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Metrics reloaded: recommendations for 
image analysis validation

Increasing evidence shows that flaws in machine learning (ML) algorithm 
validation are an underestimated global problem. In biomedical image 
analysis, chosen performance metrics often do not reflect the domain 
interest, and thus fail to adequately measure scientific progress and hinder 
translation of ML techniques into practice. To overcome this, we created 
Metrics Reloaded, a comprehensive framework guiding researchers in the 
problem-aware selection of metrics. Developed by a large international 
consortium in a multistage Delphi process, it is based on the novel concept 
of a problem fingerprint—a structured representation of the given problem 
that captures all aspects that are relevant for metric selection, from the 
domain interest to the properties of the target structure(s), dataset and 
algorithm output. On the basis of the problem fingerprint, users are guided 
through the process of choosing and applying appropriate validation 
metrics while being made aware of potential pitfalls. Metrics Reloaded 
targets image analysis problems that can be interpreted as classification 
tasks at image, object or pixel level, namely image-level classification, object 
detection, semantic segmentation and instance segmentation tasks. To 
improve the user experience, we implemented the framework in the Metrics 
Reloaded online tool. Following the convergence of ML methodology 
across application domains, Metrics Reloaded fosters the convergence 
of validation methodology. Its applicability is demonstrated for various 
biomedical use cases.

Automatic image processing with ML is gaining increasing traction in 
biological and medical imaging research and practice. Research has 
predominantly focused on the development of new image processing 
algorithms. The critical issue of reliable and objective performance 
assessment of these algorithms, however, remains largely unexplored. 
Algorithm performance in image processing is commonly assessed 
with validation metrics (not to be confused with distance metrics in the 
pure mathematical sense) that should serve as proxies for the domain 
interest. In consequence, the impact of validation metrics cannot be 
overstated; first, they are the basis for deciding on the practical (for 
example, clinical) suitability of a method and are thus a key component 
for translation into biomedical practice. In fact, validation that is not 
conducted according to relevant metrics could be one major reason for 

why many artificial intelligence (AI) developments in medical imaging 
fail to reach clinical practice1,2. In other words, the numbers presented 
in journals and conference proceedings do not reflect how successful 
a system will be when applied in practice. Second, metrics guide the 
scientific progress in the field; flawed metric use can lead to entirely 
futile resource investment and infeasible research directions while 
obscuring true scientific advancements.

Despite the importance of metrics, an increasing body of work 
shows that the metrics used in common practice often do not ade-
quately reflect the underlying biomedical problems, diminishing 
the validity of the investigated methods3–11. This especially holds 
true for challenges, internationally respected competitions that 
have become the de facto standard for comparative performance 
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metric depends on various factors. As a foundation for the present 
work, we identified three core categories related to pitfalls in metric  
selection (Fig. 1a):

Inappropriate choice of the problem category: The chosen 
metrics do not always reflect the biomedical need. For example, object 
detection (ObD) problems are often framed as segmentation tasks, 
resulting in the use of metrics that do not account for the potentially 
critical localization of all objects in the scene15,16 (Fig. 1a).

assessment of image processing methods. These challenges are 
often published in prestigious journals12–14 and receive tremen-
dous attention from both the scientific community and industry. 
Among a number of shortcomings in design and quality control 
that were recently unveiled by a multicenter initiative8, the choice 
of inappropriate metrics stood out as a core problem. Compared 
to other areas of AI research, choosing the right metric is particu-
larly challenging in image processing because the suitability of a 

Various pitfalls related to choice of validation metrica

b Addressed by problem-driven metrics reloaded framework

(1) Problem fingerprinting enables modality-independent metric selection
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Fig. 1 | Contributions of the Metrics Reloaded framework. a, Motivation: 
Common problems related to metrics typically arise from inappropriate choice 
of the problem category (here: ObD confused with SemS; top left), poor metric 
selection (here: neglecting the small size of structures; top right) and poor metric 
application (here: inappropriate aggregation scheme; bottom). Pitfalls are 
highlighted in the boxes; ∅ refers to the average DSC values. Green metric values 
correspond to a good metric value, whereas red values correspond to a poor 
value. Green check marks indicate desirable behavior of metrics; red crosses 
indicate undesirable behavior. Adapted from ref. 27 under a Creative Commons 
license CC BY 4.0. b, Metrics Reloaded addresses these pitfalls. (1) To enable the 
selection of metrics that match the domain interest, the framework is based on 

the new concept of problem fingerprinting, that is, the generation of a structured 
representation of the given biomedical problem that captures all properties 
that are relevant for metric selection. Based on the problem fingerprint, Metrics 
Reloaded guides the user through the process of metric selection and application 
while raising awareness of relevant pitfalls. (2) An instantiation of the framework 
for common biomedical use cases demonstrates its broad applicability. (3) A 
publicly available online tool facilitates application of the framework. Second 
input image reproduced from dermoscopedia (ref. 58) under a Creative 
Commons license CC BY 4.0; fourth input image reproduced with permission 
from ref. 59, American Association of Physicists in Medicine.
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Poor metric selection: Certain characteristics of a given bio-
medical problem render particular metrics inadequate. Mathematical 
metric properties are often neglected, for example, when using the 
Dice similarity coefficient (DSC) in the presence of particularly small 
structures (Fig. 1a).

Poor metric application: Even if a metric is well suited for a given 
problem in principle, pitfalls can occur when applying that metric to a 
specific dataset. For example, a common flaw pertains to ignoring hier-
archical data structure, as in data from multiple hospitals or a variable 
number of images per patient (Fig. 1a), when aggregating metric values.

These problems are magnified by the fact that common prac-
tice often grows historically, and poor standards may be propagated 
between generations of scientists and in prominent publications. 
To dismantle such historically grown poor practices and leverage 
distributed knowledge from various subfields of image processing, 
we established the multidisciplinary Metrics Reloaded consortium.  
(We thank the Intelligent Medical Systems laboratory members N. Saut-
ter, P. Vieten and T. Adler for the suggestion of the name, inspired by 
the Matrix movies.) This consortium comprises international experts 
from the fields of medical image analysis, biological image analysis, 
medical guideline development, general ML, different medical disci-
plines, statistics and epidemiology, representing a large number of 
biomedical imaging initiatives and societies.

The mission of Metrics Reloaded is to foster reliable algorithm 
validation through problem-aware, standardized choice of metrics 
with the long-term goal of (1) enabling the reliable tracking of scien-
tific progress and (2) aiding to bridge the current chasm between ML 
research and translation into biomedical imaging practice.

Based on a kickoff workshop held in December 2020, the Metrics 
Reloaded framework (Figs. 1b and 2) was developed using a multistage 
Delphi process17,18 for consensus building. Its primary purpose is to 
enable users to make educated decisions on which metrics to choose 
for a driving biomedical problem. The foundation of the metric selec-
tion process is the new concept of problem fingerprinting (Fig. 3). 
Abstracting from a specific domain, problem fingerprinting is the 
generation of a structured representation of the given biomedical 
problem that captures all properties relevant for metric selection. As 
depicted in Fig. 3, the properties captured by the fingerprint comprise 
domain interest-related properties, such as the particular importance 
of structure boundary, volume or center, target structure-related prop-
erties, such as the shape complexity or the size of structures relative to 
the image grid size, dataset-related properties, such as class imbalance, 
as well as algorithm output-related properties, such as the theoretical 
possibility of the algorithm output not containing any target structure.

