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The simultaneous measurement of three-dimensional (3D) genome
structure and gene expression of individual cells is critical for

understanding a genome’s structure-function relationship, yet this is
challenging for existing methods. Here we present ‘Linking mRNA to
Chromatin Architecture (LiMCA)’, which jointly profiles the 3D genome and
transcriptome with exceptional sensitivity and from low-input materials.
Combining LiMCA and our high-resolution scATAC-seq assay, METATAC,
we successfully characterized chromatin accessibility, as well as paired

3D genome structures and gene expression information, of individual
developing olfactory sensory neurons. We expanded the repertoire of
known olfactory receptor (OR) enhancers and discovered unexpected

rules of their dynamics: OR genes and their enhancers are most accessible
during early differentiation. Furthermore, we revealed the dynamic spatial
relationship between ORs and enhancers behind stepwise OR expression.

These findings offer valuable insights into how 3D connectivity of ORs
and enhancers dynamically orchestrate the ‘one neuron-one receptor’

selection process.

Three-dimensional (3D) genome organization lays the physical foun-
dation for gene expression and gene regulation' . Understanding
the intricate relationship between genome architecture and gene
expression necessitates the development of advanced techniques to
simultaneously measure these two modalities with high sensitivity
from the same cell” " Existing methods have severe limitations. Cur-
rently, imaging-based methods can only measure a limited number
of genomic loci (1,000-3,660, namely every 1-3 Mb) and transcripts
(70-1,000 genes) and therefore lack a genome-wide view’ . The
published sequencing-based methods, HiRES, had limited sensitivity
(-0.3 million contacts per cell) because genomic DNA was damaged

during reverse transcription, captured only nuclear RNAs because the
cytoplasmwas destroyed during the procedure and only detected the
3’end of the transcript™. Inaddition, HiRES must be performed with a
large number of cells, prohibiting analysis of low-input samples.

Herewereport Linking mRNA to Chromatin Architecture (LiMCA),
asequencing-based method that simultaneously profiles single-cell 3D
genome structure and full-length transcriptinformation. In particular,
LiMCA physically separates the nucleus and the cytoplasm of the same
cell for measuring the 3D genome and transcriptome, respectively,
and therefore does not compromise the detection sensitivity and
performance of each modality.
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To demonstrate the biological insights that LIMCA can generate,
we applied LiIMCA to the mouse olfactory system. Understanding how
the‘oneneuron-onereceptor’ paradigmis established during olfactory
sensory neuron (OSN) development is a long-standing pursuit of the
field. There are more than1,000 olfactoryreceptor (OR) genes, which
are presented as gene clusters distributed across 18 chromosomes
in the mouse genome®; however, each mature OSN expresses only
one OR gene out of such alarge repertoire in amonoallelic and seem-
ingly stochastic manner™. Recent bulk and single-cell chromosome
conformation capture (3C/Hi-C) studies showed that OSNs establish
strong and specific inter-chromosomalinteractions between OR gene
clusters, which are heterochromatically modified to assure the com-
pletesilencing of OR genes™'°. Such OR-OR gene cluster interactions
bring multi-chromosomal OR enhancers (termed the ‘Greek Islands’
(Gls)) together to formasuper-enhancer hub™*, which was proposed
to activate the singular chosen OR gene, forging the ‘silence all and
activate one’ model.

However, this model fails to address several unresolved issues.
First, during OSN development, progenitors transiently express ran-
dom sets of OR genes'*?°. Additionally, the onset of multigenic OR
expression precedes the formation of repressive OR-OR gene compart-
ments. Furthermore, each OSN forms multiple enhancer aggregates,
which meansthat simply being associated with enhancer hubsis insuf-
ficienttofully account for the singular OR gene. Unfortunately, existing
bulk and single-cell techniques are unable to resolve these mysteries
duetothelack of OR expressioninformation and aninability toisolate
apopulation expressing arandomset of OR genes. Ideally, atechnique
that can simultaneously measure OR gene expression and 3D genome
organizationin the same cells would be necessary to elucidate how OR
gene selection processis initiated and proceeded.

Using LIMCA and in combination with single-cell chromatinacces-
sibility and a gene expression landscape of the developing OSNs, we
gained an unprecedented view of how the accessibility of OR enhanc-
ersis regulated and how the association with multi-chromosomal
enhancers regulates the stepwise OR gene selection from multigenic
OR activation to singular OR gene determination.

Results

Development of LIMCA

To enable simultaneous measurement of transcriptional activity
and chromatin architecture in the same cell with high sensitivity, we
employed astrategy utilizing physical separation of cytoplasm (mRNA)
and nucleus (chromatin). This procedure has been used in single-cell
multi-omics technologies” . Specifically, the separated cytoplasm
was subjected to Smart-seq2 amplification for transcriptome analy-
sis?*, while the nucleus was proceeded to conventional chromosome
conformation capture procedure” thatincluded crosslinking, restric-
tionenzyme digestion and proximity ligation (Fig. 1aand Methods). To
furtherincrease chromatin contact detectioninsingle cells, we adopted
our high-coverage transposon-based whole-genome amplification
(WGA) method, META?, to amplify the resulting nucleus. Then the
messenger RNA library and 3Clibrary were sequenced and integrated
to obtain both modalities (Fig. 1a).

To evaluate whether LiMCA precisely captures high-order
genome structure, we performed a proof-of-concept experiment on
GM12878, a well-studied female human lymphoblastoid cell line with
an extensively characterized genome structure?. LIMCA detected a
median of 1.08 million unique chromatin contacts per cell (n =220,
s.d.=470,000, minimum =130,000, maximum =2.79 million) (Sup-
plementary Table 1), which is comparable to our previously devel-
oped high-sensitivity single-cell Hi-C method, Dip-C* (Extended Data
Fig.1a). The composition of contacts is similar to Dip-C, with agreater
proportion of short-range (<20 kb) and lower long-range (>20 kb)
intra-chromosomal contacts. Ensemble chromatininteraction profiles
(merged from 220 individual cells, referred to as ensemble LiIMCA)

exhibited high concordance with abulkin situ Hi-C contact map across
various resolutions ranging from compartments to topologically
associating domains and chromatin loops (Fig. 1b,c and Extended
DataFig.1d-h). Furthermore, the gene expression profile of ensemble
LiMCA displayed a high correlation with bulk RNA-seq data gener-
ated from the same cell line (Fig. 1d). Therefore, we concluded that
LiMCA faithfully captures both the genome architecture and gene
expression.

To examine the robustness of LIMCA, we further applied it to
three different human cell lines (K562, eHAP and BJ) as well as mouse
olfactory epithelium. This additional cell line dataset further validated
ourtechnique (Extended DataFig.liand Extended DataFig. 2a). Subse-
quently, we performed acomprehensive comparative analysis against
published datasets, including HiRES™ (single-cell joint Hi-C-RNA),
Dip-C'®%%?% (scHi-C) and single-cell RNA sequencing (scRNA-seq) data.
Our results demonstrated that LIMCA detected a substantially higher
number (2-5folds) of contacts than HiRES and tissue datasets obtained
through Dip-C (Fig. 1e, left). Furthermore, LIMCA exhibited a compa-
rable number of genes detected when compared to Smart-seq, while
surpassing the number of genes identified by HiRES and droplet-based
scRNA-seqmethods (Fig. 1e, right, and Extended Data Fig. 1c). Notably,
LiMCA not only offers enhanced sensitivity but also provides full-length
transcript information, in contrast to HiRES, which solely captured
the 3’ end of genes. Therefore, LIMCA is capable of measuring both
chromatin interactions and gene expression at high sensitivity and
consistently performs well across diverse cell types.

We then performed clustering based on chromatin interaction
(scA/Bvalue; Methods) or gene expression profiles offered by LIMCA
toevaluateitsaccuracy indistinguishing cell types. We found that both
modalities clearly separated the four cell types (Fig. 1f and Extended
Data Fig. 2b). To confirm accuracy, we calculated scA/B values for
cell-type-specific marker genes, which showed specific enrichment
incorresponding cell types (Extended DataFig. 2¢,d), consistent with
our previous work?®. Hi-C ‘structural typing’ identified an additional
cluster containing cells from all four cell types, which belongs to the
metaphase (Extended Data Fig. 2e-g). This is in line with the knowl-
edge that the chromosome undergoes a homogeneous folding state
during mitosis irrespective of cell type?. Furthermore, LIMCA accu-
rately detected cell-type-specific chromatin loops (Extended Data
Fig. 2h,i). Thus, we established a single-cell multi-omics assay that
simultaneously measures genome-wide chromatin interactions and
transcriptome-wide gene expression in hundreds of single cells.

Relationship between gene expressionand 3D genome
structure

Withour previously developed Dip-C algorithm?®, we showed that about
31% of GM12878 cells (68 of 220, with root-mean-square-deviation
(r.m.s.d.) <1.5) and 52% of eHAP cells (22 of 42, haploid cells) faithfully
yielded 3D genome structures at a high resolution of 20 kb (Fig. 1a,
Extended Data Fig. 1j and Methods). The pairwise 3D distance matrix
obtained from individual single-cell structures exhibited a strong
agreement with the ensemble and bulk contact maps (Extended Data
Fig.3a). With such high-resolution structures, we were able to pinpoint
the spatial position of expressed genes in the nucleus.

Toinvestigate the relationship between gene expression and chro-
matin structure, we focused on the NFKBI gene, a critical transcrip-
tion factor for B cell development and function. We sorted GM12878
cellsinto two groups based on NFKB1 expression level and compared
ensemble contact maps. Our findings revealed that highly expressed
NFKBl1interacts more frequently with an upstream enhancer (Fig. 1g).
This observation was further validated by downsample and random
sample control analysis (Extended Data Fig. 3c-h). Similar results were
observed for other genes analyzed (Extended Data Fig. 3i,j), demon-
strating that gene expression dynamics are associated with changes
in chromatin structure.

