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Individual variations in glycemic responses 
to carbohydrates and underlying metabolic 
physiology
 

Elevated postprandial glycemic responses (PPGRs) are associated with 
type 2 diabetes and cardiovascular disease. PPGRs to the same foods have 
been shown to vary between individuals, but systematic characterization 
of the underlying physiologic and molecular basis is lacking. We measured 
PPGRs using continuous glucose monitoring in 55 well-phenotyped 
participants challenged with seven different standard carbohydrate meals 
administered in replicate. We also examined whether preloading a rice 
meal with fiber, protein or fat (‘mitigators’) altered PPGRs. We performed 
gold-standard metabolic tests and multi-omics profiling to examine the 
physiologic and molecular basis for interindividual PPGR differences. 
Overall, rice was the most glucose-elevating carbohydrate meal, but there 
was considerable interindividual variability. Individuals with the highest 
PPGR to potatoes (potato-spikers) were more insulin resistant and had 
lower beta cell function, whereas grape-spikers were more insulin sensitive. 
Rice-spikers were more likely to be Asian individuals, and bread-spikers had 
higher blood pressure. Mitigators were less effective in reducing PPGRs in 
insulin-resistant as compared to insulin-sensitive participants. Multi-omics 
signatures of PPGR and metabolic phenotypes were discovered, including 
insulin-resistance-associated triglycerides, hypertension-associated 
metabolites and PPGR-associated microbiome pathways. These results 
demonstrate interindividual variability in PPGRs to carbohydrate meals and 
mitigators and their association with metabolic and molecular profiles.

One in three adults in the United States has prediabetes, and 70% of 
these will develop type 2 diabetes (T2D), posing a substantial public 
health burden1 via complications such as kidney disease, vision loss, 
neuropathy, cardiovascular disease (CVD) and cancer2–6.

High postprandial glycemic responses (PPGRs) are a hallmark of 
prediabetes and T2D and are risk factors for T2D, CVD and all-cause 
mortality independent of fasting blood glucose (FBG) and HbA1c7–9. 
However, our understanding of glucose dysregulation, especially 
regarding PPGRs, remains incomplete. Interindividual variability in 
PPGRs to the same foods has been described7,10. A variety of factors 
have been identified as contributors to PPGRs, including glycemic 

index, the total carbohydrate amount, carbohydrate characteristics 
(starch and simple carbohydrates), food processing, meal macronu-
trient composition, meal timing, ethnicity and the microbiome11–16. 
However, the contribution of individual physiologic and metabolic 
factors to PPGRs and whether they interact with food characteristics 
have not been well studied.

A gap in understanding how underlying metabolism and  
physiology affect PPGRs exists largely because quantifying meta-
bolic functions, such as insulin resistance, insulin secretion and the  
incretin effect, is laborious and costly and has not been exten-
sively employed. However, these metabolic traits differ between 
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Individual variability and reproducibility of PPGRs
We assessed the variability between CGM curve replicates for the same 
meals consumed by the same individual on different days (Supple-
mentary Fig. 1). CGM curves from most individuals were reproducible 
between replicates based on the area under the curve above the baseline 
(AUC(>baseline)) with intraindividual correlation coefficients (ICCs) of 
AUC(>baseline) from 0.26 for beans to 0.73 for pasta, indicating consist-
ency between meal replicates of the same individual except for meals 
with low PPGRs (Supplementary Table 9)13. The correlation coefficients 
between replicates were also similar to previously published studies7. 
To reduce the effect of within-individual variation, results below were 
computed based on the average of each participant’s replicates.

Overall PPGRs to different standardized carbohydrates
The seven different standardized carbohydrate meals with equivalent 
carbohydrate loads elicited different PPGRs, emphasizing the impact 
of food composition (Fig. 1b, Extended Data Fig. 1 and Supplementary 
Table 1). Typical postprandial CGM curves of standardized carbohy-
drate meals slightly decreased initially after meal consumption and 
then increased to a single maximum and returned to baseline within 
three hours (Fig. 1b, Extended Data Fig. 1 and Supplementary Figs. 2 and 
3). Of the five starchy carbohydrate meals, rice, bread and potatoes pro-
duced high peaks at approximately 1 hour post consumption. Grapes 
had high glucose peaks that reached maxima at earlier time points. 
Beans and pasta reached maxima at similar times as other starchy meals 
but exhibited significantly lower peaks, with beans eliciting the lowest 
(Fig. 1b,c and Supplementary Table 1). Mixed berries reached maxima 
at similar times as grapes but had much lower peaks. Beans and mixed 
berries produced the lowest peak measured by both AUC(>baseline) 
and delta glucose peak (the difference between the peak and baseline 
glucose) as compared with other meals.

From CGM curves, we extracted 11 different features of principally 
two types: (1) scale (for example, AUC(>baseline) and delta glucose 
peak) and (2) rate (for example, time baseline to peak and time return 
to baseline) (Fig. 1d; details in Methods). Different AUC-based features 
had similar patterns, which were similar to that of delta glucose peak, 
except for grapes (Fig. 1c,d and Extended Data Fig. 2a). Time baseline 
to peak, time return to baseline and delta glucose peak at 170 min show 
similar patterns. Using scale and rate dimensions, three exemplar meals 
(beans, mixed berries and rice) were clustered into partially separated 
groups (Extended Data Fig. 2b). Across different meals, delta glucose 
peak (Fig. 2a) and AUC(>baseline) (Supplementary Fig. 7a) were also 
positively correlated with each other. Besides single-meal features, we 
also defined the potato versus grape ratio (PG-ratio), which is the ratio 
between the delta glucose peak of potatoes and grapes, highlighting 
the differences between a starchy carbohydrate with a high amount of 
resistant starch and a simple-carbohydrate meal.

PPGRs to different carbohydrate meals were associated with 
the nutrient composition of the standardized meal. The total dietary 
fiber content (measured in grams) in the carbohydrate meal nega-
tively correlated with AUC(>baseline) (−0.71, 95% confidence interval 
(−0.96,0.11), P = 0.088) and delta glucose peak (−0.75, 95% confidence 
interval (−0.96,0.04), P = 0.066) (Fig. 1e and Supplementary Table 6).

Interindividual PPGR variability and carb-response types
PPGRs varied considerably across individuals, which differed from 
the conventional idea of a fixed glycemic index value for a single food 
(Figs. 2b–e, Supplementary Figs. 2 and 18 and Extended Data Fig. 3). 
Although overall the PPGRs tended to correlate positively across car-
bohydrate meals (Fig. 2a), for different individuals, PPGRs to different 
meals were ranked differently; and for each individual, different meals 
produced the highest PPGR (Fig. 2b–e and Extended Data Fig. 3). For 
example, 19 participants exhibited the highest average delta glucose 
peak from rice (participant #18), whereas others were highest with 
bread, grapes, potatoes or pasta (Extended Data Fig. 3).

individuals17–19 and likely explain, in part, the observed interindi-
vidual PPGR differences. Glycemic responses to the oral glucose  
tolerance test have been linked to underlying physiology such as 
insulin resistance and beta cell dysfunction19. Prespecified timed 
blood draws may miss the peak glucose, but continuous glucose 
monitoring (CGM) devices enable a detailed evaluation of PPGRs 
and can be linked to individual metabolic traits. Indeed, using  
CGM, we previously showed that individuals with higher and more 
variable daily glucose excursions were more insulin resistant (IR) than 
their lower-glycemic counterparts10. Thus, CGMs have the potential 
to link underlying metabolic phenotypes to individual responses 
to food.

To further study individual PPGRs to foods and their association 
with metabolic subtypes and omics profiles, we conducted a rigorous 
investigation of responses to a wide variety of standardized carbohy-
drate meals and standardized preloads (‘mitigators’) to a rice meal in 
individuals whose metabolic traits were comprehensively profiled 
with gold-standard tests and whose blood and stool were profiled for 
metabolites, lipids, proteins and microbiome. We hypothesized that 
individual PPGRs are associated with the underlying metabolic physiol-
ogy (for example, insulin resistance and beta cell dysfunction) as well 
as molecular markers.

Results
Study cohort and tests performed
The overall study design is illustrated in Fig. 1a. A cohort of 55 partici-
pants with no prior history of T2D underwent deep metabolic pheno-
typing using gold-standard tests for insulin resistance by steady-state 
plasma glucose (SSPG), beta cell function by disposition index, hepatic 
insulin resistance and adipocyte insulin resistance (Methods)19–28. At 
baseline, we collected metabolomics, lipidomics, proteomics, micro-
biome and clinical data.

Standardized carbohydrate meals. To quantify individual PPGRs to 
different carbohydrates and evaluate potential mitigation, participants 
underwent seven different standardized carbohydrate meal tests (50 g) 
and three preloaded mitigator meal tests while wearing a CGM at home 
and following their regular diet otherwise (Fig. 1a). The seven carbohy-
drate meals, each containing 50 g total carbohydrates, included five 
starchy meals—rice ( jasmine rice), bread (buttermilk bread), potatoes 
(shredded), pasta (macaroni, precooked per instructions, cooled and 
frozen) and beans (canned black beans, high fiber)—as well as two 
different simple-carbohydrate meals—mixed berries (blackberries, 
strawberries and blueberries, high fiber) and grapes (low fiber) (Fig. 1a 
and Supplementary Table 6) (details in Methods). The three preloaded 
mitigators included pea fiber, egg white and cream, representing fiber, 
protein and fat, respectively (Methods), which were consumed 10 min 
before a standardized 50 g carbohydrate meal (for example, rice). 
Each meal test was performed at least twice. After processing, there 
were 848 CGM curves (55 participants), 267 CGM curves with mitiga-
tors (47 participants, 32 for rice + mitigators) and 33,920 glucose time 
points in total.

