7,12; (2) optimal SSB intake levels 
from previous analyses67; (3) direct age-adjusted etiologic effects of 
SSBs on T2D, ischemic heart disease and ischemic stroke adjusted 
for BMI2, and of weight gain on T2D15, ischemic heart disease16 and 
ischemic stroke15 from previous meta-analyses and pooled analyses 
of prospective cohorts, as well as linear, BMI-stratified effects of SSBs 
on weight gain or loss17; (4) population overweight (BMI ≥ 25 kg m−2) 
and underweight (BMI < 18.5 kg m−2) distributions from the NCD-RisC 
(https://ncdrisc.org/data-downloads.html)71; (5) total T2D, ischemic 
heart disease and ischemic stroke incidence, DALYs, and mortality 
estimate distributions from the GBD study (https://vizhub.healthdata.
org/gbd-results/)72,73; and (6) population demographic data from the 
United Nations Population Division (UN, https://population.un.org/
wpp/)74,75, the Barro and Lee Educational Attainment Dataset 2013 
(https://doi.org/10.3386/w15902)76 and SDI data (Global Health Data 
Exchange: GBD, https://ghdx.healthdata.org/record/ihme-data/gbd-
2019-socio-demographic-index-sdi-1950-2019). The GDD SSB intake 
data were collapsed for 85+ years using the 4,000 simulations corre-
sponding to the stratum-level intake data derived from the Bayesian 
model. These data were used to obtain the gamma parameters of the 
SSB intake distribution used in the model. The 4,000 simulation files 
can be made available to researchers upon request. Eligibility criteria 
for such requests include utilization for nonprofit purposes only, 
for appropriate scientific use based on a robust research plan and 
by investigators from an academic institution. If you are interested 
in requesting access to the data, please submit the following docu-
ments: (1) proposed research plan (please download and complete the 
proposed research plan form: https://www.globaldietarydatabase.
org/sites/default/files/manual_upload/research-proposal-template.
pdf), (2) data sharing agreement (please download this form: https://
www.globaldietarydatabase.org/sites/default/files/manual_upload/
tufts-gdd-data-sharing-agreement.docx and complete the highlighted 
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fields; have someone who is authorized to enter your institution into 
a binding legal agreement with outside institutions sign the docu-
ment; note that this agreement does not apply when protected health 
information or personally identifiable information is shared), and 
(3) email items 1 and 2 to info@globaldietarydatabase.org. Please 
use the subject line ‘GDD Data Access Request’. Once all documents 
have been received, the GDD team will be in contact with you within 
2–4 weeks regarding subsequent steps. Data will be shared as .csv or 
.xlsx files, using a compressed format when appropriate. Source data 
are provided with this paper.

Code availability
Custom code was developed using R (version 4.4.0) for this research 
including calculation of age-adjusted relative risks, SSB intake gamma 
parameters, CRA analysis (including the PAF and attributable mortal-
ity for each stratum) and data visualizations. Given the computational 
size, calculation of the SSB intake gamma parameters, CRA mod-
eling, absolute and relative differences, and summary statistics were 
run on the Tufts University High Performance Computing Cluster  
(https://it.tufts.edu/high-performance-computing), supported 
by the National Science Foundation (grant: 2018149, https://www.
nsf.gov/awardsearch/showAward?AWD_ID=2018149&HistoricalA
wards=false) under active development by Research Technology, 
Tufts Technology Services (https://it.tufts.edu/researchtechnology.
tufts.edu). The statistical code can be made available to research-
ers upon request. Eligibility criteria for such requests include uti-
lization for nonprofit purposes only, for appropriate scientific use 
based on a robust research plan and by investigators from an aca-
demic institution. GDD will nominate coauthors to be included in 
any papers generated using GDD-generated statistical code. If you 
are interested in requesting access to the statistical code, please 
submit the following documents: (1) proposed research plan (please 
download and complete the proposed research plan form: https://
www.globaldietarydatabase.org/sites/default/files/manual_upload/
research-proposal-template.pdf), (2) data sharing agreement (please 
download this form: https://www.globaldietarydatabase.org/sites/
default/files/manual_upload/tufts-gdd-data-sharing-agreement.
docx and complete the highlighted fields; have someone who is 
authorized to enter your institution into a binding legal agreement 
with outside institutions sign the document; note that this agree-
ment does not apply when protected health information or person-
ally identifiable information is shared) and (3) email items 1 and 2 to 
info@globaldietarydatabase.org. Please use the subject line ‘GDD 
Code Access Request’. Once all documents have been received, the 
GDD team will be in contact with you within 2–4 weeks regarding 
subsequent steps. Data will be shared as .csv or .xlsx files, using a 
compressed format when appropriate.
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Extended Data Fig. 1 | Global disease burden attributable to intake of sugar-
sweetened beverages among adults (20+ years) in 2020. Bars represent the 
estimated proportional SSB-attributable burden in the top panel (a) and the 
estimated SSB-attributable absolute cases per 1 million adults in the bottom 
panel (b) of T2D and CVD incidence, deaths, and DALYs. Data are presented 
as central estimate (median) and the corresponding 95% UI, derived from the 