Nature Methods | Volume 21| June 2024 | 974-982

975


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-024-02239-0

Cell 100 . Cell 100
Smart-seq2 Gene expression
Cytoplasm . A—raAa > "\/—¢¢¢¢¢\» \ggg/\,—TW"\ antact map K g
/ RNA RT Template switch 3 ¥ " _ Expresed
ok 4k ¥ genes
o —_— log,,(FPKM +1)
-~ *g " The =3
\ @ | 4
, f Vs o CpG frequency
I/ I/ .) / ,)\. £ 1 ‘p 0..5% mmm— 2%
Nuclel , \ { ’ = W chr2 @
, (.) ! &2 . 5 % ,
Crossllnklng Digestion Ligation Chr ‘ ""
1 - XY
b c d A
chr1 (500 kb) chrl: 45-70 Mb (50 kb)  chrl: 66-68.5 Mb (5 kb) A/B compartment 10 Gene expression 200
SE 10 Ao I 9 Pearson's r = 0.95 / 5 Pearson's r = 0.89 7
= P
< |’ Q 8F oo - 150 &
g 3 = 6 g— % é g—
¥ 0 P 3
=1 * 3 e =¥ 100 @
° ° a9 2& °
Q o o = 2 o
SR = 50 2
g g 23 2814 2
2 st
i T
i ‘ ‘ ‘ 0 o= J%o
< 4 =30 -1 (6] 1 ] 1 2 3 4 5
Hi-C (Rao et al. 2014) Ensemble LIMCA Ensemble LIMCA
log,o(FPKM + 1)
e f !
—_ Gene expression 3C (scA/B values)
s 12,000 -| . 3
o 24 @ R 4. .
= 2 143 s
5 E g 8,000 —-i ;0 N
o2 i = " . » -
25 1 5} 5 ¥ N
) S 4,000 - H - R R
c zZ $ -~ o
8 B =
0~ oY =) ﬂﬁ
X R A 0N & ADA B
3 D EPF PV F B G P W E F an
& Q\‘L P& &L e o)
o I & < \2\‘0 IS M phase
LiMCA HIRES Dip-C LiMCA HIiRES Smart- 10x UMAP_1 UMAP_1
seq2
h i
ATAC «
HaKarac | NFKB1 400 Cells } Cell 83
0.03 A — Cells above median - Expressed genes I P=22x1076
a > — Cells below median ~- Random control i .
s Ewm = Z 3009 » 750 i
5 =9 S 0024 «5.58 @ = |
) T < o s S =]
N o] @ 1.27 (i} - o | Expressed genes
S g4 L T 200 - 8 500 - |
T a ~ - 0] . o i Random control
o= 25| 8 0.01- © S |
e 2 g o o 100 4 & 250 |
< ) Q |
¥ 28 © od. o |
6 8 3 0 T T T T T T T T T L T T T T
. R -10 o] 10 20 30 [0] 0.5 1.0 1.5 10 20 30 20 50
Cells below medium Position Distance to nuclear center, Gene number with 300 nm
expression (n =111) normalized

Fig.1|Development of LIMCA. a, Left, schematics of the LIMCA procedure. Right,
the 20-kbresolution 3D genome structure of a representative cell; expressed genes
are projected. RT, reverse transcription. b, Comparison of ensemble LiIMCA and
bulk Hi-C. The maximum intensity is indicated. ¢, Scatter-plot of the first eigen
value between ensemble LiIMCA and bulk Hi-C at 100-kb resolution. d, Scatter-plot
of expression level (FPKM) between bulk RNA-seq (ENCODE ENCFF897XES) and
combined expression profile of LIMCA. e, The median contact number of LIMCA
(GM12878,1.08 million, n=220;K562,1.14 million, n = 28; eHAP,1.30 million,
n=42;B]J,678,000, n=32; olfactory, 652,000, n = 411) (left) is compared to HiRES
(brain, 304,000, n =399; embryo, 264,500, n =300 (random sampled)) and Dip-C
(GM12878,1.45 million, n =14; brain, 333,000, n = 300 (random sampled); olfactory,
252,000, n=409). The median detected gene number of LIMCA (GM12878, 7,954,
n=221;K562,9,806,n = 63;eHAP, 8,588, n =42; BJ, 8,911, n = 63; olfactory, 4,528,
n=411) (right) is compared to HiRES (brain, 6,966, n =399; embryo, 4,058,n =300

(random sampled)), Smart-seq2 (HEK293T, 11,169, n = 35; MEF,10,173,n =7) and
10x chromium (olfactory, 3,556, n =300 (random sampled of this study); GM12878,
2,754,n=100 (random sampled)). f, Uniform Manifold Approximation and
Projection (UMAP) embedding of four profiled cell lines based on gene expression
profiles (left) or single-cell A/B values (right). The same cells are connected with
lines. g, Contact matrices (left) around NFKBI, representing ensemble Hi-C

data of NFKB1-high group (top left) and NFKB1-low (bottom right). Normalized
contact frequency plot (right), centered at the NFKB1upstream enhancer. The
green and yellow dot/line indicates the position of the candidate enhancer and

the transcription startsite (TSS) and the transcription termination site (TTS) of
NFKBL, respectively. h, Radial distribution of gene density; nucleus s sliced to 0.01
thickness. The error bands represent the 95% confidence interval (CI). i, Histograms
show the distribution of cluster size within 300 nm for expressed genes and
random control. Data were analyzed by a two-sided Mann-Whitney U-test.

The positioning of genes within the nucleus, such as the radial
positioning and the association with nuclear landmarks, is known
to influence their expression®’. To examine how gene positioning

influences gene expressionin single cells, we explored the spatial dis-
tribution of expressed genes within the nucleus. Our analysis revealed
that expressed genes have a higher density in the nuclear interior and
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Fig. 2| Multi-omics profiling of the developing OSNs at single-cell resolution.

a, Schematics of overall experimental design. b, Summary of number of single

cells of the multimodal atlas at each developmental stage. ND, not done. ¢, UMAP
visualization of single cells based on gene expression (left) and chromatin structure
(scA/B compartment values) (right) of the LIMCA multi-omics dataset.d, The 3D
positioning of OR genes and enhancersin a progenitor cell expressing multiple
ORs. Enhancers and ORs are shown as spheres with radii of 0.9 and 0.27 particle
radii (54 and 18 nm), respectively. Expressed ORs were displayed with radii of 1.2
particle radii (72 nm). e, Single-cell chromatin accessibility atlas of developing MOE.
HBC, horizontal basal cell. OEC, olfactory ensheathing cell; OB, olfactory bulb; SUS,
sustentacular cell; MV, microvillous cells. f, Circos plot showing 27 newly identified
and 63 known OR enhancers; five sectors frominterior to periphery were ensemble

L e
(0] 10 20 30

Co-embedding pseudotime

METATAC signals of INP,iOSN and mOSN, and Lhx2 and Ebf ChIP-seq track of mOSN
from elsewhere®. g, Cumulative curves of score matching Lhx2/Ebf composite
motif for Gls, newly identified OR enhancers, other ATAC peaks within OR clusters
and ATAC peaks outside of OR clusters. A two-tailed Kolmogorov-Smirnov test was
performed. h, Alignment of composite motif sequences from candidate enhancers
(top) and known enhancers (bottom). i, The normalized chromatin accessibility
dynamics of OR enhancers and OR genes along OSN differentiation from GBC to
mOSN. j, UMAP shows the co-embedding of METATAC and scRNA-seq data of the
OSN lineage from GBC to mOSN. k, UMAP showing the pseudotime trajectory of the
integrated data. I, Line-plot shows the expression changes of Lhx2, Ebf and Omp,
and chromatin accessibility changes of OR enhancers from GBC to mOSN based on
theintegrated data. The error bands represent 95% CI.

moreneighborsatagiven 3D distance than randomly selected controls
(Fig.1h,iand Extended DataFig. 3k,1). Though population average radial
position negatively correlated with expression level (Extended Data

Fig.30), thisis not observed in single cells (Extended Data Fig. 3m,n).
Notably, our analysis may be confounded by the fact that we could not
distinguish the allele-specific gene expression.
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A multi-omics atlas of the developing OSNs

With our established multi-omics assay, we then sought out to explore
howthe ‘one neuron-onereceptor’ ruleis established. Traditional bulk
assays and imaging-based methods are unable to delineate this process
duetothefactthateach progenitor cell transiently expressesarandom
set of 5-15 OR genes during the progenitor stage'**, followed by asingle
OR gene outcompeting others during OSN maturation; however, our
technique allows for simultaneous probing of both OR gene expression
and 3D chromatin structure, providing an unprecedented insightinto
this complex process.

We created a joint 3D genome and gene expression multi-omics
atlas of the developing OSNs with LIMCA, consisting of 411 cells from
the mouse main olfactory epithelium (MOE) across six time points
(postnatal day 3, 7,14, 28, 60 and 120) (Fig. 2a,b). We obtained an aver-
age of 650,000 unique chromatin contacts per cell (s.d. =298,000,
minimum = 119,000 and maximum = 2.8 million) (Supplementary
Table 2), of which 224 (54%) have high-quality 20-kb resolution 3D
structures (r.m.s.d. <1.5; Supplementary Table 2). For gene expression,
we detected amedian of 4,528 genes per cell (Supplementary Table 2).

Uponembeddingbased on gene expression (Fig.2c), weidentified
four clustersin RNA embedding: non-neuronal, progenitors,immature
OSNs and mature OSNs (Fig. 2c, left,and Extended Data Fig. 4a). When
examining the Hi-C embedding, we observed that the progenitors in
RNA embedding were splitinto two distinct clusters, referred to as pro-
genitorl and progenitor2 (Fig. 2¢, right, and Extended Data Fig. 5a,b).
We further validated the separation of progenitorl and progenitor2 by
integrating our published mouse MOE data’®, excluding the potential
influence of mouse lines or contact numbers (Extended DataFig. 5¢,d).

We observed a continuous trajectory in OSN genesis, from pro-
genitors toimmature OSNs and finally to mature OSNs (Extended Data
Fig. 4c,d). As expected, our LIMCA profiles recapitulated known char-
acteristic chromatinreorganization during OSN maturation, including
gradually increased chromosomalintermingling, OR-OR geneinterac-
tionand enhancer-enhancerinteractions (Extended Data Fig. S5e-i). With
the expression profiles of OR genes, we were able to reveal the spatial
relationship between expressed OR genes and OR enhancers (Fig. 2d).

To comprehensively understand the underpinning chromatin
state of OR enhancers along OSN development, we additionally gener-
ated a single-cell chromatin accessibility and gene expression atlas of
the developing mouse MOE with our high-sensitivity METATAC* and
droplet-based scRNA-seq, consisting of 11,880 cells and 73,577 cells
(Fig. 2e and Extended Data Fig. 8b,c), respectively. We utilized the
scRNA-seq atlas as areference to annotate the cell typesin our METATAC
atlas (Extended Data Fig. 6g). The atlas allowed us to capture the dynam-
ics of chromatin accessibility and gene expression throughout OSN
development. For assay for transposase-accessible chromatin (ATAC),
wedetected amedian of 66,000 ATAC fragments per cell (Extended Data
Fig. 6b),and the gene expressionyielded amedian of 3,346 genes (8,651
unique molecular identifiers (UMIs)) per cell (Extended Data Fig. 8a).