Based on the problem fingerprint, the user is then, in a transparent 
and understandable manner, guided through the process of selecting 
an appropriate set of metrics while being made aware of potential pit-
falls related to the specific characteristics of the underlying biomedical 
problem. The Metrics Reloaded framework currently supports prob-
lems in which categorical target variables are to be predicted based on 
a given n-dimensional input image (possibly enhanced with context 
information) at pixel, object or image level (Fig. 4). It thus supports 
problems that can be assigned to one of the following four problem 

categories: image-level classification (ImLC; image level), ObD (object 
level), semantic segmentation (SemS; pixel level) or instance segmenta-
tion (InS; pixel level). Designed to be imaging modality independent, 
Metrics Reloaded can be suited for application in various image analysis 
domains even beyond the field of biomedicine.

Here, we present the key contributions of our work in detail, 
namely (1) the Metrics Reloaded framework for problem-aware metric 
selection along with the key findings and design decisions that guided 
its development (Fig. 2), (2) the application of the framework to com-
mon biomedical use cases, showcasing its broad applicability (selection 
shown in Fig. 5) and (3) the open online tool that has been implemented 
to improve the user experience with our framework.

Metrics Reloaded framework
Metrics Reloaded is the result of a multistage Delphi process, com-
prising five international workshops, nine surveys, numerous expert 
group meetings and crowdsourced feedback processes, all conducted 
between 2020 and 2022. As a foundation of the recommendation frame-
work, we identified common and rare pitfalls related to metrics in the 
field of biomedical image analysis using a community-powered process, 
detailed in this work’s sister publication19. We found that common 
practice is often not well justified, and poor practices may even be 
propagated from one generation of scientists to the next. Importantly, 
many pitfalls generalize not only across the four problem categories 
that our framework addresses but also across domains (Fig. 4). This is 
because the source of the pitfall, such as class imbalance, uncertainties 
in the reference or poor image resolution, can occur irrespective of a 
specific modality or application.

Following the convergence of AI methodology across domains and 
problem categories, we therefore argue for the analogous convergence 
of validation methodology.

Cross-domain approach enables integration of distributed 
knowledge
To break historically grown poor practices, we followed a multidisci-
plinary cross-domain approach that enabled us to critically question 
common practice in different communities and integrate distributed 
knowledge in one common framework. To this end, we formed an 
international multidisciplinary consortium of 73 experts from vari-
ous biomedical image analysis-related fields. Furthermore, we crowd-
sourced metric pitfalls and feedback on our approach in a social media 
campaign. Ultimately, a total of 156 researchers contributed to this 
work, including 84 mentioned in the acknowledgements. Considera-
tion of the different knowledge and perspectives on metrics led to the 
following key design decisions for Metrics Reloaded:

Encapsulating domain knowledge: The questions asked to select 
a suitable metric are mostly similar regardless of image modality or 
application: Are the classes balanced? Is there a specific preference 
for the positive or negative class? What is the accuracy of the reference 
annotation? Is the structure boundary or volume of relevance for the 
target application? Importantly, while answering these questions 
requires domain expertise, the consequences in terms of metric selec-
tion can largely be regarded as domain independent. Our approach is 

Fig. 2 | Metrics Reloaded recommendation framework from a user 
perspective. In step 1 – problem fingerprinting, the given biomedical image 
analysis problem is mapped to the appropriate image problem category, namely 
ImLC, SemS, ObD or InS; Fig. 4). The problem category and further characteristics 
of the given biomedical problem relevant for metric selection are then captured 
in a problem fingerprint (Fig. 3). In step 2 – metric selection, the user follows the 
respective colored path of the chosen problem category (ImLC →, SemS →, ObD 
→ or InS →) to select a suitable pool of metrics from the Metrics Reloaded pools 
shown in green. When a tree branches, the fingerprint items determine which 
exact path to take. Finally, in step 3 – metric application, the user is supported 
in applying the metrics to a given dataset. During the traversal of the decision 

tree, the user goes through subprocesses, indicated by the plus sign, which are 
provided in Extended Data Figs. 1–9 and represent relevant steps in the metric 
selection process. Ambiguities related to metric selection are resolved via 
decision guides (Supplementary Note 2.7) that help users make an educated 
decision when multiple options are possible. A comprehensive textual description 
of the recommendations for all four problem categories as well as for the selection 
of corresponding calibration metrics (if any) is provided in Supplementary  
Notes 2.2–2.6. An overview of the symbols used in the process diagram is provided 
in Fig. SN 5.1. Condensed versions of the mappings for every category can be 
found in Supplementary Note 2.2 for ImLC, Supplementary Note 2.3 for SemS, 
Supplementary Note 2.4 for ObD and Supplementary Note 2.5 for InS.

http://www.nature.com/naturemethods
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thus to abstract from the specific image modality and domain of a given 
problem by capturing the properties relevant for metric selection in a 
problem fingerprint (Fig. 3).

Exploiting synergies across classification scales: Similar consid-
erations apply with regard to metric choice for classification, detection 
and segmentation tasks, as they can all be regarded as classification 
tasks at different scales (Fig. 4). The similarities between the categories, 

however, can also lead to problems when the wrong category is chosen 
(Fig. 1a). Therefore, we (1) address all four problem categories in one 
common framework (Fig. 2) and (2) cover the selection of the problem 
category itself in our framework (Extended Data Fig. 1).

Setting new standards: As the development and implementation 
of recommendations that go beyond the state of the art often requires 
critical mass, we involved stakeholders of various communities and 
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societies in our consortium. Notably, our crowdsourcing-based 
approach led to a pool of metric candidates (Fig. SN 2.1) that includes 
not only commonly applied metrics, but also metrics that have to date 
received little attention in biomedical image analysis.

Abstracting from inference methodology: Metrics should be 
chosen based solely on the driving biomedical problem and not be 
affected by algorithm design choices. For example, the error functions 
applied in common neural network architectures do not justify the use 
of corresponding metrics (for example, validating with DSC to match 
the Dice loss used for training a neural network). Instead, the domain 
interest should guide the choice of metric, which, in turn, can guide 
the choice of the loss term.

Exploiting complementary metric strengths: A single met-
ric typically cannot cover the complex requirements of the driving 
biomedical problem20. To account for the complementary strengths 
and weakness of metrics, we generally recommend the usage of mul-
tiple complementary metrics to validate image analysis problems. As 
detailed in our recommendations (Supplementary Note 2), we spe-
cifically recommend the selection of metrics from different families.

Validation by consensus building and community feedback: 
A major challenge for research on metrics is its validation, due to the 
lack of methods capable of quantitatively assessing the superiority of 
a given metric set over another. Following the spirit of large consortia 
formed to develop reporting guidelines (for example, CONSORT21, 
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Fig. 3 | Relevant properties of a driving biomedical image analysis problem 
are captured by the problem fingerprint (selection for SemS shown here). 
The fingerprint comprises a set of items, each of which represents a specific 
property of the problem, is either binary or categorical, and must be instantiated 
by the user. Besides the problem category, the fingerprint comprises domain 

interest-related, target structure-related, dataset-related and algorithm output-
related properties. A comprehensive version of the fingerprints for all problem 
categories can be found in Figs. SN 2.7–2.9 (ImLC), SN 2.10–2.11 (SemS), SN 
2.12–2.14 (ObD) and SN 2.15–2.17 (InS). Pred, prediction; ref, reference.
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TRIPOD22 and STARD23), we built the validation of our framework on 
three main pillars: (1) Delphi processes to challenge and refine the 
proposals of the expert groups that worked on individual components 
of the framework; (2) community feedback obtained by broadcasting 
the framework via society mailing lists and social media platforms; and 
(3) and instantiation of the framework to a range of different biological 
and medical use cases.