Clinical and demographic profile of the cohort. Among the 55 par-
ticipants with CGMs, 24 were male, 27 were female, and 4 were unknown 
(Table 1). Of the participants, 26 were with healthy weight, 18 with 
overweight, 9 with obesity, 1 with underweight and 1 with unknown 
weight status. None of the participants had a prior medical history of 
diabetes; 27 participants were euglycemic, 26 had prediabetes, and 
one had T2D based on HbA1c measured during the visit (6.5%) (one was 
unknown). The racial and ethnic distribution was 37 European, 13 Asian, 
4 Hispanic and 1 mixed Asian and European individuals. Eighteen were 
IR (SSPG ≥ 120 mg dl−1), 25 were insulin sensitive (IS; SSPG < 120 mg dl−1), 
and the mean SSPG and disposition index were 120.1 ± 72.9 mg dl−1 
(mean ± s.d.) and 1.55 ± 0.82.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03719-2

a

b c

ed

M
ix

ed
 b

er
rie

s

Be
an

s

G
ra

pe
s

Pa
st

a

Po
ta

to
es

Br
ea

d

Ri
ce

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

G
ra

pe
s

M
ix

ed
 b

er
rie

s

Be
an

s

Po
ta

to
es

Ri
ce

Pa
st

a

Br
ea

d

0

20

40

60

80

100

120

140

160

Rice
Potatoes
Pasta
Grapes
Bread
Mixed berries
Beans

–50 0 50 100 150
80

100

120

140

G
lu

co
se

 (m
g 

dl
−1

)

Time (min)

Correlation

−1.0 −0.5 0 0.5 1.0

Fi
be

r

Fa
t

Pr
ot

ei
n

St
ar

ch

AUC (>baseline)

Delta glucose peak 

Time (baseline to peak)
*

AU
C

AU
C

 (>
14

0 
m

g 
dl

−1
)

AU
C

 (>
18

0 
m

g 
dl

−1
)

D
el

ta
 g

lu
co

se
 p

ea
k 

Ti
m

e 
(b

as
el

in
e 

to
 p

ea
k)

AU
C

 (>
ba

se
lin

e)

D
el

ta
 g

lu
co

se
 p

ea
k 

@
60

 m
in

D
el

ta
 g

lu
co

se
 p

ea
k 

@
12

0 
m

in

D
el

ta
 g

lu
co

se
 p

ea
k 

@
17

0 
m

in

Ti
m

e 
(r

et
ur

n 
to

 b
as

el
in

e)

Sl
op

e 
(b

as
el

in
e 

to
 p

ea
k)

Bread

Potatoes

Rice

Grapes

Pasta

Beans

Mixed berries
−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

Sc
al

ed
 v

al
ue

AU
C

 (>
ba

se
lin

e)
 (m

g 
× 

m
in

 p
er

 d
l)

Ti
m

e 
(b

as
el

in
e 

to
 p

ea
k)

 (m
in

)

Lipidomics

Metabolomics

N = 55

CGM

Example of glucose levels and meals consumed
Standardized carbs

Standardized carbs

Mixed
berries

Beans

Bread
Pasta

Grapes

Egg
whites

Pea fiber

Cream

Rice

Types of spikers
Rice Grapes Potatoes

RicePotatoes

Mitigators

200

G
lu

co
se

 (m
g 

dl
−1

)

150
100

0:00 4:00 8:00

Rice Pizza
Donuts Lamb, cheese, seeds

12:00
Time

16:00 20:00
Proteomics

Clinical test

Microbiome

+

Insulin resistant Insulin sensitive

Fig. 1 | Quantifying postprandial response through CGM. a, Overview of study 
design and data types. Left, at the baseline, the data on omics and clinical tests 
were collected. Mid-bottom, each individual ate seven different carbohydrate 
meals and three different mitigator foods with rice with CGM data and food 
log collected. Mid-top, an example CGM curve of a day is presented. Right, 
participants were then stratified into carb-response types based on which 
meal produced the highest spike and into metabolic traits results. b, Mean 
CGM curves of PPGR after different meals. c, Glucose AUC above baseline and 
time from baseline to peak for different meals. CGM curves are extracted into 
different features (and presented with mean and standard errors (error bar 
indicates 2 standard errors). Bars of standardized carbohydrate meals were 
ordered by mean value. The number of CGM curves (each dot) is as follows: 
rice 115, potatoes 92, bread 99, pasta 65, grapes 98, beans 46 and mixed berries 

53. Extracted CGM features are compared between different carbohydrate 
meals. Each participant was instructed to eat each meal at least twice on two 
different days. d, Heatmap of extracted CGM PPGR features. Each element is the 
mean value of extracted CGM features. Each column (feature) is then centered 
and scaled. e, Association between different extracted features and nutrient 
contents of the standardized carbohydrate meal. For fiber, proteins and fat in 
study meals, it’s the Spearman correlation with statistics calculated from the R 
package ‘correlation’ under default settings with asymptotic t approximation 
with a two-sided test. The last column is treated as binary (starch versus non-
starch food) with correlation (R) obtained from a simple linear model and  
P value obtained from a two-sided t-test of the coefficient. Asterisks indicate 
significance (pFDR < 0.05). P values were FDR-corrected for the whole matrix. 
Illustration in a created with BioRender.com.
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We aimed to type individuals based on their PPGRs to different 
carbohydrate meals. Participants were stratified as carb-response 
types (also referred to as ‘spikers’) according to the meal that pro-
duced the highest average PPGR for that individual, as measured by 
delta glucose peak and AUC(>baseline). Using the delta glucose peak, 
rice-spikers were the largest group (35%), followed by bread-spikers 
(24%) and grape-spikers (22%); no participants had the highest spike 
in response to beans or mixed berries (Fig. 2c), possibly due to higher 
fiber and/or protein (beans) content (Fig. 1f). Stratification based on 
AUC(>baseline) largely agreed with results based on delta glucose 
peak, except that even more individuals were classified as rice-spikers 
and fewer as grape-spikers (Fig. 2c). Carb-response-type classification 
was stable between replicates of meals, and results based on individual 
meal replicates largely agree with those based on the average (Extended 
Data Fig. 4). In addition, ICC for delta glucose peak and AUC(>baseline) 
was moderate to high for most meals (Supplementary Table 9). ICC 
values were lower for meals with smaller PPGRs (for example, beans), 
potentially because of a lower signal-to-noise ratio.

Metabolic physiology and PPGR to standardized 
carbohydrates
We investigated individuals’ PPGRs as a function of their underlying 
metabolic physiological traits. PPGRs, measured as both delta glucose 
peak and AUC(>baseline), were significantly greater in IR (measured 
by SSPG) compared with IS individuals for potatoes and pasta (179% 
and 152% for delta glucose, respectively; Figs. 2e and 3 and Supple-
mentary Figs. 5, 13a and 17). We measured starch content and found 
that potatoes had significantly more resistant starch and pasta had 
significantly more slowly digestible starch than other starchy foods 
(bread and rice) (Extended Data Fig. 5). The IR group also exhibited a 

higher baseline (premeal) glucose and higher absolute glucose peaks 
compared with IS individuals (Fig. 3a and Supplementary Figs. 16 and 
17). Individuals with impaired beta cell function also demonstrated 
higher PPGRs to potatoes (Figs. 2e and 3 and Supplementary Figs. 5 
and 17). The contributions of both insulin resistance and beta cell func-
tion were still significant after adjusting for confounding factors, BMI, 
age and sex (Supplementary Table 2). When modeled together, only 
SSPG remained an independent predictor of PPGRs. Normoglycemic 
IR individuals also exhibited higher PPGRs to potatoes than IS individu-
als with prediabetes (based on HbA1c), indicating the dominance of 
the insulin-resistance effect (Supplementary Figs. 6c and 14). Other 
differences noted in potato-spikers included higher HbA1c, FBG and 
free fatty acids (FFA) during the SSPG test (Fig. 3c and Supplementary 
Fig. 8). Grape-spikers, conversely, exhibited significantly lower SSPG 
(indicating insulin sensitivity) and the lowest FBG. Among individuals 
who are IS or with normal beta cell function, grape- and rice-spikers 
were the most frequent groups.

We observed that whereas the PPGR to potato consumption dif-
fered between IR and IS groups and between beta cell normal and 
dysfunctional groups, the PPGR to grape consumption changed little 
(Fig. 3d and Supplementary Fig. 17). We thus calculated the PG-ratio 
based on delta glucose peak as a normalization of the PPGR to potatoes. 
The PG-ratio was consistently different between IR and IS subtypes 
(Supplementary Fig. 13c and Supplementary Table 2). The sex interac-
tion with beta cell function and insulin resistance was also significant 
in estimating the PG-ratio, with males having less effect from insulin 
resistance (intersection term coefficient −0.49) and beta cell dysfunc-
tion (intersection term coefficient −0.58) (Supplementary Table 2).

Underlying metabolic physiology and mitigation effects
To test the potential suppressing effect of other foods on PPGRs to 
standardized carbohydrate meals, other meals containing fiber, protein 
and fat (mitigators) were tested. Thirty-two individuals consumed fiber 
(10 g, via pea fiber), protein (10 g, via egg white) or fat (15 g, via cream) 
10 min before the consumption of white rice (50 g of carbohydrates), 
the most glucose-elevating carbohydrate meal on average. The mitiga-
tion effect was calculated as a normalized difference based on PPGRs 
(delta glucose peak and AUC(>baseline)) of rice + mitigator relative to 
rice alone. A negative mitigation effect indicated that consuming the 
mitigator reduced the rice PPGR.