Our datasets validated the changes in cell type composition
between multi-potent progenitor cells and developing OSNs during the
first postnatal month of development (Extended Data Fig. 6e and 8h).
Notably, our dataset precisely recapitulated known cell typesin MOE

and their marker genes (Fig. 2¢, Extended Data Fig. 6¢c-g and Extended
Data Fig. 8b-d). Specifically, both of our single-cell chromatin acces-
sibility and gene expression atlases captured the continuous develop-
mental trajectory of OSNs from globose basal cell (GBC) toimmediate
neuronal precursor (INP), then to immature OSN (iOSN) and mature
OSN (mOSN) (Fig. 2e and Extended Data Fig. 8b). Our high-resolution
single-cell chromatin accessibility atlas offers a new opportunity to
understand the epigenetic regulatory mechanismunderlying multiple
lineage specification of MOE.

Chromatin accessibility dynamics of OR enhancers

Using our high-resolution single-cell chromatin accessibility atlas, we
identified 27 new enhancers (Fig. 2fand Supplementary Table 3) accord-
ing to previous definitions****, which were located within OR gene
clusters, exhibited ATAC peaks in mOSN, co-bound by LHX2 and EBF
(Fig. 2f and Extended Data Fig. 7c-e) and contained the characteristic
composite motif of LHX2 and EBF (Fig. 2g,h). The comprehensive char-
acterization of OR enhancers proves that almost all OR gene clusters
harbor atleast one enhancer, implying the critical role of cis-enhancer
in the regulation of OR gene expression. The absence of identified
enhancers in certain small clusters may be due to the low abundance
of OSNs expressing these specific OR genes.

Wethenanalyzed the chromatin accessibility dynamics of OR genes
and OR enhancers during OSN differentiation. Using our METATAC data-
set, we performed pseudotime analysis to trace the developmental line-
age from the GBC stage to mOSNs (Fig. 2e and Methods). Our findings
revealed that OR genes initially had a closed state at the GBC stage, fol-
lowed by a pervasive accessibility state at the late INP stage, correspond-
ing to multigenic OR expression. During OSN maturation, OR genes
returned toafully inaccessible state (Fig. 2i, bottom), even more closed
than non-OSN cell types (Extended Data Fig. 7b), indicating robust OR
generepression. OR enhancers were completelyinaccessible at GBCsbut
rapidly reached peak accessibility at the late INP stage before decreas-
ingto alower level as OSNs matured to mOSN (Fig. 2i, top). Analysis of
master transcription factors (TFs) of OR enhancers with our single-cell
gene expression atlas showed that Lhx2/Ebfexpression followed similar
dynamics as OR enhancers along OSN development (Extended Data
Fig.8g). Tofurther determine the temporal relationship between Lhx2
expressionand OR-enhancer accessibility, weintegrated METATAC and
scRNA-seqdataby extracting the continuous developmental trajectory
from GBC to mOSN (Fig. 2j, Extended Data Fig. 8i and Methods). The
integrated pseudotime analysis confirmed that Lhx2/Ebf expression
clearly precedes OR-enhancer activation (Fig. 2k,1). These results sug-
gest that the accessibility change of OR enhancers is elicited by LHX2,
consistent with Lhx2knockout eliminating Gl accessibility in mOSNs™.

Overall, our study reveals that LHX2-activated OR enhancers
reach their highest accessibility at the late INP stage, creating a highly
activated environment for OR gene expression and explaining the
multigenic ORactivation at this stage. As OSN maturation, multiple OR
genes initially activated in progenitors are silenced, leaving only one
active ORgene. Atthe sametime, the accessibility of OR genesand OR
enhancers decreases as OSNs further matured, ensuring singular OR
gene expression and silencing of excess ORs in mOSNs.

Fig.3|Stepwise OR determination observed with single-cell joint profiling
of chromatin architecture and gene expression. a, Cells were classified

into three stages based on the total OR expression level and the ratio of OR

with highest expression level of the developing OSNs (progenitor, iOSN and
mOSN). b, The 3D positioning of ORs and enhancers in arepresentative cell at
multigenic OR activation stage with expressed ORs depicted in detail, revealing
that cis-enhancer activates their expression. ¢, Histogram summarizing the
percentage of cis-enhancers and trans-enhancers within 150 nm of expressed
ORs for three OR expression stages. d, The 3D positioning of ORs and enhancers
inarepresentative cell at silencing stage with the dominant and silencing OR
depictedin detail. e, The 3D positioning of ORs and enhancersin arepresentative

cellat singular OR activation stage with the selected OR depicted in detail.

f, Number of enhancers within 300 nm of active dominant OR and second-
highest expressed OR of the same cell (connected with aline). Statistical
significance is labeled. A two-sided Wilcoxon signed-rank test was used.

g, Number of OR enhancers of the largest enhancer aggregate, second-largest
enhancer aggregate and active OR-residing enhancer aggregate of the same
cellwithin 5 particle radii (300 nm) (connected with aline, n =18). A two-sided
Wilcoxon signed-rank test for paired data was used, ***P < 0.01. h, Illustration
showing the stepwise OR gene determinations and their coordination with OR
enhancers, the accessibility of OR enhancers and OR genes, and the expression of
Lhx2 along OSN development is shown below.
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Spatial relationship between active OR genes and enhancers

With the paired 3D genome structure and OR gene expression profiles
within the same cell, we explored the spatial relationship between
ORenhancers and expressed OR genes to understand how OR gene is
activated and selected. The presence of truncated and nonfunctional
OR transcripts necessitates the utilization of full-length transcript

information, a feature uniquely provided by LiIMCA as opposed to
HIiRES. This capability plays a crucial role in accurately discerning
genuine OR gene expression (Extended Data Fig. 9). According to OR
gene expression profiles, we classified developing OSNs (progenitor,
iOSN and mOSN) into three stages (Fig. 3a, Extended Data Fig.10a-cand
Supplementary Table 4): the multigenic OR activation stage (stage 1)
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with multiple lowly expressed OR genes and without dominant ones;
the silencing stage (stage 2) with one dominant OR gene and several
weakly expressed OR genes; and the singular OR determination stage
(stage 3) with only one highly expressed OR gene. We hypothesized that
these three stagesrepresent the stepwise OR gene expression starting
withmultigenic OR activation followed by one OR gene outcompeting
the others and finally becoming the singularly determined one.

We then investigated the 3D connectivity between expressed
OR genes and their enhancers at different stages. For this analysis,
we included the newly identified OR enhancers. First, we focused on
the progenitor stage where the expression of OR genes begins, which
is rarely studied in previous research due to the lack of an available
technique. At the activation stage, we observed that most activated
ORgenes have nearby enhancers (median distance to nearest enhancer
was 2.29 radii of particle), which are predominantly cis-enhancers from
the same chromosome (Fig. 3b,c and Extended Data Fig. 10d). This
is consistent with weak inter-chromosomal (trans) OR gene interac-
tions at this stage. This supports the importance and sufficiency of
cis-enhancers for OR gene activation, preceding the establishment of
inter-chromosomal OR-OR gene cluster interactions. Furthermore,
this conceptis supported by previous reports that deletion of specific
Gls only downregulates the expression of limited numbers of nearby
OR genes belonging to the same OR gene cluster®,

After multigenic OR gene activation, one specific OR gene outcom-
petes other OR genes and becomes the ‘winner’ before achieving sin-
gular OR gene expression. Nevertheless, how the association with Gls
contributes to its dominance remains unclear. When analyzing OSNs
undergoing OR gene silencing (stage 2), we observed that the dominant
ORgenetypically associates withagreater number of proximal enhanc-
ers compared to these OR genes undergoing silencing (Fig. 3d,f and
Extended Data Fig. 10e). Specifically, within a proximity of 150 nm, 11
cellswith the prevailing OR gene associate with more enhancers than
silencing ones versus four cells showing the opposite trend; in the
case of 300 nm, this is 16 cells versus 4 cells. Moreover, our contact
map-based analysis further confirms this finding by illustrating that
the dominant OR gene displays more specific and stronger interactions
with trans-Gls (Extended Data Fig.10i-k). These results suggest that an
increased number of enhancers provide the associated OR gene with
more transcriptional sources, thus contributing to its competitive
advantage. This suggests a potential positive feedback mechanism
betweenenhanced enhancer connectivity and higher expression levels.

Previous bulk 4C/Hi-C study on fluorescence-activated cell sort-
ing (FACS)-purified OSNs expressing a specific OR gene suggests that
the active OR gene interacts frequently with trans- and long-range
enhancers'”*. Single-cell Hi-C on OSNs showed that each OSN harbors
multiple enhancer aggregates and proposed that the active OR gene
presumably residesin the largest enhancer aggregatesaccording tothe
bulk observations'®. To validate whether the finally chosen OR gene is
associated with the largest number of enhancers, we inspected OSNs
expressing asingular OR gene; however, we found that the ultimately
selected OR genes are typically not located in the largest enhancer
aggregates (Fig. 3e,g and Extended Data Fig. 10h). This result refutes
the previous speculation that the finally determined OR gene is linked
tothelargestenhancer aggregate.

Through our investigationinto the regulation of OR gene expres-
sion, we have developed a comprehensive understanding of how OR
enhancers are associated with this process (Fig. 3h). During the GBC
stage, both OR genes and OR enhancers are inaccessible, resulting in
no OR activation. Subsequently, LHX2 and EBF induce the OR enhanc-
ers to become highly accessible, which serve as cis-enhancers and
lead to multigenic OR activation. As this process continues, one OR
gene associates with multiple enhancers to become the dominant
one, while the rest of the OR genes gradually turn off. Ultimately,
only a small set of OR enhancers are retained to support singular OR
gene expression.

Discussion

In this study, we developed a single-cell multi-omics profiling method
thatenables the efficient and accurate measurement of both 3D genome
structure and gene expression. The throughput of this method could
beincreased with the help of anautomated liquid handler or microwell
system equipped with liquid-dispensing capabilities in the future. By
applyingthis assay to the developing OSNs and in combination with the
single-cell chromatinaccessibility and gene expression atlases, we have
comprehensively investigated the regulation of OR expression. We have
gained an unprecedented understanding of the stepwise process that
governs OR gene determination and the dynamic changes in accessibility
of OR enhancers at various stages of OR gene expression. Our multi-omics
dataset provides valuableinsightinto the previously unexplored mecha-
nisms before the establishment of the ‘one neuron-one receptor’ rule.