Involving and educating users: Choosing adequate validation 
metrics is a complex process. Rather than providing a black box recom-
mendation, Metrics Reloaded guides the user through the process of 
metric selection while raising awareness on pitfalls that may occur. In 
cases in which the trade-offs between different choices must be con-
sidered, decision guides (Supplementary Note 2.7) assist in deciding 
between competing metrics while respecting individual preferences.

Problem fingerprints encapsulate relevant domain knowledge
To encapsulate relevant domain knowledge in a common format and 
then enable a modality-agnostic metric recommendation approach 
that generalizes over domains, we developed the concept of problem 
fingerprinting (Fig. 3). As a foundation, we crowdsourced all proper-
ties of a driving biomedical problem that are potentially relevant for 
metric selection via surveys issued to the consortium (Supplementary 
Methods). This process resulted in a list of binary and categorical 
variables (fingerprint items) that must be instantiated by a user to 
trigger the Metrics Reloaded recommendation process. Common 
issues often relate to selecting metrics from the wrong problem cat-
egory (Fig. 1a). To avoid such issues, problem fingerprinting begins 
with mapping a given problem with all its intrinsic and dataset-related 
properties to the corresponding problem category via the category 
mapping shown in Extended Data Fig. 1. The problem category is a 
fingerprint item itself.

In the following, we refer to all fingerprint items with the notation 
FPX.Y, where Y is a numerical identifier, and the index X represents one 
of the following families:

FP1 – Problem category refers to the problem category generated 
by S1 (Extended Data Fig. 1).

FP2 – Domain interest-related properties reflect user preferences 
and are highly dependent on the target application. A semantic image 
segmentation that serves as the foundation for radiotherapy planning, 
for example, would require exact contours (FP2.1 – particular impor-
tance of structure boundaries = TRUE). On the other hand, for a cell 
segmentation problem that serves as prerequisite for cell tracking, 
the object centers may be much more important (FP2.3 – particular 
importance of structure center(line) = TRUE). Both problems could 
be tackled with identical network architectures, but the validation 
metrics should be different.

FP3 – Target structure-related properties represent inherent 
properties of target structure(s) (if any), such as the size, size vari-
ability and the shape. Here, the term target structures can refer to any 
object/structure of interest, such as cells, vessels, medical instruments 
or tumors.

FP4 – Dataset-related properties capture properties inherent to 
the provided data to which the metric is applied. They primarily relate 
to class prevalences, uncertainties of the reference annotations and 
whether the data structure is hierarchical.

FP5 – Algorithm output-related properties encode properties of 
the output, such as the availability of predicted class scores.

Note that not all properties are relevant for all problem categories. 
For example, the shape and size of target structures is highly relevant 
for segmentation problems but irrelevant for image classification 
problems. The complete problem category-specific fingerprints are 
provided in Supplementary Note 1.3.
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across modalities, application domains and classification scales. The 
framework considers problems in which categorical target variables are to be 
predicted at image, object and/or pixel level, resulting (from top to bottom) in 
ImLC, ObD, InS or SemS problems. These problem categories are relevant across 
modalities (here CT, microscopy and endoscopy) and application domains. From 

left to right: annotation of benign and malignant lesions in CT images59, different 
cell types in microscopy images60 and medical instruments in laparoscopy 
images61. Left, reproduced with permission from ref. 59, American Association of 
Physicists in Medicine; center, reproduced with permission from ref. 60, Springer 
Nature Limited; right, reproduced with permission from ref. 61, Springer Nature 
Limited. RBC, red blood cell; WBC, white blood cell.
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Fig. 5 | Instantiation of the framework with recommendations for concrete 
biomedical questions. From top to bottom: (1) Image classification for 
the examples of sperm motility classification62 and disease classification in 
dermoscopic images63,58. (2) SemS of large objects for the examples of embryo 
segmentation from microscopy64 and liver segmentation in CT images65,66. 
(3) Detection of multiple and arbitrarily located objects for the examples of 
cell detection and tracking during the autophagy process67,68 and MS lesion 
detection in multimodal brain MRI images69,70. (4) InS of tubular objects for 

the examples of InS of neurons from the fruit fly71–73 and surgical instrument 
InS61. The corresponding traversals through the decision trees are shown in 
Supplementary Note 4. An overview of the recommended metrics can be found in 
Supplementary Note 3.1, including relevant information for each metric. ImLC-2, 
reproduced from dermoscopedia under a Creative Commons license CC BY 4.0; 
SemS-2, reproduced with permission from ref. 65, Springer Nature Limited; InS-1, 
reproduced with permission from ref. 61, Springer Nature Limited.

http://www.nature.com/naturemethods
https://creativecommons.org/licenses/by/4.0/


Nature Methods | Volume 21 | February 2024 | 195–212 202

Perspective https://doi.org/10.1038/s41592-023-02151-z

Metrics Reloaded addresses all three types of 
metric pitfalls
Metrics Reloaded was designed to address all three types of metric 
pitfalls identified in ref. 19 and illustrated in Fig. 1a. More specifically, 
each of the three steps shown in Fig. 2 addresses one type of pitfall:

Step 1– Fingerprinting. A user should begin by reading the gen-
eral instructions of the recommendation framework (Supplementary 
Note 1.1). Next, the user should convert the driving biomedical problem 
to a problem fingerprint. This step not only is a prerequisite for apply-
ing the framework across application domains and classification scales, 
but also specifically addresses the inappropriate choice of the problem 
category via the integrated category mapping. Once the user’s domain 
knowledge has been encapsulated in the problem fingerprint, the 
actual metric selection is conducted according to a domain-agnostic 
and modality-agnostic process.

Step 2 – Metric selection. A Delphi process yielded the Metrics 
Reloaded pool of reference-based validation metrics (Fig. SN 2.1). Nota-
bly, this pool contains metrics that are currently not widely known in 
some biomedical image analysis communities. A prominent example 
is the Net Benefit (NB)24 metric, popular in clinical prediction tasks and 
designed to determine whether basing decisions on a method would do 
more good than harm. A diagnostic test, for example, may lead to early 
identification and treatment of a disease, but typically will also cause a 
number of individuals without disease to be subjected to unnecessary 
further interventions. NB allows the consideration of such trade-offs by 
putting benefits and harms on the same scale so that they can be directly 
compared. Another example is the expected cost (EC) metric25, which 
can be seen as a generalization of accuracy with many desirable added 
features but is not well known in the biomedical image analysis communi-
ties26. Based on the Metrics Reloaded pool, the metric recommendation is 
performed with a business process model and notation (BPMN)-inspired 
flowchart (Fig. SN 5.1), in which conditional operations are based on one 
or multiple fingerprint properties (Fig. 2). The main flowchart has three 
substeps, each addressing the complementary strengths and weaknesses 
of common metrics. First, common reference-based metrics, which 
are based on the comparison of the algorithm output to a reference 
annotation, are selected. Second, the pool of standard metrics can be 
complemented with custom metrics to address application- specific 
complementary properties. Third, non-reference-based metrics assess-
ing speed, memory consumption or carbon footprint, for example, 
can be added to the metric pool(s). In this paper, we focus on the step 
of selecting reference-based metrics, because this is where synergies 
across modalities and scales can be exploited.