The effects of different mitigators positively correlated with 
each other with a correlation of 0.79 between fat and protein and 
approximately 0.5 between fiber and others (Fig. 2a and Supplementary 
Fig. 7a). Across the entire cohort, all three mitigators, when consumed 
before rice, weakly but significantly decreased the delta peak glucose 
(Cohen’s d: fiber 0.12, protein 0.19, fat 0.05). Fat, but not protein or 
fiber, increased time (baseline to peak) (Fig. 4a,b and Supplementary 
Tables 1 and 7). However, similar to the interindividual variability in 
PPGRs to different carbohydrate meals (carb-response types), highly 
divergent patterns were observed in mitigation effects between indi-
viduals (Fig. 4e and Supplementary Fig. 3). Many individuals exhibited 
mild mitigation effects (for example, participants #18 and #48), one 
had strong mitigation effects (participant #14), and some even had 
higher glycemic responses with mitigators (for example, participants 
#33 and #69) (Fig. 4e and Supplementary Fig. 3). For most participants, 
(fiber 23, protein 22 and fat 20) mitigators reduced glycemic responses 
(Fig. 4f). The mitigation effect of protein was significantly greater in 
the rice-spikers versus non-rice-spikers (Fig. 4g).

Similar to PPGRs to standardized carbohydrate meals, mitiga-
tion effects differed according to underlying metabolic features. IR 
individuals showed little beneficial response to mitigators, whereas 
IS individuals responded more to mitigators, with fiber decreasing 
delta glucose peak (P = 0.031) and AUC(>baseline) (P = 0.057) (Fig. 4d, 
Supplementary Fig. 15 and Supplementary Table 8). Individuals with 
normal beta cell function also had beneficial protein mitigation effects 

Table 1 | Cohort characteristics for participants with 
standardized carbohydrate meal CGM data (n = 55)

Mean ± s.d.

Age, y 55.2 ± 11.9

BMI, kg m−2 25.6 ± 4.02

Sex, F/M/unknown 27/24/4

Ethnicity, Caucasian/Asian/Hispanic/others 37/13/4/1

Systolic blood pressure, mmHg 117 ± 11.5

Diastolic blood pressure, mmHg 71.9 ± 8.65

HbA1c, % 5.57 ± 0.401

Fasting plasma glucose, mg dl−1 94.3 ± 11.5

Fasting insulin, microIU ml−1 8.88 ± 5.79

Diabetes/prediabetes/euglycemia/unknown 1/26/27/1

Underweight/healthy weight/overweight/obesity/unknown 1/26/18/9/1

Fructosamine umol l−1 230 ± 18.3

Total cholesterol, mg dl−1 183 ± 34.8

Triglyceride, mg dl−1 84 ± 36.2

HDL, mg dl−1 62.4 ± 19.7

LDL, mg dl−1 104 ± 26.5

hs-CRP, mg l−1 1.82 ± 2.96

ALT/SGPT, U l−1 24.7 ± 10.5

Creatine, mg dl−1 112 ± 52.1

Participants with standardized meal CGM data (n = 55) are included in this table as this is 
the major group of focus of this study. Continuous variables are presented with the mean 
and one s.d. Categorical variables are presented by the number in each category. Others in 
ethnicity are one individual who is both Asian and European. There are no individuals who are 
American Indian, Alaska Native or Black and have CGM data. The diabetes category is based 
on HbA1c (details in Methods).
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on delta glucose peak (P = 0.028) (Fig. 4d, Supplementary Figs. 5 and 6b  
and Supplementary Table 8). The different mitigation responses across 
individuals explained the lack of strong mitigation effects in the popu-
lation average (Fig. 1b,c).

Other factors correlated with PPGRs and mitigation effects
We searched for other potential factors that contributed to differen-
tial PPGRs, including demographic and clinical data. In total, 15 con-
tinuous variables and three categorical variables (ethnicity, sex and 
BMI groups) were examined. Asian participants were more likely than 
non-Asian participants to be rice-spikers (Fisher’s exact test, P < 0.05, 
positive false discovery rate (pFDR) = 0.21) (Fig. 2d and Supplementary 
Fig. 8). No other significant associations were found between PPGRs 
(carb-response types and mitigator effect) and ethnicity, sex or BMI 
groups (Supplementary Fig. 20).

Among the 15 continuous measurements, associations were uncov-
ered between carb-response types using analysis of variance (ANOVA) 
with a pFDR threshold of 0.3. Bread-spikers exhibited significantly higher 

systolic and diastolic blood pressure compared to other carb-response 
types after correcting for BMI and age (Fig. 3c, Supplementary Fig. 19 
and Supplementary Table 2). The analysis in this section is exploratory 
and has higher risks of random variation than results in other analyses.

Molecular markers linked to PPGRs and mitigation effects
To identify potential biomarkers and mechanisms of carb-response 
types, we performed baseline omics analyses, including untargeted 
metabolomics (731 annotated metabolites, nine classes), targeted 
lipidomics (652 lipids, 13 classes), targeted proteomics (1,470 proteins) 
and metagenomics microbiome analysis (Extended Data Fig. 6).

In addition to higher blood pressure levels, bread-spikers also 
presented significantly higher N1-Methyladenosine than other partici-
pants (Figs. 5a and 3c and Supplementary Table 3)29,30. Potato-spikers 
had higher levels of certain triglycerides (TAG) and fatty acids 
(Fig. 5a and Supplementary Fig. 21), aligning with their increased 
insulin resistance23,31. In addition, proteins positively associated 
with potato PPGRs were significantly enriched in hepatic stellate cell 
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with different carbohydrate meals with the highest PPGR (carb-response type). 
c, Number of participants assigned to each carb-response type. The carb-

response types are defined by both delta glucose peak and AUC(>baseline). The 
x axis indicates the standardized carbohydrate meal that produced the highest 
glucose spike, and the y axis is the number of participants for whom a given 
meal caused the highest spike. d, The Asian group was enriched with individuals 
with rice as the carbohydrate meal with the highest peak. e, Radar plot of delta 
glucose to different carbohydrate meals in an IS (SSPG 61 mg dl−1) and an IR (SSPG 
239 mg dl−1) participant. Delta glucose values were averaged between replicates 
and scaled by the carbohydrate with the highest value. Insulin resistance, 
disposition index (DI) and HbA1c were also presented.
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activation and fibroblast activation pathways (Supplementary Data 1).  
Black bean PPGRs were positively associated with keto acids and 
metabolites related to ketone-related metabolism and amino acid 
metabolism, including gamma-glutamylthreonine, hydroxybutyric 
acid, alpha-ketoisovaleric acid, 2-hydroxy-3-methylbutyric acid and 
beta-citryl-l-glutamic acid (Supplementary Figs. 9 and 10). In addition, 
metabolites enriched in the histidine pathway were both positively 

(1-methyl-histidine, glutamate and methylimidazole acetic acid) and 
negatively (histidine and imidazole acetaldehyde) associated with 
bean-PPGR, indicating variability in histidine catabolism (Supple-
mentary Fig. 11 and Supplementary Data 1). PPGRs to mixed berries 
were positively associated with unsaturated fatty acid biosynthesis 
and unsaturated TAGs in plasma metabolomics and lipidomics (Sup-
plementary Data 1).

Potatoes

Beta-
cell function

b
***

50

100

IS IR

**

50

100

Normal Dys

D
el

ta
 g

lu
co

se
 p

ea
k 

(m
g 

dl
−1

) *

25

50

75

100

IS IR

PotatoesPasta

Potatoes
Bread

Pasta

Grapes

Berries
Beans

AUC(>baseline)

Rice

Potatoes

Bread

Pasta

Grapes

Berries
Beans

IR
IS

Beta cell dysfunction
Beta cell normal

Rice

Potatoes
Bread

Pasta

Grapes

Berries
Beans

Delta glucose peak Delta glucose peak

Rice Rice

Potatoes
Bread

Pasta

Grapes

Berries
Beans

AUC(>baseline)

a i ii

iiiiiic

d e

0 100
80

100

120

140

160

Beta-cell dysfunction (n = 12)

0 100
80

100

120

140

160

Beta-cell-normal (n = 5)
Rice
Potatoes
Pasta
Grapes
Bread
Mixed berries
Beans

Pa
st

a

G
ra

pe
s

Ri
ce

Br
ea

d

Po
ta

to
es

SS
PG

 (m
g 

dl
−1

) *
***

*

100

200

300

Pa
st

a

G
ra

pe
s

Ri
ce

Br
ea

d

Po
ta

to
es

FB
G

 (m
g 

dl
−1

)

Spiker types

**

80

100

120

140

Pa
st

a

G
ra

pe
s

Ri
ce

Br
ea

d

Po
ta

to
es

Sy
st

ol
ic

 b
p 

(m
m

H
g)

*

90

110

130

150

170

G
lu

co
se

 (m
g 

dl
−1

)

Time (minutes)
0 100

80

100

120

140

160

80

100

120

140

160

0 100

IR (n = 16) IS (n = 14)