It remains unclear how OR gene expression occurs during OSN
development. At the progenitor stage, multiple ORs are randomly
activated, giving rise to two potential scenarios. The first scenario
suggests thatallbut one of theactivated OR genes become inactivated.
Alternatively, inthe second scenario, allinitially activated OR genes are
silenced, followed by arandom reactivation process where one specific
ORgeneis chosen for final determination. Our hypothesis holds trueif
thefinally selected OR geneisamong those activated at the progenitor
stage. However, these possibilities cannot be distinguished by cur-
rent studies. This still needs to be explored in future research to fully
understand the mechanism of OR gene determination.

Our finding uncovers that the active OR gene in mOSNs is usually
notsituated withinthe largest enhancer aggregate; however, this obser-
vationdoes not conflict with bulk Hi-C observations that demonstrated
active OR genes interact most frequently with trans- and long-range
cis-enhancers. The limitation of bulk Hi-C experiments is their inability
to capture variability at the single-cell level. Itisimportant to note that
the highest contact frequency with Gls does not necessarily require
that the active OR gene always interacts with the greatest number of
enhancersinindividual cells. Instead, the active OR gene interacts with
alimited number but different sets of enhancersinindividual OSN cells,
which also explains the population-based observations.

To further reconcile why the dominant OR gene does not reside
within the largest enhancer hub, one plausible explanation lies in the
concept of OR‘zone’identity. OR gene selectionisbiased to predeter-
mined sets of OR genes along the dorsoventral axis of MOE, referred
to as ‘zones’ (refs. 37-39). A recent study found that dorsal receptors
formthe strongestinteractionsacross all zones, which are heterochro-
matic*°. To investigate whether the ORs residing within the largest
enhancer hub display abias toward dorsal zone identity, we performed
ananalysis of OR zone identity on stage 2 and stage 3 OSNs harboring
a dominant OR gene. Our findings revealed a significant difference
in zone identity between the dominant OR gene and the OR genes
located within the largest or second-largest enhancer hub (Extended
DataFig.10I).Indeed, thelargest enhancer hub typically encompasses
more dorsal OR genes, which indicates that the largest enhancer hub
tends to beinactive. This result potentially resolves the puzzle of why
theactive OR gene is not situated within the largest enhancer hub.

Previous studies proposed that intergenic OR enhancers facili-
tate specific and strong inter-chromosomal interactions among OR
gene clusters across 18 chromosomes". We observed that both the
ORenhancers and their associated transcription factor, LHX2, exhibit
peak activity during the INP stage. Notably, the inter-chromosomal
contactsbetween OR-ORgene clusters are relatively weak at this stage.
This suggests that additional mechanisms, such as the accumulation
of repressive histone modifications on OR gene clusters during the
maturation of OSNs", as well as their interaction with HP1 proteins,
may govern the compartmentalization of ORs'. Heterochromatic
protein-guided phase separation could be the potential driving force
for the formation of OR gene heterochromatic aggregate, which plays
acentral role in Bcompartment formation*.
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The presence of multiple OR-enhancer aggregates in each OSN
suggests that simply being associated with an OR-enhancer hub is
insufficient for OR activation*~.

Our findings reveal a noteworthy pattern: OR enhancers undergo
reduced accessibility along the course of OSN development, demon-
strating that only asubset of enhancers remain active in mature OSNs.
Consequently, itcan beinferred that only the OR gene interacting with
anactive multi-chromosomal enhancer hubis expressed, while others
remain silenced.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
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Methods

Animals

The study was approved by the Peking University Institutional Animal
Care and Use Committee. All animal experiments were conducted
following their guidelines. F1 hybrids of CAST/Ei] (JAX 000928) x
C57BL/6) (JAX000664) and DBA/2J (JAX 000671) x C57BL/5) were used
inthis study, including LIMCA, METATAC and scRNA-seq experiments;
for detailed sampling, please see Fig. 2b. All animals were cultured in
specific-pathogen-free conditions and housedina12-hlight-dark cycle
with40-60% humidity and room temperature (-25 °C).

Cell types and culture conditions
We performed LiMCA on four human cell lines and the developing
mouse MOE.

K562 (ATCC, CCL-243), chronic myeloid leukemia cells, were
cultured in Iscove’s modified Dulbecco’s medium (Gibco, cat.
no. 12440053) supplemented with 10% fetal bovine serum (FBS)
(Gibco, Thermo Fisher Scientific, cat. no. 10099141) and 1% penicil-
lin/streptomycin (Pen/Strep) (Gibco, Thermo Fisher Scientific, cat.
no.15140148).

GM12878 (Coriell Institute), Blymphoblastoid cells, were grownin
Roswell Park Memorial Institute 1640 Medium (Gibco, Thermo Fisher
Scientific, cat. no. 11875093) supplemented with 15% FBS and 1% Pen/
Strep. GM12878 cells were grown from a single-cell clone.

BJ (ATCC, CRL-2522), fibroblasts, were grown in ATCC-formulated
Eagle’s minimum essential medium (ATCC, cat. no.30-2003) with10%
FBS and 1% Pen/Strep.

eHAP (Cellosaurus), an engineered haploid chronic myeloid leu-
kemia cell line*’, was grown in Iscove’s modified Dulbecco’s medium
(Gibco, cat. no. 12440053) supplemented with 10% FBS and 1% Pen/
Strep and passaged every 2-3 daysat a1:10 to 1:15 dilution.

When used, adherent cells (for example, K562 and eHAP) were
washed twice in 1x PBS and 0.25% Trypsin-EDTA was added (Thermo
Fisher Scientific, cat. no. 25200072) and incubated at 37 °C for 5 min,
then diluted with complete culture medium to stop trypsinization.
Cells were collected by centrifuge at 350g for 5 min and resuspended
in1x PBS. All cell lines were maintained at 37 °C with 5% CO,at arecom-
mended density.

Dissociation of single cells from the mouse olfactory epithelium.
The MOE was dissected and minced into small pieces, then dissoci-
atedintoasingle-cell suspension with the Papain Dissociation System
(Worthington Biochemical, cat. no. LKO03150) at 37 °C for 15 min
duringincubation, withtitration every 5 min withawide-bore pipette
tip according to previously described methods?. Then the suspen-
sionwas filtered with a30-pm strainer (MACS) and washed twice with
ice-cold 1x PBS.

Single-cell ATAC-seq (METATAC)

Single-cell ATAC-seq datasets were generated with our high-sensitivity
METATAC method. METATAC was performed as described in our previ-
ouswork®. We performed METATAC on mouse MOE at four time points
duringthefirst postnatalmonth, day 3, day 7, day 14 and day 28. In brief,
dissociated single cells were stained with 7-AAD (eBioscience, cat. no.
00-6993-50), then FACS was used to sort viable cells. The FACS gating
strategy is indicated in Extended Data Fig. 6a. Cells were counted and
50,000 cells were taken as input. The nuclei were extracted with 50 pl
ATAC lysis buffer (10 mM Tris-HCI, pH 7.5,10 mM NacCl, 3 mM MgCl,,
0.01% digitonin, 0.1% Tween-20 and 0.1% IGEPAL-CA630) by incubat-
ing onice for 5 min and then they were bulk transposed with META
transposome (12.5 pl 2x TD buffer from Illumina Nextera kit, 10 pl 1x
PBS (pH 7.4), 0.25 pl 1% digitonin, 0.25 pl 10% Tween and 2 pl 1.25 uM
META transposome), then the transposed nuclei were sorted onto
96-well plates. The sorted nuclei were stored at =80 °C or proceeded
to amplification.

Droplet scRNA-seq

A scRNA-seq library was prepared according to the 10x Genomics
guidance using the Single-cell Gene Expression 5 RNA-seq kit v.1.1
(CG000331_ChromiumNextGEMSingleCell5-v2_UserGuide_ReVE). In
brief, a dissociated single-cell suspension was stained with 7-AAD, then
subjected to flow cytometry to sort viable cells. We used about 40,000
cellsasinput for each reaction. A total of three 10x runs were generated.
For the P4-P7 sample, cells from mice at postnatal day 4 and postnatal
day7were pooledtogether toload on the same channel. For P14 and P28
samples, cells were from mice at postnatal day 14 and day 28, respec-
tively. One male and one female mouse were used at each time point.

LiMCA protocol

Our method was based on nucleus-cytoplasm physical separation,
such as Trio-seq”. The nucleus was submitted to chromosome con-
formation capture processing and the cytoplasm mRNA was amplified
according to the Smart-seq2 procedure®. A detailed step-by-step
protocolis presented elsewhere**.

Single-cell nucleus-cytoplasm separation. In brief, viable cells
were picked into a single tube containing 7 pl soft cell lysis buffer
(25 mM Tris, pH 8.3, 30 mM NaCl, 0.45% IGEPAL-CA630 and 1 U pl™
SUPERaseln), incubated on ice for 30 min, followed by vortexing for
1 min. Samples were centrifuged at 500g for 5 min at 4 °C, then 5 pl
supernatant was carefully placed into a new tube. The supernatant
was used for Smart-seq2 reverse transcription and amplification*. The
nuclei were used for chromosome conformation capture.

Cytoplasm Smart-seq2 procedure. Inbrief,1.25 pl oligo-dT-dNTP mix
(1M oligo-dT30VN and 2 mM dNTP mix) was incubated at 72 °C for
5min, thenincubated at 4 °C for 5min. Then, 7 pl reverse transcription
mix (1x SSHIfirst-strand buffer,1U pI™ RNase inhibitor, 10 U ul* SSIIRTase,
1mMGTP, 5 mM dithiothreitol, 1 M betaine, 6 mM MgCl,and 1 pM tem-
plate switch oligonucleotide) was added, incubated at 42 °C for 90 min,
then, tencycles of 50 °C for2 minand 42 °C for 2 min, followed by 72 °C for
5 min. After reverse transcription, 14.75 pl amplification mix (14 pl KAPA
HiFiHotstart mix, 0.28 110 pMISPCR primer and 0.47 plnuclease-free
water) was added to eachtube andincubated at 98 °Cfor 3 min, followed
by 21cyclesof 98 °Cfor20s, 65 °C for 30 sand 72 °C for 4 min, followed
by 72 °C for 5 min. Samples were purified with 0.7x AMPure XP beads.