These synergies are showcased by the substantial overlap between 
the different paths that, depending on the problem category, are taken 
through the mapping during metric selection. All paths comprise several 
subprocesses S (indicated by the ⊞ symbol), each of which holds a subsid-
iary decision tree representing one specific step of the selection process. 
Traversal of a subprocess typically leads to the addition of a metric to the 
problem-specific metric pool. In multi-class prediction problems, dedi-
cated metric pools for each class may need to be generated as relevant 
properties may differ from class to class. A three-dimensional (3D) SemS 
problem, for example, could require the simultaneous segmentation 
of both tubular and non-tubular structures (for example, liver vessels 
and tissue). These require different metrics for validation. Although 
this is a corner case, our framework addresses this issue in principle. In 
ambiguous cases, that is, when the user can choose between two options 
in one step of the decision tree, a corresponding decision guide details 
the trade-offs that need to be considered (Supplementary Note 2.7). For 
example, the intersection over union (IoU) and the DSC are mathemati-
cally closely related. The concrete choice typically boils down to a simple 
user or community preference.

Figure 2 along with the corresponding subprocesses S1–S9 
(Extended Data Figs. 1–9) captures the core contribution of this paper, 
namely the consensus recommendation of the Metrics Reloaded 

consortium according to the final Delphi process. For all ten compo-
nents, the required Delphi consensus threshold (>75% agreement) 
was met. In all cases of disagreement, which ranged from 0% to 7% for 
Fig. 2 and S1–S9, each remaining point of criticism was respectively 
only raised by a single person. The following paragraphs present a 
summary of the four different colored paths through step 2 - Metric 
selection of the recommendation tree (Fig. 2) for the task of selecting 
reference-based metrics from the Metrics Reloaded pool of common 
metrics. More comprehensive textual descriptions can be found in 
Supplementary Note 2.

Image-level classification
ImLC is conceptually the most straightforward problem category, as 
the task is simply to assign one of multiple possible labels to an entire 
image (Supplementary Note 2.2). The validation metrics are designed 
to measure two key properties: discrimination and calibration.

Discrimination refers to the ability of a classifier to discriminate 
between two or more classes. This can be achieved by counting metrics 
that operate on the cardinalities of a fixed confusion matrix (that is, the 
true/false positives/negatives in the binary classification case). Promi-
nent examples are sensitivity, specificity or F1 score for binary settings 
and Matthews correlation coefficient (MCC) for multi-class settings. 
Converting predicted class scores to a fixed confusion matrix (in the 
binary case by setting a potentially arbitrary cutoff) can, however, be 
regarded as problematic in the context of performance assessment27. 
Multi-threshold metrics, such as area under the receiver operating 
characteristic curve (AUROC), are therefore based on varying the 
cutoff, which enables the explicit analysis of the trade-off between 
competing properties such as sensitivity and specificity.

While most research in biomedical image analysis focuses on the 
discrimination capabilities of classifiers, a complementary important 
property is the calibration of a model. An uncertainty-aware model 
should yield predicted class scores that represent the true likelihood 
of events28, as detailed in Supplementary Note 2.6. Overoptimistic or 
underoptimistic classifiers can be especially problematic in predic-
tion tasks where a clinical decision may be made based on the risk of 
the patient developing a certain condition. Metrics Reloaded hence 
provides recommendations for validating the algorithm performance 
both in terms of discrimination and calibration. We recommend the 
following process for classification problems (Fig. 2 and Supplemen-
tary Note 2.2):

	1.	 Select multi-class metric (if any): Multi-class metrics have the 
unique advantage of capturing the performance of an algorithm 
for all classes in a single value. With the ability to take into ac-
count all entries of the multi-class confusion matrix, they pro-
vide a holistic measure of performance without the need for 
customized class-aggregation schemes. We recommend using 
a multi-class metric if a decision rule applied to the predicted 
class scores is available (FP2.6). In certain use cases, especially in 
the presence of ordinal data, there is an unequal severity of class 
confusions (FP2.5.2), meaning that different costs should be ap-
plied to different misclassifications reflected by the confusion 
matrix. In such cases, we generally recommend EC as a metric. 
Otherwise, depending on the specific scenario, accuracy, bal-
anced accuracy (BA) and MCC may be viable alternatives. The 
concrete choice of metric depends primarily on the prevalences 
(frequencies) of classes in the provided validation set and the 
target population (FP4.1/2), as detailed in subprocess S2 (Ex-
tended Data Fig. 2) and the corresponding textual description in 
Supplementary Note 2.2.
�As class-specific analyses are not possible with multi-class met-
rics, which can potentially hide poor performance on individual 
classes, we recommend an additional validation with per-class 
counting metrics (optional) and multi-threshold metrics (always 
recommended).
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	2.	 Select per-class counting metric (if any): If a decision rule 
applied to the predicted class scores is available (FP2.6), a 
per-class counting metric, such as the Fβ score, should be select-
ed. Each class of interest is separately assessed, preferably in a 
‘one-versus-rest’ fashion. The choice depends primarily on the 
decision rule (FP2.6) and the distribution of classes (FP4.2). De-
tails can be found in subprocess S3 for selecting per-class count-
ing metrics (Extended Data Fig. 3).

	3.	 Select multi-threshold metric (if any): Counting metrics reduce 
the potentially complex output of a classifier (the continuous 
class scores) to a single value (the predicted class), such that they 
can work with a fixed confusion matrix. To compensate for this 
loss of information and obtain a more comprehensive picture 
of a classifier’s discriminatory performance, multi- threshold 
metrics work with a dynamic confusion matrix reflecting a range 
of possible thresholds applied to the predicted class scores. 
While we recommend the popular, well-interpretable and 
prevalence-independent AUROC as the default multi-threshold 
metric for classification, average precision can be more suit-
able in the case of high-class balance because it incorporates 
predicted values, as detailed in subprocess S4 for selecting 
multi-threshold metrics (Extended Data Fig. 4).

	4.	 Select calibration metric (if any): If calibration assessment is re-
quested (FP2.7), one or multiple calibration metrics should be 
added to the metric pool as detailed in subprocess S5 for select-
ing calibration metrics (Extended Data Fig. 5).

Semantic segmentation
In SemS, classification occurs at pixel level. However, it is not advis-
able to simply apply the standard classification metrics to the entire 
collection of pixels in a dataset for two reasons. Firstly, pixels of the 
same image are highly correlated. Hence, to respect the hierarchical 
data structure, metric values should first be computed per image and 
then be aggregated over the set of images. Note in this context that 
the commonly used DSC is mathematically identical to the popular F1 
score applied at pixel level. Secondly, in segmentation problems, the 
user typically has an inherent interest in structure boundaries, cent-
ers or volumes of structures (FP2.1, FP2.2 and FP2.3). The family of 
boundary-based metrics (subset of distance-based metrics) therefore 
requires the extraction of structure boundaries from the binary seg-
mentation masks as a foundation for segmentation assessment. Based 
on these considerations and given all the complementary strengths 
and weaknesses of common segmentation metrics27, we recommend 
the following process for segmentation problems (Fig. 2 and Supple-
mentary Note 2.3):

	1.	 Select overlap-based metric (if any): In segmentation problems, 
counting metrics such as the DSC or IoU measure the overlap be-
tween the reference annotation and the algorithm prediction. As 
they can be considered the de facto standard for assessing seg-
mentation quality and are well interpretable, we recommend us-
ing them by default unless the target structures are consistently 
small, relative to the grid size (FP3.1), and the reference may 
be noisy (FP4.3.1). Depending on the specific properties of the 
problems, we recommend the DSC or IoU (default recommen-
dation), the Fβ score (preferred when there is a preference for 
either false positive (FP) or false negative (FN)) or the centerline 
Dice similarity coefficient (clDice; for tubular structures). De-
tails can be found in subprocess S6 for selecting overlap-based 
metrics (Extended Data Fig. 6).