Fig. 3 | PPGRs to carbohydrate meals were associated with clinical and 
metabolic features. a, Mean CGM curves between IR and IS groups measured 
by SSPG (i), and groups with normal and dysfunctional beta cells measured by 
disposition index (ii). b, Delta glucose peaks after eating potatoes and pasta are 
compared between groups with IR and IS, and delta glucose peaks after eating 
potatoes are compared beween groups with normal and dysfunctional (dys) 
beta cell functions. *, based on Holm corrected P value of the Mann–Whitney test 
(default, two-sided): *PH ≤ 0.05; **PH ≤ 0.01; ***PH ≤ 0.001. PH from left to right is 
3.4 × 10−4, 0.02 and 9.4 × 10−3. Number of participants: IS potatoes 14, IR potatoes 
16, IS pasta 12, IR pasta 16, normal beta cell potatoes 5, dysfunctional beta cell 
potatoes 12. Extracted CGM features for each participant are compared between 
different metabolic subtypes. c, Clinical and metabolic characteristics according 
to carb-response types. Statistical comparisons utilized Holm corrected P value 
of the Mann–Whitney test (default, two-sided) of the selected pairs: *PH ≤ 0.05; 

**PH ≤ 0.01; ***PH ≤ 0.001; ****PH ≤ 0.0001. PH: grapes versus potatoes (i) 7.8 × 10−3; 
grapes versus potatoes (ii) 2.5 × 10−4; rice versus potatoes (ii) 0.022, bread versus 
potatoes (ii) 0.016, grapes versus bread (iii) 0.019. Number of participants for  
(i) ((ii), (iii)): rice-spiker 18 (13, 19), grape-spiker 12 (10, 12), pasta-spiker 2 (1, 2),  
bread-spiker 13 (13, 13), potato-spiker 8 (6, 8). Clinical measurements were 
compared between carb-response-types. The boxplots in b and c show the center 
line as the median and the hinges as the 25th and 75th percentiles. The upper 
whisker extends from the hinge to the largest value not bigger than 1.5 times the 
distance between the hinges. Data beyond the whiskers are outliers. d, Average 
delta glucose peak and AUC(>baseline) between participants with IR and IS.  
e, Average delta glucose and AUC(>baseline) between participants with different 
beta cell functions (normal and dysfunctional). The solid line is the average value, 
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Microbiome analyses also revealed taxa and functional path-
ways associated with PPGRs. PPGRs to most carbohydrate meals were 
positively associated with glycosyl hydrolase family 85 (GH85), lac-
tate utilization domain and heme exporter protein B and negatively 
associated with d-alanyl-d-alanine carboxypeptidase (Extended Data 
Fig. 7). In addition, Klebsiella, Sutterella and starch degradation III 
were negatively or beneficially correlated with the mitigation effect 
(Supplementary Table 5).

Molecular features associated with metabolic physiology
To further investigate the potential mechanisms of different PPGRs, 
we next explored the associations between multi-omics features and 
metabolic traits. Correlation matrix analyses between omics and clini-
cal measurements revealed two clusters, with some omics features 
associated with healthy metabolic function and others with compro-
mised metabolic function (Fig. 5b, Extended Data Figs. 8 and 9 and 
Supplementary Fig. 12)18,31–35. For instance, tyrosine, hydroxybutyric 
acid, glutamic acid and TAGs were significantly positively associated 
with plasma glucose or insulin resistance, whereas phosphatidylcho-
line, lysophosphatidylcholine, lysophosphatidylethanolamine and 
threonic acid were significantly negatively correlated (Extended Data 
Figs. 8 and 9). Similarly, among microbiomes, Slackia and Tyzzerella 
were positively correlated with plasma glucose or insulin resistance, 
and Butyrivibrio, Asaccharobacter, Adlercreutzia and Fusicatenibacter 
were negatively correlated (Fig. 5b). In an integrated statistical model 
to predict SSPG, strong predictors include fasting insulin, BMI, FFA and 
TAGs contributing to the IR state and phosphatidylcholine contributing 
to the IS state (Extended Data Fig. 10).

To further trace potential causal mechanisms, we then conducted 
a mediation analysis with microbiomes as the input, metabolomics 
and lipidomics as the mediators and clinical measurements as the out-
comes (Supplementary Table 4)36,37. In Bacteroides thetaiotaomicron, 
pathways involving protein autophosphorylation, lactose catabolism 
and histidine phosphotransfer kinase activity positively mediated 
hepatic insulin resistance and fasting insulin via a single metabolite 
with an inferred formula, C9H15NO3, but no annotated match in public 
databases (Fig. 5c).

Discussion
The results of the current study demonstrate differential PPGRs in 
response to a broad array of standardized carbohydrate meals and 
reflect underlying metabolic physiology, including insulin resistance 
and beta cell dysfunction. Using standardized carbohydrate meals 
given in replicates with CGM data captured, we showed that on aver-
age, rice was the most glucose-elevating carbohydrate, whereas some 
individuals exhibited higher elevations in response to consumption 
of potatoes, pasta, bread or grapes (Extended Data Fig. 3). Individu-
als with the highest PPGR to potato consumption relative to other 
carbohydrates (potato-spikers) were more IR with lower beta cell func-
tion, whereas grape-spikers were more IS. Furthermore, a high glucose 
response to potatoes relative to grapes (PG-ratio) was statistically sig-
nificantly associated with insulin resistance (Fig. 3b and Supplementary 
Fig. 13). These results indicate that CGM-detected glycemic responses 
to carbohydrate meals reflect underlying physiology.

The results of this study also highlight that the mitigation effect 
differs between individuals according to underlying physiology, in that 
the mitigation effect was only beneficial in reducing delta glucose in the 
IS or normal beta cell function groups (Supplementary Table 8). The 
specific mechanisms of mitigator function were not studied in detail 
in this study, but a potential hypothesis is that mitigators can lower 
PPGRs by at least two main pathways that work in synergy. The first is 
decreasing carbohydrate absorption, and the second is through the 
process of incretin induction, insulin secretion and insulin action38. In 
healthy individuals, mitigators greatly reduce PPGRs because the two 
mechanisms work in synergy. However, with insulin resistance or beta 

cell dysfunction, the single effect of absorption rate reduction may be 
too small without the synergistic interaction with insulin function.

In addition to explaining the reduced mitigator effect in individu-
als with insulin resistance and beta cell dysfunction, this hypothesis 
also explains the elevated PPGRs to potatoes and pasta in those indi-
viduals. The potatoes provided were cooked and cooled, increas-
ing the level of resistant starch, a type of fiber, compared with other 
starch meals, and so it was itself a starch food with fiber (Extended Data 
Fig. 5)14,39. Pasta, which was also cooked and cooled, contains some 
resistant starch and also more slowly digestible starch39. Grapes and 
rice contain lower levels of fiber and thus do not exhibit PPGR differ-
ences between individuals with different metabolic traits. Beans have 
higher levels of fiber and proteins but lower PPGR in general, limiting 
the possible effect size to be measured. We also observed that protein 
has the strongest mitigation effect in individuals with beta cell normal 
function, potentially indicating a stimulation effect on insulin secretion 
(Fig. 4d)40. Additional factors affecting the PPGRs and mitigation effect 
might come from individual microbiomes, accessibility of starch in the 
meal and the interaction between sex and metabolic traits.

Carb-response types are linked to glucose dysregulation subtypes 
and potential complications. Potato-spikers had significantly higher 
fasting glucose, insulin resistance and fasting levels of several TAGs 
and fatty acids. Enriched proteomics pathways such as hepatic stel-
late cell activation and fibroblast activation (Supplementary Data 1) 
in potato-spikers might be related to the activation of hepatic stellate 
cells to myofibroblast-like cells and metabolic dysfunction-associated 
steatohepatitis (MASH)41. In population-wide T2D studies, the severe 
IR diabetes group was associated with MASH17. We hypothesize that 
there is a similar group of individuals with higher potato PPGRs, higher 
insulin resistance and early signatures of MASH in the stages of pre-
diabetes and even normoglycemia, which needs further validation in 
larger cohorts. In addition, Asian individuals were more likely to be 
rice-spikers, which aligns with higher rice glycemic responses among 
Asian compared to European individuals in the study of glycemic 
indexes15,16. We note that there may be other confounders in genetics 
and habits (for example, consuming rice frequently). Bread-spikers 
exhibited significantly higher systolic and diastolic blood pressure 
and N1-Methyladenosine, a metabolite associated with hypertension 
in mice, compared to other carb-response types, suggesting potential 
CVD risk (Figs. 3c, Supplementary Fig. 19 and Supplementary Table 2). 
The positive correlation between black bean PPGRs and keto metabo-
lism suggests that individuals with baseline predispositions toward 
enhanced fatty acid oxidation or amino acid catabolism may exhibit dif-
ferent glucose responses to beans. The variability of histidine metabo-
lism associated with PPGRs to beans might be shaped by differences in 
gut microbiota composition or habitual diet42. Nonetheless, our results 
demonstrate that different strategies may be useful for nutrient inter-
vention in groups with different ethnicities and metabolic functions.