Single-nucleus chromosome conformation capture. We added
8 ul 2.5% paraformaldehyde (EMS, 15714-S) to the remaining 2-pl pel-
let (containing the nucleus), vortexed to resuspend, incubated at
room temperature for 10 min to fix nuclei, then added 10 pl 0.25M
glycine supplemented with 0.2 pl magnetic beads (Invitrogen, 65011)
to quench. Samples were centrifuged at 500gfor 5 minat4 °Cand 17 pl
supernatant was discarded. We added 17 pl Hi-C lysis (10 mM Tris, pH
8.0,10 mM NaCland 0.2% IGEPAL-CA630, supplemented with protease
inhibitor) without incubation. Following centrifugation at 500g for
Sminat4 °C,wediscarded17 pl supernatant, leaving 3 pul. Weadded 2 pl
0.75% SDS to each tube (final 0.3%), vortexed to resuspend, incubated
at 62 °C for 10 min, then added 5 pl 4% Triton X-100 and incubated at
37 °Cfor15 minto quench. We added 10 pl digestion mix (2x rCutSmart
bufferand4 U pl™ NIAIII) and incubated it at 37 °C for 2 hwith rotation.
Following centrifugation at 500g for 5 min at 4 °C, we discarded 17 pl
supernatant. We added 17 pl 1x T4 buffer, then following centrifuga-
tion at 500g for 5 min at 4 °C, we, again, discarded 17 pl supernatant.
Thenwe added 17 pl ligation mix (1x T4 buffer containing 10 U pl™ T4
ligase) and incubated it at room temperature for 2.5 h with rotation.
Following centrifugation at 500g for 5 min at 4 °C, we discarded 18 pl
supernatant. We then added 2 pl cell lysis buffer (20 mM Tris, pH 8.0,
40 mM NaCl, 30 mMdithiothreitol,2 mMEDTA, 0.2% Triton X-100 and
3 mg ml™ QP). Samples were incubated at 50 °Cfor1h, 65 °Cforlhand
70 °C for 15 min. After lysis, cells were stored at =80 °C.
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Single-cell WGA. Single cellswere amplified with our transposon-based
state-of-the-art WGA method, META (Tn5 transposase (Vazyme,
S111-01)), as previously described'®*. In this study, we use 20 META
tags®.

Library construction. The complementary DNA amplicons were quan-
tified, taking 1-5 ng as input for Nextera Tn5 (Vazyme, TD502) tagmen-
tation and library preparation. Cells were pooled for purification and
first purified with 0.6x SPRIbeads, then purified with 0.2x SPRIbeads.
Thesequenced gDNA and RNA datafromthe same cellsareintegrated
based on experimental labels.

Sequencing

METATAC libraries were sequenced with paired-end 2 x 150 bp on Illu-
mina Novaseq, sequenced at 9 Gb per 96-well plate. LiIMCA libraries
were sequenced with paired-end 2 x 150 bp on Illumina HiSeq x10 or
Novaseq, sequenced at 3-6 Gb for gDNA and 0.2-0.6 Gb for cDNA
per cell.

Published data
Phased single-nucleotide polymorphism (SNP) files were downloaded
from the Sanger Institute Mouse Genomes Project (‘mgp.v5.merged.
snps_all.dbSNP142.vcf.gz’). Bulk Hi-C or Micro-C was taken from the
4DN Data Portal (4DNFIXP4QGS5B for GM12878, 4DNFIB59T7NN for
HFFc6,4DNFINSKEZND for HAP1,4DNFI1ISUHVRO for K562, 4DNFI1T-
BYKV3 for GBCs, 4DNFICUQIN7S for INP, 4DNFIUH9FJR6 for mOSN,
4DNFISAFARSZ for mOSN (Olfr1507) and 4DNFIB5G24G6 for mOSNs
(Olfr17)). Bulk RNA-seq data of GM12878 were downloaded from
ENCODE under accession no. ENCFF897XES.

Lhx2/Ebf ChIP-seq data and bulk ATAC-seq data of mOSNs
were taken from the Gene Expression Omnibus under accession no.
GSE93570 (ref. 33).

METATAC analysis

METATAC data preprocessing. METATAC data were processed as
described previously®. Inbrief, cellbarcodes and META sequences were
identified for each pair of reads using a custom script. Reads fromeach
cellweresplitaccordingtotheir barcodes. Adaptors were then trimmed
using cutadapt (v.4.0) with parameters-e 0.22-a CTGTCTCTTATACA-
CATCT followed by parameters ‘-e 0.22 -g AGATGTGTATAAGAGACAG..
Cleaned reads were then mapped to the mm10 (GRCm38) reference
genome using bowtie2 (v.2.3.4.3) with parameters ‘-X 2,000-local-
mm-no-discordant-no-mixed’. Duplicated reads were removed using
customscriptaccordingto both their mapped location onthe genome
and META tags. Mapped paired reads were transformed into fragments
and a bias of ‘+4’ or ‘=5’ was added to each end of each fragment to
center the Tn5insertion sites.

Fragments from all cells were then integrated. Fragments that
may have arisen from contamination were identified and removed
by a custom script as described previously®. The decontaminated
fragments were then subjected to R (v.4.1.0) package ArchR (v.1.0.2)
for quality control (QC). TSS enrichment scores and doublet scores
of each cell were calculated using the default parameters of ArchR.
Cells meeting any of the following conditions were considered to be of
low quality and were excluded from downstream analyses: number of
aligned reads <5 x 10* or >1 x 10%; ratio of aligned reads <0.85; number
of fragments <3.16 x 10° or >3.16 x 10°; ratio of contaminated fragments
>0.6; mitochondrial reads >5%; TSS enrichment score <5; promoter
fragments <0.1; and doublet score >10.

METATAC cell embedding and clustering. Processed METATAC
fragments after QC were analyzed using ArchR. First, gene activities
were calculated using the addGeneScoreMatrix function with GEN-
CODE v.M25 annotation of mm10 genome. Iterative Latent Semantic
Indexing was performed with clustering parameters ‘resolution=0.2,

sampleCells =10,000, n.start =10". UMAP embedding was calculated
with parameters ‘nNeighbors =30, minDist = 0.5 Then, cells were
clustered (addClusters) with parameters ‘maxCluster = 35, resolu-
tion = 0.8 The cell type of each cluster was annotated manually with
the help of the Enrichr database (https://doi.org/10.1093/nar/gkw377)
according to their marker genes calculated by the getMarkerFeatures
function with default parameters. Cell type-specific ATAC peaks were
identified using addReproduciblePeakSet function of ArchR with
macs2 (v.2.2.7.1). Weidentified the marker peaks for cell types of inter-
est, including HBCs, GBCs, early/late INPs and immature/mature OSNs,
using the getMarkerFeatures function on ‘PeakMatrix’, and the enriched
TF-binding motifsin the corresponding marker peaks were identified
using the peakAnnoEnrichment function.

Integration of METATAC and scRNA-seq profiles. We used the Seurat
CCA-based algorithm to integrate the METATAC and 10x scRNA-seq
data of MOE. According to the cell typing of previous single-assay
analyses, we used GBCs, early/late INPs, iOSNs and mOSNs from the
METATAC dataset, and the same group of cells as those used in
scRNA-seq pseudotime analysis from the scRNA-seq dataset. ATAC
fragments of these cells and the ArchR peaks associated with these
cell types were extracted and analyzed using Signac (v.1.11.0). The
gene activities of sScRNA-seq variable genes were calculated by the
GeneActivity function and normalized. The FindTransferAnchors
function was used to perform a canonical correlation analysis and
identify the anchors between the two assays. According to the anchors,
pseudo-transcriptomes of ATAC cells areimputed and merged with the
scRNA-seqdataset. Standard principal-component analysis (PCA) and
UMAP embedding of Seurat were performed on the resulting integrated
dataset. Similar to the processing of transcriptome dataset, pseudo-
time analysis onthe co-embedding space was performed by slingshot.

METATAC pseudotime analysis. We used the ‘addTrajectory’ function
of ArchRwith default parameters toreconstruct the trajectory of MOE
development in the UMAP embedding space and assign pseudotime
values for GBCs, early/late INPs,iOSNs and mOSNSs.

Identification and validation of candidate OR enhancers

We utilized the Lhx2 and Ebf ChIP-seq data in mOSNs and previously
defined Gls from Monahan et al.”. We first interrogated in our peak
set if there were peaks in OR gene clusters following the criteria of
Gls (overlap with both Lhx2 and Ebf ChIP-seq peaks) but not identi-
fied as Gls previously. DNA sequences of the resulting 27 peaks and
63 previously identified Gls were extracted from the mm10 genome
and subjected to the XSTREME online server (https://meme-suite.
org/meme/tools/xstreme) for de novo motif discovery with default
parameters. The resulting motif with the most significant E-value
corresponded to the desired composite motif. We used fimo (v.5.3.3)
with a g value threshold of 107 to further identify the location of the
motif within Gls and candidate peaks, and determined the g values of
all matched sites. Gls and identified regulatory peaks were visualized
ina Circos plot with ChIP-seq and scATAC-seq (grouped by cell types)
tracks of OR clusters using the R packages circlize (v.0.4.12) and ggplot2
(v.3.3.3).

ATAC footprinting was performed by the getFootprints func-
tion of ArchR with default parameters on the Gls and candidate peaks
centered at the composite motif. Figures were generated by the plot-
Footprints function of ArchR with the Tn5 insertion bias normalized
by subtraction.

Comparison of composite motif score. We kept all results from FIMO
scanning (without the g value < 0.1filtering) and compared the distri-
bution of FIMO motif scores of different groups (ATAC peaks outside
OR gene clusters, ATAC peaks within OR gene clusters, candidate OR
enhancers and Gls) using Kolmogorov-Smirnov tests.
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scRNA-seq data analysis

10x scRNA data preprocessing. 10x sScCRNA-seq reads were processed
and mapped to mm10 genome using CellRanger (v.5.0.1). We used the
R package Seurat (v4.0.4) for QC and downstream analysis.

Cell filtering. Barcodes with UMI counts over 1,000 and fewer than
25,000, number of detected genes over 200 and mitochondrial counts
less than 10% were considered as high-quality cells.

Embedding and clustering. Cells from three batches (P4/P7, P14
and P28) that passed QC were merged, log-normalized and inte-
grated using the Seurat IntegrateData function with anchors iden-
tified by the FindIntegrationAnchors function to correct batch
effects. The integrated dataset was scaled and embedded using
PCA followed by UMAP, using the ScaleData, RunPCA(npcs = 30),
RunUMAP functions of Seurat, respectively. K-nearest neighbors of
cells were identified using the Seurat FindNeighbors function and
Louvain clustering was performed with a resolution of 1.0 using the
FindClusters function. Then, cell types were annotated manually
according to their marker genes identified by FindAlIMarkers with
parameters ‘min.pct = 0.25, logfc.threshold = 0.25, only.pos = TRUFE'.
Then, we removed all cells except for GBCs, INPs, iOSNs and mOSNs.
The remaining subset was scaled by SCTransform(vst.flavor =‘v2’),
followed by RunPCA(npcs =30), RunUMAP(dims =1:15), and Find-
Neighbors and FindClusters(resolution = 0.5). Six out of the identi-
fied 17 subclusters, which mainly consisted of mOSNs, could not be
aligned well onthe trajectory from GBCsto mOSNs and therefore were
removed.