	2.	 Select boundary-based metric (if any): Key weaknesses of 
overlap-based metrics include shape unawareness and limita-
tions when dealing with small structures or high size variabil-
ity27. Our general recommendation is therefore to complement 
an overlap-based metric with a boundary-based metric. If an-
notation imprecisions should be compensated for (FP2.5.7), 

our default recommendation is the normalized surface distance 
(NSD). Otherwise, the fundamental user preference guiding 
metric selection is whether errors should be penalized by exist-
ence or distance (FP2.5.6), as detailed in subprocess S7 for se-
lecting boundary-based metrics (Extended Data Fig. 7).

Object detection
ObD problems differ from segmentation problems in several key fea-
tures with respect to metric selection. Firstly, they involve distinguish-
ing different instances of the same class and thus require the step of 
locating objects and assigning them to the corresponding reference 
object. Secondly, the granularity of localization is comparatively rough, 
which is why no boundary-based metrics are required (otherwise the 
problem would be phrased as an InS problem). Finally, and crucially 
important from a mathematical perspective, the absence of true nega-
tives (TNs) in ObD problems renders many popular classification met-
rics (for example, accuracy, specificity and AUROC) invalid. In binary 
problems, for example, suitable counting metrics can only be based on 
three of the four entries of the confusion matrix. Based on these con-
siderations and taking into account all the complementary strengths 
and weaknesses of existing metrics27, we propose the following steps 
for ObD problems (Fig. 2 and Supplementary Note 2.4):

	1.	 Select localization criterion: An essential part of the validation 
is to decide whether a prediction matches a reference object. To 
this end, (1) the location of both the reference objects and the 
predicted objects must be adequately represented (for exam-
ple, by masks, bounding boxes or center points), and (2) a metric 
for deciding on a match (for example, mask IoU) must be cho-
sen. As detailed in subprocess S8 for selecting the localization 
criterion (Extended Data Fig. 8), our recommendation considers 
both the granularity of the provided reference (FP4.4) and the 
required granularity of the localization (FP2.4).

	2.	 Select assignment strategy: As the localization does not neces-
sarily lead to unambiguous matchings, an assignment strategy 
needs to be chosen to potentially resolve ambiguities that oc-
curred during localization. As detailed in subprocess S9 for se-
lecting the assignment strategy (Extended Data Fig. 9), the rec-
ommended strategy depends on the availability of continuous 
class scores (FP5.1) as well as on whether double assignments 
should be punished (FP2.5.8).
Select classification metric(s) (if any): Once objects have been 

located and assigned to reference objects, generation of a confusion 
matrix (without TN) is possible. The final step therefore simply com-
prises choosing suitable classification metrics for validation. Several 
subfields of biomedical image analysis have converged to choosing 
solely a counting metric, such as the Fβ score, as the primary metric in 
ObD problems. We follow this recommendation when no continuous 
class scores are available for the detected objects (FP5.1). Otherwise, 
we disagree with the practice of basing performance assessment solely 
on a single, potentially suboptimal cutoff on the continuous class 
scores. Instead, we follow the recommendations for ImLC and propose 
complementing a counting metric (subprocess S3; Extended Data Fig. 
3) with a multi-threshold metric (subprocess S4; Extended Data Fig. 4) 
to obtain a more holistic picture of performance. As multi-threshold 
metric, we recommend average precision or free-response receiver 
operating characteristic (FROC) score, depending on whether an easy 
interpretation (FROC score) or a standardized metric (average preci-
sion) is preferred. The choice of per-class counting metric depends 
primarily on the decision rule (FP2.6).

Note that the previous description implicitly assumed 
single-class problems, but generalization to multi-class problems is 
straightforward by applying the validation for each class. It is further 
worth mentioning that metric application is not trivial in ObD prob-
lems as the number of objects in an image may be extremely small, 
or even zero, compared to the number of pixels in an image. Special 
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considerations with respect to aggregation must therefore be made 
(Supplementary Note 2.4).

Instance segmentation
InS delivers the tasks of ObD and SemS at the same time. Thus, the 
pitfalls and recommendations for InS problems are closely related 
to those for segmentation and ObD27. This is directly reflected in our 
metric selection process (Fig. 2 and Supplementary Note 2.5):

	1.	 Select ObD metric(s): To overcome problems related to instance 
unawareness (Fig. 1a), we recommend selection of a set of detec-
tion metrics to explicitly measure detection performance. To 
this end, we recommend almost the exact process as for ObD 
with two exceptions. Firstly, given the fine granularity of both 
the output and the reference annotation, our recommendation 
for the localization strategy differs, as detailed in subprocess S8 
(Extended Data Fig. 8). Secondly, as depicted in S3 (Extended 
Data Fig. 3), we recommend panoptic quality29 as an alternative 
to the Fβ score. This metric is especially suited for InS, as it com-
bines the assessment of overall detection performance and seg-
mentation quality of successfully matched (true positive (TP)) 
instances in a single score.

	2.	 Select segmentation metric(s) (if any): In a second step, metrics 
to explicitly assess the segmentation quality for the TP instances 
may be selected. Here, we follow the exact same process as in 
SemS (subprocesses S6 and S7; Extended Data Figs. 6 and 7). The 
primary difference is that the segmentation metrics are applied 
for each instance.
Importantly, the development process of the Metrics Reloaded 

framework was designed such that the pitfalls identified in the sister 
publication of this work19 are comprehensively addressed. Table 1 
makes the recommendations and design decisions corresponding to 
specific pitfalls explicit.

Once common reference-based metrics have been selected and, 
where necessary, complemented by application-specific metrics, the 
user proceeds with the application of the metrics to the given problem.

Step 3 - Metric application. Although the application of a metric 
to a given dataset may appear straightforward, numerous pitfalls can 
occur27. Our recommendations for addressing them are provided in 
Extended Data Table 1. Following the taxonomy provided in the sister 
publication of this work19, they are categorized in recommendations 
related to metric implementation, aggregation, ranking, interpretation 
and reporting. While several aspects are covered in related work (for 
example, ref. 30), an important contribution of the present work is the 
metric-specific summary of recommendations captured in the metric 
cheat sheets (Supplementary Note 3.1). A further major contribution is 
our implementation of all Metrics Reloaded metrics in the open-source 
framework Medical Open Network for Artificial Intelligence (MONAI), 
available at https://github.com/Project-MONAI/MetricsReloaded/ 
(Supplementary Methods).

Metrics Reloaded is broadly applicable in 
biomedical image analysis
To validate the Metrics Reloaded framework, we used it to generate 
recommendations for common use cases in biomedical image process-
ing (Supplementary Note 4). The traversal through the decision tree of 
our framework is detailed for eight selected use cases corresponding 
to the four different problem categories (Fig. 5):

ImLC (Figs. SN 5.5–5.8): frame-based sperm motility classification 
from time-lapse microscopy video of human spermatozoa (ImLC-1) and 
disease classification in dermoscopic images (ImLC-2).

SemS (Figs. SN 5.9 and 5.10): embryo segmentation in microscopy 
images (SemS-1) and liver segmentation in computed tomography 
(CT) images (SemS-2).

ObD (Figs. SN 5.6, 5.7, 5.11 and 5.12): cell detection and tracking 
during the autophagy process in time-lapse microscopy (ObD-1) and 

multiple sclerosis (MS) lesion detection in multimodal brain magnetic 
resonance imaging (MRI) images (ObD-2).

InS (Figs. SN 5.6, 5.7 and 5.9–5.12): InS of neurons from the fruit fly 
in 3D multicolor light microscopy images (InS-1) and surgical InS in 
colonoscopy videos (InS-2).