Microbiome features were also associated with PPGRs and mitiga-
tion effects. GH85 in Roseburia intestinalis was positively associated 
with PPGRs to all carbohydrate meals (Extended Data Fig. 7). The GH85 
family is known to degrade glycosylated proteins, and Roseburia is 
known to degrade complex carbohydrates (for example, fiber)34,35. 
Elevated GH85 in Roseburia intestinalis might indicate degradation 
of mucins when fiber from meals was insufficient. D-alanyl-D-alanine 
carboxypeptidase was negatively associated with PPGRs to most car-
bohydrate meals and has a role in cell wall synthesis. Klebsiella (the 
highest level in Klebsiella pneumonia) and Sutterella (the highest level 
in Sutterella parvirubra) were significantly negatively (beneficially) 
associated with the mitigation effect (Supplementary Table 5). Kleb-
siella is known to reside in the small intestine, and the PPGR reduction 
might come from its competing usage of glucose43. Sutterella is a known 
factor in glucose control improvement after gastric bypass, and this 
might be related to its mitigation effect44. The starch degradation III 
in Eubacterium hallii was significantly negatively associated with the 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03719-2

a

b
O

th
er

s

Po
ta

to
es

G
ra

pe
s

TAG52:0−FA16:0

O
th

er
s

Po
ta

to
es

G
ra

pe
s

MYRISTIC ACID

**
**

−1

0

1

2

O
th

er
s

Po
ta

to
es

G
ra

pe
s

PALMITOLEIC ACID

**
**

−2

−1

0

1

2

*

**
*

−2

−1

0

1

2

O
th

er
s

Po
ta

to
es

G
ra

pe
s

TAG56:3−FA16:0

*

*

−1

0

1

2

Spiker groups

N1methyladenosine
(i) (ii) (iii) (iv) (v)

Re
la

tiv
e 

qu
an

tif
ic

at
io

n

Br
ea

d

Po
ta

to
es

G
ra

pe
s

Ri
ce

Pa
st

a

*
**

−2

0

2

−1
.0

−0
.5

00.
5

1.0

*

*
*

*

*

*
*

*
*

*
*

*

*
*
*
*

*
*
*

*

*

*
*

*
*

*

*

*
*

*
*
*
*
*

*

*
*

*
*

*
*

*

*

*

FB
G

A1
C

O
G

TT
 g

lu
co

se
@

12
0 

m
in

s

H
O

M
A 

IR

H
ep

at
ic

 IR

Ad
ip

os
e 

IR

SS
PG D

I

In
cr

et
in

 e
�e

ct

Escherichia

Mogibacterium

Slackia

Anaerofilum

Coprobacillus

Enterococcus

Tyzzerella

Cutibacterium

Fusobacterium

Gemmiger

Butyrivibrio

Ca. Stoquefichus

Agathobaculum

Fusicatenibacter

Asaccharobacter

Adlercreutzia

Anaerostipes

Victivallis

Correlation

c

Direct e�ect

Pathways

Protein
autophosphorylation

Mediation
via metabolites

0.13*

0.10

0.12*

4.51*

Fasting
insulin

Hepatic IR

Lactose
catabolic process

Histidine
phosphotransfer
kinase activity

Bacteroides thetaiotaomicron

Microbes Metabolic
traits

Fig. 5 | Multi-omics measurements are associated with carb-response 
type and metabolic traits. a, Metabolites and lipids that are distinguished 
between carb-response types. For the carb-response types, ‘Others’ include all 
other participants. *, based on Holm corrected P value of the Mann–Whitney 
test (default, two-sided) of the selected pairs: *PH ≤ 0.05; **PH ≤ 0.01. N1-
Methyladenosine was selected as it had the lowest P value when comparing 
bread-spikers with others. The TAGs and fatty acids were selected as lipid-related 
features with pFDR < 0.2. More results can be found in Supplementary Table 3 
and Supplementary Fig. 21. PH: bread versus potatoes (i) 0.021, bread versus rice 
(i) 2.5 × 10−3, others versus grapes (ii) 0.033, grapes versus potatoes (ii) 0.035, 
other versus potatoes (iii) 0.016, others versus grapes (iii) 0.043, potatoes versus 
grapes (iii) 1.2 × 10−3, others versus potatoes (iv) 1.1 × 10−3, potatoes versus grapes 
(iv) 8.2 × 10−3, others versus potatoes (v) 1.9 × 10−3, potatoes versus grapes (v) 
8.2 × 10−3. The boxplots show the center line as the median and the hinges as 
the 25th and 75th percentiles. The upper whisker extends from the hinge to the 

largest value not bigger than 1.5 times the distance between the hinges. Data 
beyond the whiskers are outliers. Number of participants in each carb-response 
type: rice-spiker (15), grape-spiker (6), pasta-spiker (3), bread-spiker (8), potato-
spiker (7). Omics measurements were compared between carb-response types. 
b, Spearman correlation between T2D-related clinical features and microbiome 
levels (Genus). Red indicates positive correlation, blue indicates negative 
correlation, and asterisks indicate P value < 0.05 and pFDR < 0.2. Genera with 
more than one P value < 0.05 association were selected. Sample weight was 
controlled by partial correlation. FDR correction was implemented for the whole 
matrix. c, Mediation effect through the same metabolite. The mediation effect 
was calculated from microbiome to metabolites (mediator) and then to clinical 
measurements. Asterisks indicate pFDR < 0.01, and others are selected based 
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mitigation effect (Supplementary Table 5). This might indicate a com-
peting usage of starch when the human digestive process was slowed 
by mitigators. Overall, a myriad of microbial biochemical pathways in 
different microbes could likely impact PPGRs.

Our work is built on previous PPGR studies and provides a deeper 
mechanistic understanding of the PPGR. Interindividual PPGR varia-
tion and correlation across foods have been discovered in both early 
small-scale blood-sample-based and later CGM-based studies7,13,45,46. 
However, early studies were limited to a small variety of standardized 
meals, so they did not systematically investigate the real-life heteroge-
neity of PPGRs7,13. Our work demonstrates that PPGRs were more con-
sistent within individuals than between individuals, and each individual 
can be classified into one carb-response type with different clinical 
profiles. We also provided a statistical analysis of interindividual and 
intraindividual variability of PPGRs based on ICCs to a broad scope of 
carbohydrate meals. In addition, previous cohorts were not compre-
hensively profiled in metabolic traits. We found associations between 
PPGRs and blood glucose and omics features, and their relationship 
to the specific metabolic dysfunctional phenotype, including insulin 
resistance and beta cell function, enabling a deeper understanding of 
interindividual variation in PPGRs.

Limitations of the current study include its size of 55 
well-phenotyped individuals in California. Although there was a bal-
anced distribution of participants by sex and race, there were insuf-
ficient numbers in each race to identify more race-specific patterns. 
Larger studies could address these potential differences. Furthermore, 
for practical reasons, we cannot compare more than seven carbohy-
drates (for example, whole wheat bread, bananas and cooked and 
cooled versus hot potatoes) and include mitigator tests for all car-
bohydrates. Our meals also lacked variability in cooking time and 
solid state versus liquid state. The mitigator effects presented were 
systematically studied but still cannot be extrapolated to a mixed 
meal. Rather, we can only conclude about the effect when the mitiga-
tor was given 10 min before the rice meal. Although participants were 
instructed to remain sedentary for three hours post-meal, we did not 
track physical activity and evaluate the effects. The protocol adherence 
was closely monitored by the dietitian through food logs, but the meals 
were consumed in the home setting, so other external variables could 
affect the results. Our study explored the association between PPGRs 
and omics and clinical measurements but presented no direct links to 
hard clinical endpoints47,48. Further studies are needed to quantify the 
long-term consequences of different PPGR subtypes and intervention 
effects objectively and directly.

Overall, our results represent an initial step in evaluating the effect 
of different meals and mitigators on PPGRs and their associations with 
metabolic physiology, especially because individuals, both healthy and 
at risk, have increased access to CGMs to optimize health by modifying 
their diet. Our research also may be relevant for stratification-based 
approaches that leverage CGM data to cluster individuals based on 
metabolic health and potentially optimize their diet to prevent pro-
gression to T2D and CVD. Our potential approach of stratifying par-
ticipants into subgroups with relatively homogeneous PPGRs could 
provide advantages of more precise recommendations than the broad 
public health recommendation and more accessible data collection 
than the individualized machine-learning approach. Future studies 
could enable routine meal recommendations through expanded PPGR 
profiling with an even broader scope of mitigators in bigger cohorts 
and novel algorithms.
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Methods
Cohort design and participant recruitment
Our study aligns with the NIH definition of Basic Experimental Studies 
in Humans studies and aims to understand the fundamental process of 
postprandial responses. Male and female (based on self-report) par-
ticipants of different ethnicities (based on self-report) were recruited 
from the San Francisco Bay Area, California. Inclusion criteria were 
age >18 and <75 years, BMI < 40 kg m−2 and no known diagnosis of dia-
betes. Exclusion criteria included major organ diseases, uncontrolled 
hypertension (blood pressure > 160/100 mmHg), pregnancy or lacta-
tion, use of diabetogenic medications, malabsorptive disorders (for 
example, celiac sprue), chronic inflammatory conditions, malignancy 
not at least five years in remission, alcohol use >2 standard drinks per 
day, use of weight loss medications or specific diets, weight change of 
more than 2 kg in the last three weeks and a history of bariatric surgery. 
Additionally, individuals were excluded if they were deemed to be 
unable to use the technology correctly, adhere to the study protocol 
or give written informed consent. Details are available in clinicaltrials.
gov (NCT03919877). The first participant consented on 24 May 2018 
and the last one on 15 February 2023.

Participants underwent evaluations, screening tests and metabolic 
tests at the Clinical and Translational Research Unit (CTRU) after an 
overnight fast. Metabolic tests assessed metabolic health related to T2D 
and included the oral glucose tolerance test, SSPG test and isoglycemic 
intravenous glucose infusion (IIGI) test19–22,49. There were four basic 
visits: a screening + OGTT visit, an SSPG visit, an IIGI visit and an omics 
sample collection visit. During the screening and the omics visits, stool, 
urine, peripheral blood mononuclear cells, plasma and serum samples 
were collected. Some individuals had multiple omics visits to monitor 
omics changes throughout the study. Participants were then instructed 
to complete the at-home diet cycles, during which they collected CGM 
and food log data.

Ethics approval and consent
The study protocol was reviewed and approved by the Institutional 
Review Board at Stanford University School of Medicine Human 
Research Protection Office (Institutional Review Board no. 43883). 
All participants provided written informed consent.