Pseudotime analysis. We used slingshot (v.2.2.1) to constructatrajec-
tory onthe UMAP of the subset after removing the outlier subclusters,
and assigned pseudotime values for each cell from GBCs to mOSNs.

Calculation of correlation between METATAC and scRNA-seq.
To get the correlation between scATAC-seq and scRNA-seq data, we
used the variable genes identified by Seurat and calculated the gene
score matrix and the log-normalized UMI count matrix from the ATAC
and RNA datasets, respectively. We calculated the mean scores or
log-normalized counts for each cell type. The Pearson correlation
coefficients between each pair of ATAC and RNA clusters over the
variable genes were calculated using numpy (v.1.20.3) and visualized
by pheatmap (v.1.0.12).

LiMCA data preprocessing
The RNA data and Hi-C data were preprocessed separately.

RNA data preprocessing. For RNA data, we followed the Smart-seq2
processing workflow documented in the Human Cell Atlas Data Portal
(https://broadinstitute.github.io/warp/docs/Pipelines/Smart-seq2_
Single_Sample_Pipeline/README/). In brief, sequencing reads were
mapped to transcriptomic references of hg38 (GRCh38) and mm10
(GRCm38) genome assembly for human and mouse data, respectively,
using the hisat2 package. We then used RSEM to quantify the RNA reads
and generate agene count and fragments per kilobase of transcript per
million mapped reads (FPKM) matrix.

Single-cell Hi-C data preprocessing. Single-cell Hi-C reads were pro-
cessedas previously described'. Inbrief, contact pairs and contact maps
were generated from raw sequencing reads using the hickit pipeline
(https://github.com/Ih3/hickit). The contact pairs files generated with
hickit were then transformed to a Dip-C format for further analysis with
Dip-C ‘dip-c/scripts/hickit_pairs_to_con.sh’script (https://github.com/
tanlongzhi/dip-c). As the human eHAP cell line contains the Philadel-
phiachromosome (t(9;22)(q34;q11)) and reconstructions of 3D genome
structures are sensitive to chromosomal structural variations, for eHAP

Hi-Cdata, we extracted the exact breakpoints, generated a customized
hg38 genome reference accordingly and mapped Hi-C reads to it.

Haplotype imputation of contacts. We used the Dip-C method to
determine the haplotypes of contacts'. In brief, for each read of a
contact pair (aleg), we assigned a haplotypeifthe read segment over-
lapped with a phased SNP and had a base quality >20. We then per-
formed haplotype imputations of contacts. Specifically, contacts with
known haplotypes were used to vote the haplotype of contacts with
unknown haplotype; if the majority of voted haplotypes are consistent,
then the haplotype of the contact is assigned confidently.

Juicebox (v.1.11.08) or cooltools (v.0.5.1) was used for contact map
visualization.

Criteriafor cell exclusion

For human cell line data, cells with <100,000 unique contacts (5 of
389 cells) were excluded. For mouse OSN data, only 3 of 411 cells had
<100,000 unique contacts, and so we kept all cells.

LiMCA RNA data analysis

Cell embedding and clustering. The Seurat package (v.4.2.0)
was used for QC and downstream analysis of RNA count matrices.
We filtered cells with fewer than 200 genes detected and genes
expressed in fewer than three cells. The filtered count matrices
were then normalized using the NormalizeData (for human data)
or SCTransform (for mouse data) function. We then performed
PCA and UMAP embeddings and Louvain clustering with the fol-
lowing parameters: RunPCA(dims =1:20), RunUMAP(dims = 1:15),
FindNeighbors(dims = 1:10) and FindClusters(resolution = 0.4)
for human data; RunPCA(dims = 1:15), RunUMAP(dims =1:10),
FindNeighbors(dims =1:10) and FindClusters(resolution = 0.4) for
mouse data. Foreach human cell, we calculated cell-cycle phase scores
based on known cell-cycle markers and annotated cell-cycle phase
using the CellCycleScoring function. Marker genes were identified
using the FindMarkers function.

Determination of active ORs in single neurons. For olfactoryrecep-
tor expression detection, the expression matrix was not filtered with
the parameter ‘genes expressed in fewer than three cells’. Genuine OR
expression was determined by two criteria. First, we filtered out OR
genes with an expression level <10 FPKM, as previously described?.
Second, only OR genes with >90% of the exon region covered were
kept, which is necessary to exclude map artifacts and truncated OR
transcripts. For OR genes with multiple exons, it was required to detect
splicingjunctions. This was further confirmed by visual inspectionin
the Integrative Genomics Viewer (v.2.16.2).

The allele of the expressed OR genes was determined by the
phASER package (v.0.9.8) (https://github.com/secastel/phaser).

Pseudotime analysis. Monocle3 was used to construct the continuous
developmental trajectory from progenitors to mOSN; pseudotime
values were assigned to individual cells.

Analysis of contact maps

Calculation of scA/B values. The scA/B values were calculated from
the single-cell contact map withthe ‘dip-c color2’ function (with param-
eters‘-b1,000,000-H-c color/mm10.cpg.1m.txt’). The sex of the mouse
MOE cells was confirmed by dissection of adult mice and inferred by
analyzing the copy number of sex chromosomes for newborn mice.

Structural cell typing. We only retained autosomal bins that
were present in all cells. The raw single-cell A/B values were
rank-normalized to 0-1in each cell with the scipy rankdata func-
tion. Then the rank-normalized scA/B value matrix was used for PCA
and UMAP embedding analysis using the Python sklearn and UMAP
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packages with the following parameters: PCA(n_components = 20)
and UMAP(n_neighbors =10).

Analysis of ensemble contact maps. Single-cell contact maps were
pooled to obtain ensemble maps using the pairtools package (v.0.3.0)
(https://github.com/open2c/pairtools). The .hicand .mcool formatted
contact matrices were then generated and balanced withiterative cor-
rection or Knight-Ruiz, using the cooler (v.0.8.11) (https://github.com/
open2c/cooler) and Juicer (v.1.19.02) (https://github.com/aidenlab/
juicer/) package. We used the cooltools eigs-cis function (https://github.
com/open2c/cooltools) to calculate A/B compartments at a 500-kb
resolution and the cooltoolsinsulation functionto calculate insulation
scores at a100-kb resolution with a 1-Mb window. Chromatin loops
were identified at a 10-kb resolution using the Chromosight (v.1.6.1)
package (https://github.com/koszullab/chromosight) with ‘~-min-dist
20,000-max-dist 20,000,000’. The same analyses as above were per-
formed on a published in situ Hi-C dataset for benchmark analysis.
We further generated ensemble maps randomly sampling different
numbers of cells (n =25, 50, 75,100, 125, 150, 175 and 200) and called
chromatin loops. We used the Bedtools (v.2.26.0) pairtopair function
to overlap chromatin loops between datasets.

Virtual 4C analysis

We grouped cells into sets with high (above the median) or low (below
the median) expression of specific genes such as NFKBI and performed
virtual 4C analysis. For each set of cells, we combined contact maps to
generate a pseudobulk contact matrix. Contacts with the gene locus
were extracted and normalized by the total number of contacts with
thelocus.

Single-cell chromatin looping analysis

Wefirstidentified cell-type-specific chromatin loops at a10-kb resolu-
tion from published bulk Hi-C or Micro-C maps with the diff_ mustache.
py script from the mustache package. We then iteratively compared
one cell type to others and retained calls unique in that cell type as its
cell type-specific chromatin loops. The coolpuppy package (v.0.9.7)
was used to generate pileups of merged single-cell maps for each set of
loops. We calculated the total contact count for each set of chromatin
loops in individual cells using ‘dip-c ard’ function and combined the
counts into a matrix. We noted that the number of chromatin loops
was inconsistent across groups due to varying sequencing depths.
To eliminate this impact, for each group of loops, we normalized the
contact counts by the number of contacts used for loop calling.

Mouse olfactory cell type annotation

For mouse olfactory data, we annotated cell types in two steps. In the
first step, based on RNA counts of known marker genes of mouse olfac-
tory epithelium, we manually annotated the four clusters into OSN
progenitors,iOSNs, mOSNs and non-neuronal cells. In the second step,
we visualized the above-mentioned cell type assignment on the UMAP
plot of scA/Bvalues derived from Hi-C data. Based on structural cell typ-
ing, the progenitor clusterin RNA embedding was segregated into two
discrete clusters that we named progenitorland progenitor2, respec-
tively. These two progenitor clusters did not overlap with each other
onthe UMAP plot of RNA data, further confirming our assignment.

3D genome structure analysis

Generation of 3D genomes. Single-cell 3D genome structures were
reconstructed on haplotype-imputed contact maps using the hickit
package (with parameters-M-iimpute.pairs.gz-Srim-c1-riI0m-c2-b4m
-b1m-b200k -D5-b50k -D5 -b20k). Then, the 3dg files were converted
to Dip-Cformat (with scripts/hickit_3dg_to_3dg_rescale_unit.sh). The
transformed 3dg files were further cleaned with the ‘dip-c clean3’ func-
tion to remove repetitive regions. For eHAP, no homolog imputation
was needed due to it being a haplotype cell line. For K562 and BJ cells,

reconstructions were impractical due to gross chromosomal aberra-
tions or lack of phased SNP information.

3D genome structure alignment and uncertainty estimation. For
each single cell, three independent replicate structures were gener-
ated. Then, the ‘dip-calign’ function was used to calculate the median
and root-mean-square (r.m.s.) of r.m.s.d. of the single-cell 3D genome
structures over all 20-kb particles from three independent replicates.
This calculation involved two steps; first, the r.m.s.d. was calculated
foreach20-kb particle over threereplicate pairs (1-2,1-3and 2-3), fol-
lowed by calculating the median or r.m.s. value over all 20-kb particles.
Only r.m.s.-r.m.s.d. < 1.5 cellswere considered as low uncertainty and
kept for downstream 3D genome structure analysis. The Y chromosome
was excluded from further analysis due to its short genomic length
and low mappability.

3D genome structure visualization. The 3dg files were transformed
into aPyMol-compatible cif format with the ‘dip-c color’ functionand
visualized by PyMol (https://pymol.org/2/).