The resulting metric recommendations (Fig. 5) demonstrate that 
a common framework across domains is sensible. In the showcased 
examples, shared properties of problems from different domains result 
in almost identical recommendations. In the SemS use cases, for exam-
ple, the specific image modality is irrelevant for metric selection. What 
matters is that a single object with a large size relative to the grid size 
should be segmented—properties that are captured by the proposed 
fingerprint. In Supplementary Note 4, we present recommendations 
for several other biomedical use cases.

The Metrics Reloaded online tool allows 
user-friendly metric selection
Selecting appropriate validation metrics while considering all potential 
pitfalls that may occur is a highly complex process, as demonstrated 
by the large number of figures in this paper. Some of the complexity, 
however, also results from the fact that the figures need to capture all 
possibilities at once. For example, many of the figures could be simpli-
fied substantially for problems based on only two classes. To leverage 
this potential and to improve the general user experience with our 
framework, we developed the Metrics Reloaded online tool (Supple-
mentary Methods), which captures our framework in a user-centric 
manner and can serve as a trustworthy common access point for image 
analysis validation.

Discussion
Conventional scientific practice often grows through historical accre-
tion, leading to standards that are not always well justified. This holds 
particularly true for the validation standards in biomedical image 
analysis.

The present work represents a comprehensive investigation and, 
importantly, constructive set of recommendations challenging the 
state of the art in biomedical image analysis algorithm validation with 
a specific focus on metrics. With the intention of revisiting—literally 
‘re-searching’—common validation practices and developing better 
standards, we brought together experts from traditionally disjunct 
fields to leverage distributed knowledge. Our international consortium 
of more than 70 experts from the fields of biomedical image analysis, 
ML, statistics, epidemiology, biology and medicine, representing a 
large number of relevant biomedical imaging initiatives and societies, 
developed the Metrics Reloaded framework that offers guidelines and 
tools to choose performance metrics in a problem-aware manner. 
The expert consortium was primarily compiled in a way to cover the 
required expertise from various fields but also consisted of research-
ers of different countries, (academic) ages, roles and backgrounds 
(Supplementary Methods). Importantly, Metrics Reloaded compre-
hensively addresses all pitfalls related to metric selection (Table 1) and 
application (Extended Data Table 1) that were identified in this work’s 
sister publication19.

Metrics Reloaded is the result of a 2.5-year long process involving 
numerous workshops, surveys and expert group meetings. Many con-
troversial debates were conducted during this time. Even deciding on 
the exact scope of the paper was anything but trivial. Our consortium 
eventually agreed on focusing on biomedical classification problems 
with categorical reference data and thus exploiting synergies across 
classification scales. Generating and handling fuzzy reference data 
(for example, from multiple observers) is a topic of its own31,32 and 
was decided to be out of scope for this work. Furthermore, the inclu-
sion of calibration metrics in addition to discrimination metrics was 
originally not intended because calibration is a complex topic, and the 
corresponding field is relatively young and currently highly dynamic. 
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This decision was reversed due to high demand from the community, 
expressed through crowdsourced feedback on the framework.

Extensive discussions also evolved around the inclusion cri-
teria for metrics, considering the trade-off between established 
(potentially flawed) and new (not yet stress-tested) metrics. Our 

strategy for arriving at the Metrics Reloaded recommendations bal-
anced this trade-off by using common metrics as a starting point and 
making adaptations where needed. For example, weighted Cohen’s 
kappa, originally designed for assessing inter-rater agreement, is the 
state-of-the-art metric used in the medical imaging community when 

Table 1 | Metrics Reloaded addresses common and rare pitfalls in metric selection, as compiled in ref. 19

Source of pitfall Addressed in Metrics Reloaded by

Inadequate choice of the problem category

  Wrong choice of problem category Problem category mapping (subprocess S1; Extended Data Fig. 1) as a prerequisite for metric selection.

Disregard of the domain interest

  Importance of structure boundaries FP2.1 - Particular importance of structure boundaries; recommendation to complement common overlap-based 
segmentation metrics with boundary-based metrics (Fig. 2 and Supplementary Note 2.3) if the property holds.

  Importance of structure volume FP2.2 - Particular importance of structure volume; recommendation to complement common overlap-based and 
boundary-based segmentation metrics with volume-based metrics (Supplementary Note 2.3) if the property holds.

  Importance of structure center(line) FP2.3 - Particular importance of structure center(line); recommendation of the clDice as alternative to the common DSC 
or IoU in segmentation problems (subprocess S6; Extended Data Fig. 6) and recommendation of center point-based 
localization criterion in ObD (subprocess S8; Extended Data Fig. 8) if the property holds.

 � Importance of confidence 
awareness

FP2.7.1 - Calibration assessment requested; dedicated recommendations on calibration (Supplementary Note 2.6).

 � Importance of comparability  
across datasets

FP4.2 - Provided class prevalences reflect the population of interest; used in the subprocesses S2–S4 (Extended Data  
Figs. 2–4); general focus on prevalence dependency of metrics in the framework.

 � Unequal severity of  
class confusions

FP2.5 - Penalization of errors; recommendation of the so-far uncommon metric EC as a classification metric  
(subprocess S2; Extended Data Fig. 2); setting β in the Fβ score according to preference for FP (oversegmentation) and FN 
(undersegmentation; see DG3.3 in Supplementary Note 2.7.2).

  Importance of cost–benefit analysis FP2.6 - Decision rule applied to predicted class scores: incorporation of a decision rule that is based on cost–benefit 
analysis; recommendation of the so-far uncommon metrics NB (Fig. SN 3.11) and EC (Fig. SN 3.6).

Disregard of target structure properties

  Small structure sizes FP3.1 - Small size of structures relative to pixel size; recommendation to consider the problem an ObD problem 
(Supplementary Note 2.4); complementation of overlap-based segmentation metrics with boundary-based metrics in 
the case of small structures with noisy reference (subprocess S6; Extended Data Fig. 6); recommendation of lower ObD 
localization threshold in case of small sizes (see DG8.3 in Supplementary Note 2.7.7).

  High variability of structure sizes FP3.2 - High variability of structure sizes; recommendation of lower ObD localization threshold (see DG8.3 in 
Supplementary Note 2.7.7) and size stratification (Supplementary Note 2.4) in case of size variability.

  Complex structure shapes FP3.3 - Target structures feature tubular shape; recommendation of the clDice as alternative to the common DSC in 
segmentation problems (subprocess S6; Extended Data Fig. 6) and recommendation of point inside mask/box/approx as 
localization criterion in ObD if the property holds (subprocess S8; Extended Data Fig. 8).

 � Occurrence of overlapping or 
touching structures

FP3.5 - Possibility of overlapping or touching target structures; explicit recommendation to phrase problem as InS rather 
than SemS problem (Supplementary Note 2.3); recommendation of higher ObD localization threshold in case of small 
sizes (see DG8.3 in Supplementary Note 2.7.7).

 � Occurrence of disconnected 
structures

FP3.6 - Possibility of disconnected target structure(s); recommendation of appropriate localization criterion for ObD 
(DG8.2 in Supplementary Note 2.7.7).

Disregard of dataset properties

  High class imbalance FP4.1 - High class imbalance and FP2.5.5 - compensation for class imbalances requested; compensation of class imbalance 
via prevalence-independent metrics such as EC and BA.

  Small test set size Recommendation of confidence intervals for all metrics.