Standardized carbohydrate meals
Seven standardized carbohydrate meals (50 g carbohydrates each) and 
three mitigators were included in the study (Supplementary Table 6). 
We investigated individual responses to different standardized car-
bohydrate meals and determined whether other meals could miti-
gate the PPGRs. Among the seven carbohydrate meals, there were five 
starchy meals and two meals with mostly simple carbohydrates. The 
five starchy meals were jasmine rice (precooked frozen Trader Joe’s 
brand), potatoes (shredded, frozen precooked, Trader Joe’s brand), 
pasta (macaroni, cooked in the CTRU kitchen per package instructions 
and then frozen), white sliced bread (Trader Joe’s buttermilk bread) and 
beans (canned whole black beans). The two simple-carbohydrate meals 
were grapes (red grapes) and mixed berries (170 g raspberries and a mix 
of blackberries, strawberries and blueberries, about 85 g each). The 
three mitigators were fiber (pea fiber powder, 14 g providing 10 g of 
fiber), protein (boiled egg white, 100 g, providing 10 g of protein) and 
fat (Bellwether Farms Creme Fraiche, 38 g, providing 15 g total fat). The 
weight of the mitigators was chosen to approximate regular meal sizes.

Participants were instructed to use microwaves to heat the meal at 
home and consume each on separate days without adding any condi-
ments or other meals. They were to consume the standardized meals 
as the first meal in the morning, after a 10–12 hour fast, not consume 
any other food or drink and remain sedentary for 3 hours after con-
sumption of the provided meals. For mitigator tests, participants were 
instructed to consume the mitigator first, followed by the carbohydrate 
meal (rice) 10 min later. They were also advised to avoid exercise the 

afternoon and evening before the test. The starting time point (zero 
minutes) was the recorded time of consuming the standardized car-
bohydrate meals in the food log.

Diet cycles
During the diet cycle, participants were instructed to consume the 
standardized meals as described in the last section while otherwise fol-
lowing their regular diet. Participants were instructed to keep detailed 
logs of food intake, including the time and portions of all foods and 
drinks consumed using the ‘Cronometer’ app. A dietitian assisted 
participants in adhering to the cook and eat instructions. Food logs 
with specific food and time were collected to evaluate adherence to 
the assigned instructions.

Two versions of CGM were used during the study period: Dexcom 
G4 and G6 Pro. For the G4, calibration was needed, requiring par-
ticipants to measure blood glucose levels by fingerstick with provided 
glucose meters, glucose-reading strips and a lancet device. Participants 
were instructed to calibrate before the standardized meals. The G6 Pro 
required no calibration. Glucose values were blinded to participants 
until after the study. Participants were instructed to wear the CGM 
devices continuously throughout the study. The G4 sensor lasted seven 
days, and the G6 Pro lasted ten days. Trained study personnel inserted 
the sensor and educated participants on its use and care. Multiple CGM 
sensors were provided as needed.

Demographic and clinical information
Metadata were downloaded from REDCap and cleaned manually. The 
data included demographic information, clinical blood test results 
and responses from health and physical activity surveys19,26. The data 
were homogenized and manually checked with unreasonable values 
labeled and removed. Missing clinical values (for example, BMI) were 
estimated if the corresponding independent variables for calculation 
existed. If multiple values existed, they were averaged across visits.

Metabolic tests
Participants were instructed to fast for 12 hours before each metabolic 
test. The tests were conducted on three different days. Details of the 
metabolic tests are available in previous publications19,26.

The OGTT measured postprandial glycemic response to a standard 
glucose drink (75 g glucose)19. Blood samples were collected through an 
antecubital intravenous catheter before and after the glucose drink at 
−10, 0, 15, 30, 60, 90, 120, 150 and 180 min. Blood glucose was checked 
at the aforementioned time points and at 10, 20, 40, 50, 75, 105, 135 and 
150 min. Baseline levels of insulin, C-peptide, glucagon-like peptide-1, 
glucose-dependent insulinotropic polypeptide and glucagon were 
measured.

The two-stage insulin suppression test (called the SSPG test in 
the paper) quantified insulin suppression of lipolysis (adipose tis-
sue insulin resistance) and insulin-mediated glucose uptake (muscle 
insulin resistance), as previously described20–23,49. During the test, 
participants received an infusion of octreotide (0.27 μg m−2 min−1) for 
240 min to suppress endogenous insulin secretion. During the first 
stage of the test, insulin was infused at 6 mU m−2 min−1 and glucose 
at 50 mg m−2 min−1, and blood samples were collected at 100, 110 and 
120 min for measurement of glucose, insulin and FFA concentrations23. 
The glucose, insulin and FFA values collected during the last 20 min of 
the first stage were averaged to calculate SSPG, steady-state plasma 
insulin and steady-state plasma FFA concentrations. During the second 
stage of the test, insulin was infused at 32 mU m−2 min−1 and glucose 
at 267 mg m−2 min−1. Blood samples were drawn at 210, 220, 230 and 
240 min to measure the second-stage steady-state plasma insulin and 
SSPG concentrations.

The IIGI test measured the incretin effect, which is the ability of 
oral nutrients to stimulate insulin secretion beyond that stimulated by 
comparable plasma glucose administered intravenously27. It quantified 
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the incretin effect by comparison with OGTT measurements. During 
the IIGI test, an intravenous catheter was placed in the antecubital vein 
for administration of continuous dextrose infusion at a rate needed 
to obtain the desired glucose level to match the curve generated by 
the OGTT. Blood samples were collected from a second intravenous 
catheter at the same time points as the OGTT, with immediate results 
generated by a bedside YSI plasma glucose analyzer and the rate of 
dextrose infusion adjusted as needed to maintain the desired glucose 
curve that matched values obtained during the OGTT. Plasma from this 
test as well as the OGTT was collected for measurement of insulin and 
C-peptide to calculate the incretin effect.

Although all participants were free of diabetes by self-report, they 
were stratified for analysis purposes according to HbA1c drawn at their 
baseline visit and American Diabetes Association criteria as follows: 
normoglycemia (HbA1c < 5.7%), prediabetes (HbA1c 5.7%–6.4%) and 
T2D (HbA1c ≥ 6.5%).

SSPG (mg dl−1) measured the level of insulin resistance, with higher 
values indicating greater insulin resistance20–23,49. A cutoff at 120 mg dl−1 
was used to classify participants into IR and IS groups19,24. This threshold 
was based on physiology, prospective studies and a natural separation 
point between clustering observed in our cohort24. An alternative cutoff 
excluded intermediate results (IR, SSPG > 120; IS, SSPG < 100). Results 
followed the default cutoff if not otherwise specified.

Beta cell function was expressed as disposition index, reflecting 
insulin secretion adjusted for insulin resistance. The calculation was 
by insulin SECretion (ISEC) software, based on C-peptide concentra-
tions measured during OGTT at time points 0, 15 and 30 min and with 
adjustment for age, sex and BMI19,50. We calculated the disposition index 
(pmol dl) per (kg ml), defined as the area under the insulin secretion 
rate divided by the SSPG (as measured during the insulin suppression 
test). Participants were stratified into normal (disposition index > 2.2), 
intermediate (1.2 ≤ disposition index ≤ 2.2) and dysfunctional (disposi-
tion index < 1.2) beta cell function17.

Incretin effect was calculated based on the difference in C-peptide 
concentrations between OGTT and IIGI at seven time points (0, 15, 30, 
60, 90, 120 and 180 min)17,24,28. A higher incretin effect may indicate 
either increased secretion of incretin (for example, glucagon-like 
peptide-1, glucose-dependent insulinotropic polypeptide) and/or 
increased beta cell responsiveness to incretin. Participants were strati-
fied into normal (incretin effect% > 64), intermediate (39 ≤ incretin 
effect% ≤ 64) and dysfunctional (incretin effect% < 39) incretin effects. 
An alternative cutoff excluded intermediate results (dysfunctional, 
incretin effect% < 40; normal, incretin effect% > 60). Results followed 
the default cutoff if not otherwise specified.

Hepatic IR was estimated using a surrogate index based on insu-
lin, HDL, BMI, age and sex. Participants were stratified into hepatic IS 
(index < 3.95), intermediate (3.95 ≤ index ≤ 4.8) and IR (index > 4.8) 
(refs. 26,28,51). Participants were stratified into adipose IS (FFA ≤ 0.15), 
intermediate (0.15 < FFA < 0.5) and IR (FFA ≥ 0.5) (ref. 23). We followed 
previous papers in the calculation of homeostatic model assessment val-
ues52. Details of calculations are available in the previous publications19,26.

There were two groups of participants for metabolic tests, includ-
ing groups 1 and 2. Group 1 had the most metabolic test measure-
ments on most participants and is the one we focused on for metabolic 
traits. Group-wise comparisons across metabolic subtypes (differ-
ent insulin resistances, beta cell function and incretin function) were 
based on group 1 unless otherwise specified, and other correlation 
analyses are based on all available data. Group 2 had a distribution 
shift, was mostly IS and had SSPG only among subtype measurements. 
In group 1 and among those with standardized meal CGM data, we 
quantified SSPG (n = 30), disposition index (n = 28), incretin effect 
(n = 28), hepatic IR (n = 28), FFA (n = 22) and homeostatic model assess-
ment insulin-resistance surrogate (n = 28). Group 2 had basic clinical 
measurements and SSPG (n = 13) and was mostly IS (SSPG > 120, n = 2; 
SSPG > 130, n = 1).