Spatial analysis of active genes. For this analysis, we considered
expressed genes with >1 FPKM as active genes. The radial positions
were calculated using ‘dip-c color -C’ and normalized by setting the
genome-wide medianto 1. First, we extracted genomicloci with active
genes from 20-kb 3D genome structures and counted the number of
active genes of each locus. We then calculated the totalnumber of genes
for different radial distances using ‘dip-c color -R..

To characterize active gene clustering for each cell, we extracted
the midpoints of all active genes into a .leg file and then generated a
.3dg file with the ‘dip-c pos’ function. We calculated the number of
active genes within 3 particle radii from each active gene with ‘dip-c
color-r3. Toinvestigate whether there was aradial preference or promi-
nent clustering of active genes, we used random controls to evaluate
backgroundlevels.

Specifically, in each single cell, we counted the total number of
active genes and randomly sampled the same number of genes fromall
genesincludedinthe gene annotation files (GENCODE v.M25) regard-
less of their expression levels. The above analysis was then performed
onrandomly sampled genes and we compared the distributionbetween
active genes and random controls with a two-sided Mann-Whitney
U-test. We used the Dip-C name_color_x_y_z to_cif.shscriptto convert
the .3dg files of active genes to mmcif-formatted files, which were
then used for PyMol visualization. Note that for each active gene,
bothparental alleleswereincludedin the analysis because most genes
express both alleles similarly.

OR-GI 3D structure analysis

3D structure visualization. The 3D position of OR genes and Gls was
located from the whole-cell 3D genome structure using the ‘dip-c pos’
function by providing the corresponding OR genes or Gl leg file. Then
the OR and Gl 3dg files were transformed to cif files for visualization
using PyMol. Gls were colored according to chromosomes.

OR-Gl spatial relationship analysis. Pairwise distances between ORs
or between ORs and Gls were calculated using ‘dip-c pd”. The ‘dip-c net-
work_around.py’ script was then used to record Gls or ORs within 2.5
or S particleradiifromeach OR. Ineach cell, we extracted the number
of GIs from ORs that were actively expressed. OR and Gl aggregates
were identified in single cells as previously described™. For analysis
of 3D genome structures, we only retained cells in which the allele
of the dominant OR (the active OR with the highest expression level)
could be determined based on heterozygous SNPs, as OR expression
ismonoallelic. The second-dominant ORin single cells was defined as
theactive OR that had the next highest expression level, while requiring
determined allelic information.
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OR and Gl interaction quantification. For bulk Hi-C data, the normal-
ized inter-chromosomal contact pileups between ORs and between
Glswere generated using the coolpuppy package with “-trans-flanking
10,000,000’. We used the ‘dip-c ard’ function to calculate single-cell
contact pileups between ORs and between Gls with parameters
-d10,000,000 -h100,000". Contact pileups between active ORs and
all90 Glswere also calculated and aggregated across all cells. Note that
for analysis of contact maps, the dominant and second-dominant ORs
were defined as the ORs with the highest and second-highest expression
levels, respectively. This analysis did not take into account whether the
allelic status of the active ORs can be determined by SNPs. We defined
the contact strength as the ratio between the mean contact value
within 200 kb of OR pairs (or 100 kb of GI pairs) and the mean value
insurrounding regions. A value of lindicated no contact enrichment.

Random inactive ORs and permutation of OR expression analysis.
To test the prominence of chromatininteractions between active ORs
and inter-chromosomal OR enhancers, we performed two additional
analyses. The first one was randomly sampling the same number of
inactive ORs from all 1,138 protein-coding ORs for each cell and the
second one was permuted gene expressions of cells to mismatch OR
expressionand 3D genome structure, to investigate their interactions
with inter-chromosomal enhancers.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw sequencing data generated in this study have been deposited in
the Sequence Read Archive under accession no. PRINA1002315. The
processed data generated during this study have been uploaded to
the Gene Expression Omnibus under accession code GSE240128. The
cell type of each cluster was annotated manually with the help of the
Enrichr database (https://doi.org/10.1093/nar/gkw377). Published
MOE Dip-C data were downloaded under Gene Expression Omnibus
accession code GSE121791. Published OSN bulk Hi-C data were down-
loaded fromthe 4DN database (https://data.4dnucleome.org/). Source
data files have been uploaded to figshare (https://doi.org/10.6084/
m9.figshare.24547162.v4)*.

Code availability

The code usedinthis study is available at GitHub (https://github.com/
tanlongzhi/dip-c, https://github.com/Ih3/hickit, https://github.com/
zhang-jiankun/LiMCA and https://github.com/sunneyxielab/MET-
ATAC pipeline)***, All plots were generated with matplotlib (v.3.7.0)
and ggplot2 (v.3.3.3).
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Validation of LIMCA. a, Comparison between LIMCA
and Dip-C, scatter-plot for contacts number versus contact ratio (left) and reads
number versus contact number (right). b, Violin plot showing the proportion

of cis and trans contacts. ¢, Scatter-plot showing reads number versus detected
genes for RNA. d, Insulation score of ensemble LIMCA is high concordant to
bulk Hi-C, calculated at 50 kb resolution. e, Contact maps comparison between
ensemble LiMCA and bulk Hi-C at 1 Mb resolution, all chromosomes are shown.
f, Two selected regions showing ensemble can detect chromatin loops, RNA-seq
tracks are shown below. g, Venn diagram showing chromatin loops detected by

ensemble LiMCA and bulk Hi-C, loops are called with HICCUPS. h, Downsample
analysis showing the relationship between number of detected chromatin loops
(top panel) or precision rate of detected chromatin loops and downsampled cell
number (bottom panel). Each cell number were independently sampled 5 times.
i, Heatmap showing the correlation of A/B compartment score (first eigen value)
(left) and insulation score (left) between ensemble LiIMCA and in situ Hi-C.
Jj,Aimputed contact map of arepresentative GM12878 cells and the
reconstructed 3D structure at 20 kb resolution (Top). Four chromosomes with
expressed genes projected.
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Extended Data Fig. 2| LIMCA accurately detects cell-type-specific gene
expression and chromatin structures. a, Ensemble contacts maps of four cell
lines at1 Mb resolution, translocations are highlighted with red arrow. b, UMAP
showing four represented markers for each cell type and one maker gene of G2M
phase. ¢, Expression of top cell-type-specific marker genes for each cell type,
top 20 of each cell type are shown. d, Mean scA/B value of cell-type-specific
marker genes among single cells. For each cell types, the top 200 marker genes

were identified from the paired transcriptome data. e, Scatter-plot showing the
mitotic contact band (2-12 Mb) ratio versus short-range contacts (< 2 Mb) ratio.
f, UMAP visualizing the mitotic band ratio of cell line embedding. g, Represented
contact maps of cells in metaphase cluster. h, Pile-up of cell-type-specific
chromatin loops using ensemble interaction profiles from each cell type.

i, Heatmap showing the enrichment of cell-type-specific chromatin loops among
single cells.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| The relationship between 3D genome organization
and expression. a, Comparison of pairwise 3D distance matrix measured,
ensemble LiMCA and bulk Hi-C contact map. b, Histogram of expression level
distribution for NFKB1 (left), IKZF2 (middle) and MYC (right). ¢, Histogram
showing the distribution of detected gene numbers (left), RNA counts (middle)
and contact numbers between NFKB-high and NFKB1-low group. n.s., no
significance, two-sided Mann-Whitney U rank test. d, Differential contact matrix
around NFKB1 (chr4:102.3-102.8 Mb) between NFKB1-high and low groups.

e, Downsample analysis for NFKB1 gene. Left: contact matrices around NFKB1
(chr4:102.3-102.8 Mb), representing ensemble Hi-C data from NFKB-high (top
left) and NFKB1-low (bottom right). Middle: Differential matrix between NFKB-
high and NFKBI1-low group. Right: Normalized contact frequency plot, centered
at NFKBlupstream enhancer. f, The same as e, but cells are randomly grouped.
g-h, The same as ¢, showing downsampled groups (g) and randomly assigned
groups (h). n.s., nosignificance, two-sided Mann-Whitney U rank test. i, Left:

Ensemble contact maps comparing IKZF2-high and (bottom left) and IKZF2-low
(top right). Right: 4 C visualization of interactions between enhancer and the
expressed gene, viewpoint centered at downstream enhancer. The green dot/line
shows the position of candidate enhancer and the yellow dots/lines represent the
position of TSSand TTS. j, The same as i but for MYC. k, Expressed genes spatial
distribution of a representative GM12878 cell, genes are colored by gene number
within300 nm. 1, Dotplot showing the median gene cluster size within 300 nm for
expressed genes and randomly selected genes, the same cell was connected with
line (n = 68). Two-sided Wilcoxon signed-rank test for paired data. m, Scatter-plot
of expression level versus the normalized radial position at 20 kb resolution of
arepresentative GM12878 cells. n, Correlation distribution of normalized radial
position versus expression level among single cells. 0, The same as i, but for mean
expression level versus median radial position across cell population at1Mb
resolution.
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Extended Data Fig. 4 | Gene expression of the single-cell LIMCA multi-omics
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plotted. b, UMAP projection of known maker genes for OSN progenitors, iOSNs

and mOSNs. ¢, The same as Fig. 2c (left), colored by mouse age and pseudotime.
d, Heatmap showing the continuous gene expression change along OSNs genesis
using pseudotime. e, Scatter-plot showing the dynamic gene expression of
known maker genes.
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Extended Data Fig. 5| LiMCA recaptures the characteristic 3D genome
reorganization along OSNs development. a, The same as Fig. 2c, The same
cellwas connected in the two embeddings. b, The same as Fig. 2d (right), cells
were colored by mouse age. ¢, UMAP showing the embedding of integrated MOE
cells of this study and published MOE data (Tan et al.”, Nat. Struct. Mol. Biol.
2019), cells are colored by cell label in each dataset. d, The same as ¢, cellsare
labeled by different mouse crosses. e, UMAP visualization of inter-chromosomal
contact ratio, long-range (> 20 kb) intra-chromosomal ratio and short-range
(<20 kb) intra-chromosomal ratio (top), and the boxplot quantification of these
values, the black horizontal line and the box represent the median and quartiles,
respectively (bottom). The whiskers indicates minima and maxima. (non-

neuronal, n =22; progenitorl, n = 47; progenitor2, n =111; iOSN, n = 85; mOSN,
n=146).f, Pile-up of interactions between ORs and Gls of ensemble interaction
profiles from each cluster (top), and bulk Hi-C datasets from Monahan etal.”,
(2019) (bottom). g, Boxplot showing the gradual increasing of OR-OR, GI-GI
interaction strength along OSN development. The box horizontal line and the
box represent the median and quartiles, respectively. (non-neuronal, n =22;
progenitorl, n =47; progenitor2, n =111;iOSN, n = 85; mOSN, n = 146). h, Contact
maps of ensemble interaction profiles of each cell cluster at regions of chr2:
30-95Mb and chr9: 3-50 Mb, OR gene clusters are indicated. i, Contact maps of
ensemble interaction profiles of each cell cluster of chromosome 2 (left).
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Extended Data Fig. 6 | Quality control and overview of MOE METATAC results.
a, FACS gating strategy to sort single nuclei for METATAC experiment. b, Quality
control metrics for METATAC dataset, from left to right are Distribution of ratio
of decontaminated fragments in peaks (FRiP), number of decontaminated
fragments, percentage of mitochondrial fragments, fragment sizes distribution,
and TSS enrichment for METATAC cells of four batches, respectively. Numbers
of cellsare 4090, 3146, 2850, 1794, for P3, P4, P14, and P28, respectively. The box
horizontal line and the box represent the median and quartiles, respectively, and

the whiskers extends 1.5*interquartile range. c-d, UMAP of MOE METATAC cells
colored by (c) cell source batches, and (d) gene scores of marker genes.