 � Imperfect reference standard: noisy 
reference standard

FP4.3.1 - High inter-rater variability and FP2.5.7 - compensation for annotation imprecisions requested; default 
recommendation of the so-far rather uncommon metric NSD to assess the quality of boundaries.

 � Imperfect reference standard: 
spatial outliers in reference

FP4.3.2 - Possibility of spatial outliers in reference annotation and FP2.5.6 - handling of spatial outliers; recommendation 
of outlier-robust metrics, such as NSD in case no distance-based penalization of outliers is requested in segmentation 
problems.

 � Occurrence of cases with an  
empty reference

FP4.6 - Possibility of reference without target structure(s); recommendations for aggregation in the case of empty 
references according to Supplementary Note 2.4 and Extended Data Table 1.

Disregard of algorithm output properties

  Possibility of empty prediction FP5.2 - Possibility of algorithm output not containing the target structure(s); selection of appropriate aggregation strategy 
in ObD (Supplementary Note 2.4).

 � Possibility of overlapping 
predictions

FP5.4 - Possibility of overlapping predictions; recommendation of an assignment strategy based on IoU > 0.5 if overlapping 
predictions are not possible and no predicted class scores are available.

  Lack of predicted class scores FP5.1 - Availability of predicted class scores; leveraging class scores for optimizing decision regions (FP2.6) and assessing 
calibration quality (FP2.7).

The first column lists all pitfall sources captured by the published taxonomy that relate to either the inadequate choice of the problem category or poor metric selection. The second column 
summarizes how Metrics Reloaded addresses these pitfalls. The notation FPX.Y refers to a fingerprint item (Supplementary Note 1.3).
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handling ordinal data. Unlike other common multi-class metrics, such 
as (balanced) accuracy or MCC, it allows the user to specify different 
costs for different class confusions, thereby addressing the ordinal 
rating. However, our consortium deemed the (not widely known) 
metric EC generally more appropriate due to its favorable math-
ematical properties. Importantly, our framework does not intend to 
impose recommendations or act as a ‘black box’; instead, it enables 
users to make educated decisions while considering ambiguities 
and trade-offs that may occur. This is reflected by our use of deci-
sion guides (Supplementary Note 2.7), which actively involve users 
in the decision-making process (for the example above, for instance, 
see DG2.1).

An important further challenge that our consortium faced was 
how to best provide recommendations in case multiple questions are 
asked for a single given dataset. For example, a clinician’s ultimate 
interest may lie in assessing whether tumor progress has occurred in a 
patient. While this would be phrased as an ImLC task (given two images 
as input), an interesting surrogate task could be seen in a segmentation 
task assessing the quality of tumor delineation and providing explain-
ability for the results. Metrics Reloaded addresses the general challenge 
of multiple different driving biomedical questions corresponding to 
one dataset pragmatically by generating a recommendation separately 
for each question. The same holds true for multi-label problems, for 
example, when multiple different types of abnormalities potentially 
co-occur in the same image/patient.

Another key challenge we faced was the validation of our frame-
work due to the lack of ground truth ‘best metrics’ to be applied for 
a given use case. Our solution builds upon three pillars. Firstly, we 
adopted established consensus building approaches utilized for 
developing widely used guidelines such as CONSORT21, TRIPOD22 or 
STARD23). Secondly, we challenged our initial recommendation frame-
work by acquiring feedback via a social media campaign. Finally, we 
instantiated the final framework to a range of different biological and 
medical use cases. Our approach showcases the benefit of crowdsourc-
ing as a means of expanding the horizon beyond the knowledge pecu-
liar to specific scientific communities. The most prominent change 
effected in response to the social media feedback was the inclusion of 
the aforementioned EC, a powerful metric from the speech recognition 
community. Furthermore, upon popular demand, we added recom-
mendations on assessing the interpretability of model outputs, now 
captured by subprocess S5 (Extended Data Fig. 5).

After many highly controversial debates, the consortium ulti-
mately converged on a consensus recommendation, as indicated by 
the high agreement in the final Delphi process (median agreement 
with the subprocesses: 93%). While some subprocesses (S1, S7 and S8) 
were unanimously agreed on without a single negative vote, several 
issues were raised by individual researchers. While most of them were 
minor (for example, concerning wording), a major debate revolved 
around calibration metrics. Some members, for example, questioned 
the value of stand-alone calibration metrics altogether. The reason for 
this view is the critically important misconception that the predicted 
class scores of a well-calibrated model express the true posterior prob-
ability of an input belonging to a certain class33—for example, a patient’s 
risk for a certain condition based on an image. As this is not the case, 
several researchers argued for basing calibration assessment solely on 
proper scoring rules (such as the Brier score), which assess the qual-
ity of the posteriors better than the stand-alone calibration metrics. 
We have addressed all these considerations in our recommendation 
framework including a detailed rationale for our recommendations 
(Supplementary Note 2.6).

While we believe our framework covers the vast majority of bio-
medical image analysis use cases, suggesting a comprehensive set of 
metrics for every possible biomedical problem may be out of its scope. 
The focus of our framework lies in correcting poor practices related to 
the selection of common metrics. However, in some use cases, common 

reference-based metrics—as a matter of principle —be unsuitable.  
In fact, the use of application-specific metrics may be required in some 
cases. A prominent example are InS problems in which the matching of 
reference and predicted instances is infeasible, causing overlap-based 
localization criteria to fail. Metrics such as the Rand index34 and vari-
ation of information35 address this issue by avoiding one-to-one cor-
respondence between predicted and reference instances. To make our 
framework applicable to such specific use cases, we integrated the 
step of choosing application-specific metrics in the main workflow 
(Fig. 2). Examples of such application-specific metrics can be found 
in related work36,37.

Metrics Reloaded primarily provides guidance for the selection 
of metrics that measure some notion of the ‘correctness’ of an algo-
rithm’s predictions on a set of test cases. It should be noted that holistic 
algorithm performance assessment also includes other aspects. One 
of them is robustness. For example, the accuracy of an algorithm for 
detecting disease in medical scans should ideally be the same across 
different hospitals that may use different acquisition protocols or scan-
ners from different manufacturers. Recent work, however, shows that 
even the exact same models with nearly identical test set performance 
in terms of predictive accuracy may behave very differently on data 
from different distributions38.

Reliability is another important algorithmic property to be taken 
into account during validation. A reliable algorithm should have 
the ability to communicate its confidence and raise a flag when the 
uncertainty is high and the prediction should be discarded39. For 
calibrated models, this can be achieved via the predicted class scores, 
although other methods based on dedicated model outputs trained 
to express the confidence or on density estimation techniques are 
similarly popular. Importantly, an algorithm with reliable uncertainty 
estimates or increased robustness to distribution shift might not 
always be the best performing in terms of predictive performance40. 
For safe use of classification systems in practice, careful balancing 
of the trade-off between robustness and reliability over accuracy 
might be necessary.

So far, Metrics Reloaded focuses on common reference-based 
methods that compare model outputs to corresponding reference 
annotations. We made this design choice due to our hypothesis that 
reference-based metrics can be chosen in a modality-agnostic and 
application-agnostic manner using the concept of problem fingerprint-
ing. As indicated by the step of choosing potential non-reference-based 
metrics (Fig. 2), however, it should be noted that validation and evalu-
ation of algorithms should go far beyond purely technical perfor-
mance41,42. In this context, Jannin introduced the global concept of 
‘responsible research’ to encompass all possible high-level assessment 
aspects of a digital technology43, including environmental, ethical, 
economic, social and societal aspects. For example, there are increas-
ing efforts specifically devoted to the estimation of energy consump-
tion and greenhouse gas emission of ML algorithms44–46. For these 
considerations, we refer the reader to available tools such as the Green 
Algorithms calculator47 or Carbontracker48.