CGM data processing and quality control
CGM data were analyzed over a period from 25 min before to 170 min 
after the consumption of standardized carbohydrate meals. The ref-
erence time point (0 min) corresponds to the consumption time of 
the standardized carbohydrate meals, as recorded in the food logs. 
The CGM data were downloaded from Dexcom devices, processed 
and integrated with food log data. Standardized meals were identi-
fied and selected from the Cronometer food logs. Food names were 
cleaned and unified for the standardized meals. Duplicate records of 
identical meals were merged. We only kept those mitigator records 
correctly following the procedure: (1) rice must be consumed within 
30 min after the mitigators; (2) rice must be consumed after the mitiga-
tors. Other food intake before and during (2 hours) the standardized 
meal tests was also recorded. Time shifts from daylight saving were 
automatically recorded and corrected. CGM data were then merged 
with food log data.

We kept CGM records with relatively complete data in the time 
range of interest ([−25,170] minutes) and removed data with more than 
30-minute gaps. We then applied a smoothing spline and resampled 
the data into a uniform time grid of 40 time points.

We manually checked each CGM curve and corrected mistakes in 
dates and times, including traveling between time zones. CGM curves 
with mistakes, such as discontinuities after device calibration or an 
indication of noncompliance, were removed. Traveling between time 
zones often produced an integer-hour time discrepancy between CGM 
and food log records, which was corrected by shifting integer hours.

The reproducibility and consistency of PPGRs were assessed based 
on AUC(>baseline). The glucose response was analyzed from the time 
of carbohydrate meal consumption until either 180 or 120 min post 
consumption. Replicate 1 and replicate 2 data for each carbohydrate 
meal type were extracted, and Pearson correlation coefficients were 
calculated. ICC was also calculated to evaluate consistency within 
replicates of the same individuals.

CGM feature extraction and definition of PPGRs
We projected each CGM time series ([0, 170] minutes) into features19. 
The AUC (mg min dl−1) was calculated using the composite trapezoidal 
rule. AUC above a certain value (for example, AUC(>baseline) and 
AUC(>140)) was calculated by shifting the curves to these thresh-
olds and integrating the positive parts. The baseline glucose level 
was defined as the glucose value with the minimal absolute distance 
to the zero time point. The peak value was defined as the maximal 
glucose value in the time range. Delta glucose peak (mg dl−1) was 
defined as the difference between the peak glucose value and the 
baseline glucose value. Delta glucose peak at a specific time point (for  
example, delta glucose peak at 120 min) was defined as the difference 
between the glucose value at the chosen time point and the baseline 
glucose value. Time (baseline to peak) (min) was defined as the time 
difference between the baseline time point and peak value. Time 
(return to baseline) was defined as the minimal time for the glucose 
level to decrease to or below the baseline glucose level. If the glucose 
level had not returned to baseline within 170 min, the time was set as 
170 min. Slope (baseline to peak) (mg (dL min)−1) was defined as the 
division between delta glucose peak value and time from baseline 
to peak.

Mitigation effects were measured by subtracting the delta glucose 
peak of rice + mitigator from the delta glucose peak of rice alone and 
then normalizing by the rice delta glucose peak. A similar quantification 
of the mitigation effect was also calculated based on AUC(>baseline). 
The mitigation effect measured the relative suppression effect on 
glycemic response.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

http://www.nature.com/naturemedicine
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Data availability
Data are shared through supplementary tables, public repositories 
and an integrated web interface. This Article focused on participants 
with CGM and, particularly, with complete metabolic testing, a subset 
of the whole cohort. Only patient data with consent to data sharing 
were shared. The participant IDs were also reassigned to prevent 
identification. Metabolomics and lipidomics data were deposited into 
Metabolomics Workbench with IDs ST003630 and ST003636 (ref. 53). 
Microbiome data were deposited into NCBI SRA under PRJNA1189566. 
The affinity proteomics Olink data have been deposited into the PRIDE 
repository with the dataset identifier PAD000001 (ref. 54), which will 
be open after publication. Clinical data, CGM data and omics data were 
also shared in integration through a web interface for the whole cohort 
(NCT03919877) when consent for data sharing was obtained from 
the participants. The link is https://cgmdb.stanford.edu/. New types 
of data will be shared through the web interface when finalized. This 
manuscript also used datasets/databases including human genome 
GRCh38 (https://benlangmead.github.io/aws-indexes/bowtie) and 
metid based database-mapping55. Source data are provided with  
this paper.

Code availability
The analysis is based on R, Python and MATLAB, and detailed infor-
mation is provided in the supplementary files. The used packages 
include Rcpm v.1.0.4, masscleaner v.1.0.6, lipidr v.2.12.0, Summa-
rizedExperiment v.1.28.0, GenomicRanges v.1.50.1, GenomeInfoDb 
v.1.34.2, MatrixGenerics v.1.10.0, matrixStats v.0.62.0, pathview 
v.1.38.0, ggfortify v.0.4.15, ComplexUpset v.1.3.3, Rodin v.0.1.43,  
visNetwork v.2.1.2, gridExtra v.2.3, mediation v.4.5.0, sandwich v.3.0-
2, mvtnorm v.1.1-3, Matrix v.1.5-3, doSNOW v.1.0.20, snow v.0.4-4,  
iterators v.1.0.14, KEGG.db v.2.7.1, MSnbase v.2.24.0, ProtGenerics 
v.1.30.0, mzR v.2.32.0, Rcpp v.1.0.9, massdataset v.1.0.19, masstools 
v.1.0.8, metid v.1.2.25, metid v.0.2.0, metpath v.1.0.5, ReactomePA 
v.1.42.0, org.Hs.eg.db v.3.16.0, AnnotationDbi v.1.60.0, IRanges 
v.2.32.0, S4Vectors v.0.36.0, Biobase v.2.58.0, BiocGenerics v.0.44.0, 
clusterProfiler v.4.6.0, ppcor v.1.1, MASS v.7.3-57, igraph v.1.3.5,  
psych v.2.2.9, reshape2 v.1.4.4, lsr v.0.5.2, circlize v.0.4.15,  
ggpubr v.0.6.0, ComplexHeatmap v.2.14.0, data.table v.1.14.4, dplyr 
v.1.0.10, readxl v.1.4.1, npreg v.1.0-9, Hmisc v.5.1-0, tidyr v.1.3.0, 
ggplot2 v.3.4.0, magrittr v.2.0.3, foreach v.1.5.2, stringr v.1.5.0, 
caret v.4.4.0, glmnet v.4.4.0, pandas 2.0.3, matplotlib 3.5.1, seaborn 
0.11.2, numpy 1.22.3 and scipy 1.7.3. The codes of this study are 
shared through open-source GitHub (https://github.com/mikeaalv/
cgm_meal_manuscript).

References
49. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in 

human disease. Diabetes 37, 1595–1607 (1988).
50. Hovorka, R., Soons, P. A. & Young, M. A. ISEC: a program to 

calculate insulin secretion. Comput. Methods Programs Biomed. 
50, 253–264 (1996).

51. Petersen, M. C., Vatner, D. F. & Shulman, G. I. Regulation of hepatic 
glucose metabolism in health and disease. Nat. Rev. Endocrinol. 
13, 572–587 (2017).

52. Matthews, D. R. et al. Homeostasis model assessment: insulin 
resistance and beta-cell function from fasting plasma glucose 
and insulin concentrations in man. Diabetologia 28, 412–419 
(1985).

53. Sud, M. et al. Metabolomics Workbench: an international 
repository for metabolomics data and metadata,  
metabolite standards, protocols, tutorials and training,  
and analysis tools. Nucleic Acids Res. 44, D463–D470  
(2016).

54. Perez-Riverol, Y. et al. The PRIDE database at 20 years:  
2025 update. Nucleic Acids Res. 53, D543–D553 (2024).

55. Shen, X. et al. metID: an R package for automatable compound 
annotation for LC–MS-based data. Bioinformatics 38, 568–569 (2022).

Acknowledgements
We thank all participants, investigators and CTRU nurses and staffs of 
the CGM1.0 study. We thank A. Chen and L. Stainton for administrative 
support. This work was supported by NIH/NIDDK grant no. R01 
DK110186-01 and a Stanford PHIND award (M.P.S and T.M.). We also 
acknowledge the support of the Stanford Diabetes Research Center 
(P30DK116074). This research is also supported by the American 
Diabetes Association Grant 11-23-PDF-76 (Y.W.). It is also supported by 
National Institute of Diabetes and Digestive and Kidney Diseases of 
the National Institutes of Health grant no. F32DK126287 to A.W.B. and 
National Library of Medicine (grant no. 2T15LM007033) for B.E. H.P. 
was supported by the NIH institutional research training grant no. NIH 
2T32HL09804911 and the Stanford Lifestyle Medicine grant. Research 
reported in this publication was supported by the National Center for 
Advancing Translational Sciences of the National Institutes of Health 
under grant no. UM1TR004921. The content is solely the responsibility 
of the authors and does not necessarily represent the official views 
of the National Institutes of Health. This work was partially supported 
by proteomic profiling conducted through NIH/NIDDK grant no. R01 
DK114183 (Principal Investigator: Themistocles L. Assimes). This study 
was also supported by Stanford Center for Clinical and Translational 
Research and Education: MedTech Pilot Grant. The funders had no role 
in study design, data collection and analysis, decision to publish or 
preparation of the manuscript.