e, Proportion of cell types associated with MOE development for cells from P3,
P7, P14, and P28 mice. f, Tracks of METATAC signals normalized by number of
reads in TSS near the promoter of marker genes of HBCs, GBCs, INPs, and OSNs.
g, Heatmap shows the correlation coefficients between cell clusters of MOE 10x
scRNA-seq and METATAC.
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Extended Data Fig. 7| METATAC identifies new candidate OR enhancers.

a, TF-binding motifs enriched in HBCs, GBCs, INPs, and OSNs. b, Numbers of

detected OR genes in various cell types are shown as a boxplot (n =11,880, for

each cluster information is store at source data). An OR gene is considered to

bedetectedifit has agenescore >0 as calculated by ArchR. The box horizontal

line and the box represent the median and quartiles, respectively, and the

whiskers extends 1.5*interquartile range. c-d, Lhx2 and Ebf ChIP-seq signals (c)

and METATAC signals of different MOE cell development stages (d) at previously
defined 63 Greek Islands and 27 candidate regulatory peaks identified in this
study. Aggregated signal of all Gls or peaks are shown above or below the
heatmap, respectively. e, METATAC footprints at composite motif sites in GIs or
identified peaks. Aggregated normalized METATAC insertions and the Tn5 bias
corrected are shown.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Quality control and overview of MOE scRNA-

seq results. a, Number of detected genes, UMI counts, and percentage of
mitochondrial UMIs for cells from P4/P7 (N = 28,303), P14 (N = 24,116), and P28
(N =21,158) mice. b-c, UMAP of scRNA-seq data colored by origin batch (b) and
celltypes (c). The box horizontal line and the box represent the median and
quartiles, respectively, and the whiles extends 1.5*interquartile range.

d, Heatmap shows the expression of marker genes of each cell type. For cell types
with more than1,000 cells, top 1,000 representative cells with the highest UMI

counts are shown. e, UMAP of the subset of scRNA-seq dataset including GBCs,
INPs, iOSNs, and mOSNs, colored by previously identified cell types (left), new
clusters (middle), and pseudotime (right). f-g, Dynamics of the expression of
Omp (f), and Lhx2, Ebf1, Ebf2 (g) during the development of MOE. h, Proportion
of cell types associated with MOE development for cells from P4/P7, P14, and
P28 mice in the scRNA-seq dataset. i, UMAP of the co-embedded METATAC and
scRNA-seq data from GBC to mOSN, colored by RNA clusters (left) and METATAC
clusters (right).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9| Identification of genuine OR expression with LIMCA GENCODE. Coverage is set to logarithmic scale. The first two columns show
full-length transcriptinformation. Genome browser views of mRNA read genuine OR expression and the last two columns show false OR expression. Red
coverage profiles for different OR genes in example single cells. Read barsin shades highlight the incomplete read covrages. The identified OR-expressing
the top panel indicates heterozygous SNP sites of each cross. mRNA coverage, alleles are represented by @ (maternal) or & (paternal), respectively.

junctions, and reads are shown below. Gene annotations are taken from
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Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | The spatial relationship between expressed OR genes
and their enhancers. a, The same as Fig. 3a, cells are colored according to cell
identity. b, Pie chats summarize the OR gene expression information. ¢, OR
FPKM values within single cells of each stage. Each color represents an individual
OR, except black, which represents all OR ranked below 8. d, Composition of
cisor trans Gls within150 nm or 300 nm from expressed ORs (considering all
expressed ORs). e, Same as Fig. 3fbut for the number of Gls within 2.5 particle
radii (150 nm) from each expressed OR in single cells. f, Summary of the number
of nearby cis- and trans-Gls for each OR in different stages. g, Same as fbut
grouped by different cell types. h, Left: Same as Fig. 3g but for within 2.5 particle
radii (150 nm). Two-sided Wilcoxon signed-rank test for paired sample was used,
**indicates P < 0.01. Right: pie chart depicting the number of cells with active

ORresiding the largest Gl aggregate, the second largest Gl aggregate, and others.

i, 3D surface plot showing the normalized interaction strength between active

ORorinactive ORs (100 randomly selected OR genes) and inter-chromosomal
OR enhancers for bulk Hi-C data on OSNs expressing Olfr1507 (left) and Olfr16
(right). Data fromref. 17.j, Boxplot showing the quantification of OR-enhancer
interactions for the highest expressed ORs and second highest expressed ORs
(stagel and stage 2 OSNs) and randomly selected inactive ORs, for the random
OR control, 10 independent sampling was performed. P values are from two-
sided one-sample t-tests. k, 3D surface plot showing the normalized interaction
strength between active ORs and inter-chromosomal OR enhancers (left) or
between randomly selected inactive ORs and inter-chromosomal OR enhancers
(right) of LIMCA data. 1, Boxplot showing the zone index of the highest expressed
ORs and ORs residing within the largest or second largest enhancer hub, only
stage 2 and stage 3 OSNs harboring adominant OR were analyzed, the same cell
was connected with aline. P values are from two-sided Wilcoxon signed-rank
tests.
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METATAC data were processed with custom scripts (https://github.com/sunneyxielab/METATAC_pipeline) and further analyzed with ArchR
(v1.0.2).
LiMCA RNA data were analyzed with Seurat (v4.2.0).
LIMCA Hi-C data were processed and analyzed with dip-c and hickit (r291) package (https://github.com/tanlongzhi/dip-c, https://github.com/
Ih3/hickit).
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Raw sequencing data generated in this study has been deposited to the Sequence Read Archive (SRA; https://www.nchi.nlm.nih.gov/sra) under accession number
PRJNA1002315. The processed data generated during this study has been uploaded to the Gene Expression Omnibus under accession number GSE240128.

Cell type of each cluster was annotated manually with the help of Enrichr database (https://doi.org/10.1093/nar/gkw377).

Published MOE Dip-C data was downloaded under GEO accession code GSE121791. Published OSN bulk Hi-C data was downloaded from 4DN database (https://
data.4dnucleome.org/).
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Reporting on sex and gender Not applicable. There is no human participants involved in this study.

Population characteristics Not applicable.
Recruitment Not applicable.
Ethics oversight Not applicable.
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Sample size Sample size was not predetermined. For single-cell joint chromatin architecture and gene expression multi-omics data, it consisting of four
cell lines, which includes 220 GM12878 cells, 63 K562 cells, 42 eHAP cells and 63 BJ cells, and 411 cells dissociated from the mouse main
olfactory epithelium. For single-cell chromatin accessibility data, we profiled 11,880 single cells from the mouse main olfactory epithelium
during the first postnatal month. For single-cell RNA-seq data, we collected 73,577 single cells from the mouse main olfactory epithelium
during the first postnatal month.

Data exclusions  For the statistic analysis of spatial relationship between expressed ORs and their enhancers in Figure3, several cells were excluded due the
unknown allele of expressed ORs of bad quality of 3D structures, as listed in supplementary table 4.

Replication For single-cell ATAC-seq data, each mouse age was generated with two independent sampling replicates. All attempts at replication were
successful.

Randomization  Randomization was not required since our study is based on sequencing. For different group analysis, cells were allocated according to
expression level OR the stage of olfactory receptor expression. Random grouping control was down in these analysis to confirm the
conclusion.

Blinding Blinding was not required since our sample is taken from wild-type mice or normal cultured cell line. Since the mice was not genetically
engineered and cell line was taken from normal culture with perturbation.
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Cell line source(s) K-562 (ATCC) is derived from the pleural effusion of a 53-year-old female with chronic myelogenous leukemia in terminal
blast crises. GM12878 (Coriell Institute) is a EBV-transformed B lymphocyte from a female. BJ (ATCC) cells are fibroblasts
established from skin taken from normal foreskin from a neonatal male. eHAP (Cellosaurus) is haploid cell derived from
HAP1, HAP1 is a near-haploid human cell line derived from KBM7, a human myeloid leukemia cell line developed from a 39-
year-old male.

Authentication All cell lines were validated with morphology and gene expression and other epigenetic states with published datasets.
Mycoplasma contamination Mycoplasma contamination test is negative.

Commonly misidentified lines  no commonly misidentified cell lines were used in the study.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals Female and male, postnatal day 3-120, CAST/EiJ x C57BL/6J hybrid mice, female and male, postnatal day 1-60, DBA/2J x c57BL/6)
hybrid mice.

Wild animals No wild animals were used.

Reporting on sex Both female and male mice were used. The conclusion derived from this study is not biased to specific sex.

Field-collected samples  No field-collected samples were used.

Ethics oversight The study was approved by the Peking University Institutional Animal Care and Use Committee (IACUC). All the animal experiments
were conducted following their guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation The mouse main olfactory epithelium was dissociated into single cell suspension with papain. The single-cell suspension was
filtered with 40 um strainer. Then 50000 cells were aliquot to ATAC-seq procedure, briefly, cells were permeabilized and
transposed, then stain with 7-AAD.




Instrument BD, FACS Aria SORP

Software BD FACSDiva v9.0 Software
Cell population abundance All nuclei were sorted without biased, the 7-AAD-positive nuclei was selected.
Gating strategy Nuclei were distinguished from debris based on FSC-A and SSC-A, then the multiplets were removed by two step gating of

FSC-W and FSC-H, SSC-W and SSC-H. Then nuclei were selected based on PerCP-cy5-5-A.

|Z Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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