It must further be noted that while Metrics Reloaded places a 
focus on the selection of metrics, adequate application is also impor-
tant. Detailed failure case analysis49 and performance assessment on 
relevant subgroups, for example, have been highlighted as critical 
components for better understanding when and where an algorithm 
may fail50,51. Given that learning-based algorithms rely on the availability 
of historical datasets for training, there is a real risk that any existing 
biases in the data may be picked up and replicated or even exacerbated 
when an algorithm makes predictions52,53. This is of particular concern 
in the context of systemic biases in healthcare, such as the scarcity of 
representative data from underserved populations and often higher 
error rates in diagnostic labels in particular subgroups54,55. Relevant 
meta information such as patient demographics, including biologi-
cal sex and ethnicity, needs to be accessible for the test sets such that 
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potentially disparate performance across subgroups can be detected56. 
Here, it is important to make use of adequate aggregations over the 
validation metrics as disparities in minority groups might otherwise 
be missed.

Finally, it must be noted that our framework addresses metric 
choice in the context of technical validation of biomedical algorithms. 
For translation of an algorithm into, for example, clinical routine, this 
validation may be followed by a (clinical) validation step assessing 
its performance compared to conventional, non-algorithm-based 
care according to patient-related outcome measures, such as overall 
survival57.

A key remaining challenge for Metric Reloaded is its dissemination 
such that it will substantially contribute to raising the quality of bio-
medical imaging research. To encourage widespread adherence to new 
standards, entry barriers should be as low as possible. While the frame-
work with its vast number of subprocesses may seem very complex at 
first, it is important to note that from a user perspective only a fraction 
of the framework is relevant for a given task, making the framework 
more tangible. This is notably illustrated by the Metric Reloaded online 
tool, which substantially simplifies the metric selection procedure. 
As is common in scientific guideline and recommendation develop-
ment, we intend to regularly update our framework to reflect current 
developments in the field, such as the inclusion of new metrics or 
biomedical use cases. This is intended to include an expansion of the 
framework’s scope to further problem categories, such as regression 
and reconstruction. To accommodate future developments in a fast 
and efficient manner, we envision our consortium building consensus 
through accelerated Delphi rounds organized by the Metric Reloaded 
core team. Once consensus is obtained, changes will be implemented 
in both the framework and online tool and highlighted so that users 
can easily identify changes to the previous version, which will ensure 
full transparency and comparability of results. In this way, we envision 
the Metrics Reloaded framework and online tool as a dynamic resource 
reliably reflecting the current state of the art at any given time point in 
the future, for years to come18.

Of note, while the provided recommendations originate from 
the biomedical image analysis community, many aspects generalize 
to imaging research as a whole. Particularly, the recommendations 
derived for individual fingerprints (for example, implications of class 
imbalance) hold across domains, although it is possible that for differ-
ent domains the existing fingerprints would need to be complemented 
by further features that this community is not aware of.

In conclusion, the Metrics Reloaded framework provides biomedi-
cal image analysis researchers with systematic guidance on choosing 
validation metrics across different imaging tasks in a problem-aware 
manner. Through its reliance on methodology that can be general-
ized, we envision the Metrics Reloaded framework to spark a scientific 
debate and hopefully lead to similar efforts being undertaken in other 
areas of imaging research, thereby raising research quality on a much 
larger scale than originally anticipated. In this context, our framework 
and the process by which it was developed could serve as a blueprint 
for broader efforts aimed at providing reliable recommendations and 
enforcing adherence to good practices in imaging research.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
No data were used in this study.

Code availability
We provide reference implementations for all Metrics Reloaded met-
rics within the MONAI open-source framework. They are accessible at 
https://github.com/Project-MONAI/MetricsReloaded/.
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Extended Data Fig. 1 | Subprocess S1 for selecting a problem category. The 
Category Mapping maps a given research problem to the appropriate problem 
category with the goal of grouping problems by similarity of validation. The leaf 
nodes represent the categories: image-level classification, object detection, 

instance segmentation, or semantic segmentation. FP2.1 refers to fingerprint 
2.1 (see Fig. SN 1.10). An overview of the symbols used in the process diagram is 
provided in Fig. SN 5.1.
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Extended Data Fig. 2 | Subprocess S2 for selecting multi-class metrics (if any). Applies to: image-level classification (ImLC). In the case of presence of class 
imbalance and no compensation of class imbalance being requested, one should follow the ‘No’ branch. Decision guides are provided in Supplementary Note 2.7.1. A 
detailed description of the subprocess is given in Supplementary Note 2.2.
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Extended Data Fig. 3 | Subprocess S3 for selecting a per-class counting metric (if any). Applies to: image-level classification (ImLC), object detection (ObD), and 
instance segmentation (InS). Decision guides are provided in Supplementary Note 2.7.2. A detailed description of the subprocess is given in Supplementary Notes 2.2, 
2.4, and 2.5.
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Extended Data Fig. 4 | Subprocess S4 for selecting a multi-threshold metric (if any). Applies to: image-level classification (ImLC), object detection (ObD), and 
instance segmentation (InS). Decision guides are provided in Supplementary Note 2.7.3. A detailed description of the subprocess is given in Supplementary Notes 2.2, 
2.4, and 2.5.

http://www.nature.com/naturemethods


Nature Methods

Perspective https://doi.org/10.1038/s41592-023-02151-z

Extended Data Fig. 5 | Subprocess S5 for selecting a calibration metric  
(if any). Applies to: image-level classification (ImLC). Decision guides are 
provided in Supplementary Note 2.7.4. A detailed description of the subprocess is 

given in Supplementary Note 2.6. Further suggested calibration metrics include 
the calibration loss74, calibration slope46, Expected Calibration Index (ECI)24 and 
Observed:Expected ratio (O:E ratio)49.
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Extended Data Fig. 6 | Subprocess S6 for selecting overlap-based segmentation metrics (if any). Applies to: semantic segmentation (SemS) and instance 
segmentation (InS). Decision guides are provided in Supplementary Note 2.7.5. A detailed description of the subprocess is given in Supplementary Notes 2.3 and 2.5.
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Extended Data Fig. 7 | Subprocess S7 for selecting a boundary-based segmentation metric (if any). Applies to: semantic segmentation (SemS) and instance 
segmentation (InS). Decision guides are provided in Supplementary Note 2.7.6. A detailed description of the subprocess is given in Supplementary Notes 2.3 and 2.5.
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Extended Data Fig. 8 | Subprocess S8 for selecting the localization criterion. Applies to: object detection (ObD) and instance segmentation (InS). Definitions of the 
localization criteria can be found in19. Decision guides are provided in Supplementary Note 2.7.7. A detailed description of the subprocess is given in Supplementary 
Notes 2.4 and 2.5.
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Extended Data Fig. 9 | Subprocess S9 for selecting the assignment strategy. Applies to: object detection (ObD) and instance segmentation (InS). Assignment 
strategies are defined in19. Decision guides are provided in Supplementary Note 2.7.8. A detailed description of the subprocess is given in Supplementary Notes  
2.4 and 2.5.
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Extended Data Table 1 | Recommendations for metric application addressing the pitfalls collected in ref. 19

Recommendations for metric application addressing the pitfalls collected in ref. 19. The first column comprises all sources of pitfalls captured by the published taxonomy that relate to the 
application of (already selected) metrics. The second column provides the Metrics Reloaded recommendation. The notation FPX.Y refers to a fingerprint item (Supplementary Note 1.3).
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