Author contributions
Y.W., B.E. and A.A.M. conducted the main data analysis. D.P., C.B., 
A.A.M., Y.W. and H.P. contributed to clinical data curation. D.P., A.A.M., 
Y.W. and B.E. conducted CGM data curation and quality control. 
A.A.M., H.P., A.W.B., F.A., B.M. and Y.W. contributed to the sample 
arrangement for omics collection and assays. A.W.B., D. Bogumil, 
S.P., Z.S. and D.L. contributed to microbiome data collection. Y.W. and 
A.W.B. contributed to microbiome data preprocessing. A.A.M. and F.A. 
collected Olink data. B.M., F.W. and D. Bradley collected metabolomics 
and lipidomics data. B.M., Y.W., F.W. and D. Bradley processed 
metabolomics and lipidomics data. Y.W. and D.H. ran the lipidomics 
analysis. D.P., A.C., C.B., E.A., F.A. and T.M. recruited patients and 
conducted clinical tests. L.R., Y.W. and D.P. conducted biochemical 
experiments. Y.W., B.E., A.A.M. and Y.L. conducted omics analysis. 
Y.W., D.P., A.W.B. and S.M.L. interpreted omics results. T.M. and H.R. 
provided clinical interpretations. B.E. and Y.W. built machine-learning 
models. Y.W., B.E., M.P.S., T.M. and D.P. wrote the initial draft with edits 
and comments from the whole group. Y.W., L.M. and B.E. contributed 
to visualization. A.A.M., D.P., T.M. and M.P.S. conceptualized and 
designed the study and coordinated the cohort collection. M.P.S. and 
T.M. funded the study. G.G., E.S.R. and P.V.R. contributed to the website 
development implementation. G.G., E.S.R., P.V.R., T.W., L.M. and Y.W. 
contributed to the data sharing and visualization.

Competing interests
M.P.S. is a cofounder, scientific advisor and shareholder of Filtricine, 
Iollo, January AI, Marble Therapeutics, Next Thought AI, Personalis, 
Protos Biologics, Qbio, RTHM, SensOmics. M.P.S. is a scientific 
advisor and equity holder of Abbratech, Applied Cognition, Enovone, 
M3 Helium, Onza. M.P.S. is a scientific advisor and stock option 
holder of Jupiter Therapeutics, Mitrix, Neuvivo, Sigil Biosciences, 
WndrHLTH, Yuvan Research. M.P.S. is a cofounder and stock option 
holder of Crosshair Therapeutics. M.P.S. is an investor in and 
scientific advisor of R42 and Swaza. M.P.S. is an investor in Repair 
Biotechnologies. M.P.S. is a cofounder, shareholder and director of 
Exposomics, Fodsel, InVu Health. M.P.S. is a cofounder and equity 
holder of Mirvie, NiMo Therapeutics, Orange Street Ventures. A.A.M. 

http://www.nature.com/naturemedicine
http://dx.doi.org/10.21228/M8PR8Q
http://dx.doi.org/10.21228/M8PR8Q
https://www.ncbi.nlm.nih.gov/bioproject/1189566
https://www.ebi.ac.uk/pride/archive/projects/PAD000001
https://clinicaltrials.gov/ct2/show/NCT03919877
https://cgmdb.stanford.edu/
https://benlangmead.github.io/aws-indexes/bowtie
https://github.com/mikeaalv/cgm_meal_manuscript
https://github.com/mikeaalv/cgm_meal_manuscript


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03719-2

is currently an employee of Google. D.P. and T.M. are members of the 
scientific advisory board of January AI. The other authors declare no 
competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41591-025-03719-2.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41591-025-03719-2.

Correspondence and requests for materials should be addressed to 
Tracey McLaughlin or Michael P. Snyder.

Peer review information Nature Medicine thanks Ellen Blaak, Clemens 
Wittenbecher and Tao Zuo for their contribution to the peer review of 
this work. Primary Handling Editor: Ming Yang, in collaboration with 
the Nature Medicine team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-025-03719-2
https://doi.org/10.1038/s41591-025-03719-2
https://doi.org/10.1038/s41591-025-03719-2
http://www.nature.com/reprints


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03719-2

Extended Data Fig. 1 | Mean curve with confidence interval for each meal. The x axis is time (minute), and the y axis is glucose level (mg/dL). The blue line is the mean 
curve of the meal, computed from all participants and replicates. The pink area is the confidence interval calculated by 2 standard errors.
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Extended Data Fig. 2 | Separation of PPGRs to meals by engineered features. 
a: Delta glucose peak (relative peak value to baseline) (mg/dL) and return time 
(min) for different food combinations. CGM curves are extracted into different 
features and presented with mean and standard errors (the error bar indicates 
2 standard errors). The x axis is different food combinations, and the y axis is 
the feature value. Bars are ordered by mean value. The number of CGM curves 
(each dot) is: rice 115, potatoes 92, bread 99, pasta 65, grapes 98, beans 46, mixed 

berries 53, rice+fiber 64, rice+protein 61, and rice+fat 60. Extracted CGM features 
are compared between different carbohydrate meals. Each participant was 
instructed to eat each meal at least twice on two different days. b: the scatter plot 
for three exemplar meals visualized with 2 relatively independent features.  
The x axis is time to peak (the slope from baseline to peak, mg/(dL*min)), and the 
y axis is delta glucose peak. Different colors indicate different meals. Each point 
is one CGM curve.
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Extended Data Fig. 3 | Delta glucose of each meal in each participant. The value was averaged among replicates and normalized by the maximum for that participant. 
Insulin resistance (insulin resistant IR vs insulin sensitive IS), SSPG, disposition index (DI), and HbA1c were also presented.
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Extended Data Fig. 4 | Reproducibility of carb-response-type classification 
for each replicate. Carb-response-type in this paper was classified based on the 
average of PPGRs (delta glucose peak) of replicates. Here, we also classified each 
individual into different carb-response-type based on each single meal replicate 
(1 and 2) and compared it with the classification based on averaged PPGRs. The  
x axis is different carb-response-types from the averaged PPGR classification. 
The y axis indicates the percent of average-based classification to be assigned to 

the same group based on single replicates. Green indicates that the meal with the 
highest PPGR corresponding to the carb-response-type is still classified as the 
highest and red indicates that the original highest meal is classified as the second 
highest. For example, in participants classified to be bread-spiker by the averaged 
PPGR, most meal replicates still hold the same classification (bread as the highest 
PPGR meal) (62%), and a small chunk of meal replicates (15%) classified bread as 
the second highest meal.
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Extended Data Fig. 5 | Starch composition of standardized carbohydrate 
meals. The starch composition was measured, and the amount of rapidly 
digestible starch, slowly digestible starch, and resistant starch were quantified 
(detail in Methods). The boxplot presents the ratio between resistant starch 
and total starch and the ratio between slow digestible starch and total starch. 
Asterisks indicate Holm corrected p-value of the t-test (default, two-sided) of 

the selected pairs, *: pFDR < =0.05, **: pFDR < =0.01. The number of replicates is 
3 for each food. The boxplots show the center line as the median and the hinges 
as the 25th and 75th percentiles. The upper whisker extends from the hinge to 
the largest value not bigger than 1.5 times the distance between the hinges. Data 
beyond the whiskers are outliers. pFDR is: potatoes vs rice (left) 0.0014, potatoes 
vs bread (left) 0.019, pasta vs rice (right) 0.047, and pasta vs bread (right) 0.021.
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Extended Data Fig. 6 | PCA scatter plot of metabolomics and lipidomics. Omics samples are colored according to sex (row 1) and hepatic insulin resistant (hepatic 
IR) states (row 2). The x axis is principal component 1 (PC1), and the y axis is PC2. Color distinguishes different groups, and each point is one sample. Each column is a 
different omics.
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Extended Data Fig. 7 | Spearman correlation of microbiome functional unit 
with PPGRs to standardized meals (delta glucose peak). Strong microbiome 
features are selected (pFDR<0.1) from features of GO, KEGG, metacyc pathway, 
pfam, and reactions. Red indicates positive and blue indicates negative 

correlation. Asterisks indicate correlation original p-value < 0.05. The partial 
Spearman correlation was run with additional covariates, sample weight, and 
two-sided t-tests were run.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03719-2

Extended Data Fig. 8 | Spearman correlation between clinical measurement 
and metabolomics. Metabolic features that are significantly associated 
(pFDR<0.05) with selected T2D-related clinical measurements (A1C, FBG, 
OGTT @120 mins, SSPG, disposition index (DI), Incretin effect, hepatic insulin 
resistance (hepatic IR), HOMA IR, adipose IR) are listed in the row. All clinical 

features are listed in columns. Red indicates positive and blue indicates negative 
correlation. Asterisks indicate p-value < 0.05 and double asterisks indicate 
pFDR<0.05. FDR corrections were implemented for each clinical feature. P-values 
were calculated with asymptotic t approximation with a two-sided test.
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Extended Data Fig. 9 | Spearman correlation between clinical measurement 
and lipidomics. Lipidomics features that are significantly associated 
(pFDR<0.05) with selected T2D-related clinical measurements (A1C, FBG, OGTT 
@120 mins, SSPG, DI, Incretin effect, hepatic IR, HOMA IR, adipose IR) are listed 
in the row. All clinical features are listed in columns. Red indicates positive and 

blue indicates negative correlation. Asterisks indicate p-value < 0.05 and double 
asterisks indicate pFDR<0.05. FDR corrections were implemented for each 
clinical feature. P-values were calculated with asymptotic t approximation with a 
two-sided test.
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Extended Data Fig. 10 | Model estimation of SSPG and PG ratio. a: SSPG 
estimation model. Left: Root mean squared error (RMSE) of SSPG estimation. 
The x axis indicates different tested models. Right: Coefficient values of the top 
predictive features of the cooperative model for SSPG estimation. Coefficients 
with more than 30% of the absolute value of the maximum features are presented. 

Positive value contributed to higher SSPG. The Null model used mean as the 
estimation. b: Model performance and coefficient of the PG (Potatoes/Grapes) 
ratio estimation model. Each of these models was built 100 times with different 
train/test splits. The model performance is presented with mean and standard 
errors (the error bar indicates 2 standard errors).
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