2.5th and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo model 
simulations. The SSB-attributable absolute burden per 1 million adults was 
calculated by dividing the absolute number of SSB-attributable cases by the total 
adult population (20+ years) in that year and multiplying it by 1 million. Source 
data are provided in Source Data file 6. CVD, cardiovascular disease; SSBs, sugar 
sweetened beverages; T2D, type 2 diabetes; UIs, uncertainty intervals.
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Extended Data Fig. 2 | Proportional incidence of T2D and CVD attributable 
to SSBs intake among adults (20+ years) jointly stratified by world region 
and age in 2020. The filled circles represent the central estimate (median) of 
the proportional SSB-attributable diabetes incidence in the top panel (a) CVD 
incidence in the bottom panel (b). The error bars represent the 95% UI derived 
from the 2.5th and 97.5th percentiles of 1,000 multiway probabilistic Monte Carlo 
model simulations. The age groups are 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 
50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85+ years. In prior GDD reports, the 

region Central/ Eastern Europe and Central Asia was referred as Former Soviet 
Union, and Southeast and East Asia was referred as Asia. See Supplementary 
Table 1 for a list of countries included in each world region. Source data are 
provided in Source Data file 7. Centr/East Eur Centr Asia, Central/Eastern Europe 
and Central Asia; CVD, cardiovascular disease; GDD, Global Dietary Database; 
Latin Amer/Caribbean, Latin America/Caribbean; SSBs, sugar sweetened 
beverages; T2D, type 2 diabetes; UIs, uncertainty intervals.
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Extended Data Fig. 3 | National correlation of proportional SSB-attributable 
T2D incidence and SDI in 1990 and 2020. (a) 1990 and (b) 2020. Points 
represent the 184 countries included in this analysis (labeled with their ISO3 
code and colored based on world region). The gray line represents the overall 
linear association, with Spearman correlation coefficient and associated P value 
(two-tailed) provided. No adjustments were made for multiple comparisons. 
SDI is a measure of a nation’s development expressed on a scale of 0 to 1 sourced 

from the Global Burden of Disease study, based on a compositive average of the 
rankings of income per capita, average educational attainment and fertility rates. 
In prior GDD reports, the region Central/ Eastern Europe and Central Asia was 
referred as Former Soviet Union, and Southeast and East Asia was referred to 
as Asia. See Supplementary Table 1 for a list of countries included in each world 
region. Source data are provided in Source Data file 8.
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Extended Data Fig. 4 | National correlation of proportional SSB-attributable 
CVD incidence and SDI at the national level in 1990 and 2020. (a) 1990 and (b) 
2020. Points represent the 184 countries included in this analysis (labeled with 
their ISO3 code and colored based on world region). The gray line represents 
the overall linear association, with Spearman correlation coefficient and 
associated p value (two-tailed) provided. No adjustments were made for multiple 
comparisons. SDI is a measure of a nation’s development expressed on a scale of 
0 to 1 sourced from the Global Burden of Disease study, based on a compositive 
average of the rankings of income per capita, average educational attainment 

and fertility rates. In prior GDD reports, the region Central/ Eastern Europe 
and Central Asia was referred as Former Soviet Union, and Southeast and East 
Asia was referred to as Asia. See Supplementary Table 1 for a list of countries 
included in each world region. Source data are provided in Source Data file 8. 
Centr/Eastern Eur Centr Asia, Central/Eastern Europe and Central Asia; CVD, 
cardiovascular disease; GDD, Global Dietary Database; Latin Amer/Caribbean, 
Latin America/Caribbean; SDI, sociodemographic development index; SSBs, 
sugar sweetened beverages; UIs, uncertainty intervals.
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