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Ascending neurons convey behavioral state 
to integrative sensory and action selection 
brain regions

Chin-Lin Chen1, Florian Aymanns1, Ryo Minegishi    2, Victor D. V. Matsuda    1, 
Nicolas Talabot    1,3, Semih Günel1,3, Barry J. Dickson    2 & Pavan Ramdya    1 

Knowing one’s own behavioral state has long been theorized as critical for 
contextualizing dynamic sensory cues and identifying appropriate future 
behaviors. Ascending neurons (ANs) in the motor system that project 
to the brain are well positioned to provide such behavioral state signals. 
However, what ANs encode and where they convey these signals remains 
largely unknown. Here, through large-scale functional imaging in behaving 
animals and morphological quantification, we report the behavioral 
encoding and brain targeting of hundreds of genetically identifiable ANs in 
the adult fly, Drosophila melanogaster. We reveal that ANs encode behavioral 
states, specifically conveying self-motion to the anterior ventrolateral 
protocerebrum, an integrative sensory hub, as well as discrete actions to 
the gnathal ganglia, a locus for action selection. Additionally, AN projection 
patterns within the motor system are predictive of their encoding. Thus, 
ascending populations are well poised to inform distinct brain hubs of 
self-motion and ongoing behaviors and may provide an important substrate 
for computations that are required for adaptive behavior.

To generate adaptive behaviors, animals1 and robots2 must not only 
sense their environment but also be aware of their own ongoing behav-
ioral state. Knowing if one is at rest or in motion permits the accurate 
interpretation of whether sensory cues, such as visual motion during 
feature tracking or odor intensity fluctuations during plume follow-
ing, result from exafference (the movement of objects in the world) 
or reafference (self-motion of the body through space with respect to 
stationary objects)1. Additionally, being aware of one’s current posture 
enables the selection of future behaviors that are not destabilizing or 
physically impossible.

In line with these theoretical predictions, neural representations 
of ongoing behavioral states have been widely observed across the 
brains of mice3–5 and flies (Drosophila melanogaster)6–9. Furthermore, 
studies in Drosophila have supported roles for behavioral state sig-
nals in sensory contextualization (for example, flight6 and walking7 
modulate neurons in the visual system8,10) and action selection (for 

example, an animal’s walking speed regulates its decision to run or 
freeze in response to a fear-inducing stimulus11). Locomotion has also 
been shown to play an important role in regulating complex behaviors, 
including song patterning12 and reinforcement learning13.

Despite these advances, the cellular origins of behavioral state 
signals in the brain remain largely unknown. They may arise from effer-
ence copies of signals generated by descending neurons (DNs) in the 
brain that drive downstream motor systems1. However, because the 
brain’s descending commands are further sculpted by musculoskeletal 
interactions with the environment, a more categorically and temporally 
precise readout of behavioral states might be obtained from ascend-
ing neurons (ANs) in the motor system that process proprioceptive 
and tactile signals and project to the brain. Although these behavioral 
signals might be conveyed by a subset of primary mechanosensory neu-
rons in the limbs14, they are more likely to be computed and conveyed 
by second-order and higher-order ANs residing in the spinal cord of 
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correspondence between the morphology of ANs in the VNC and their 
behavioral state encoding: ANs with neurites targeting all three VNC 
neuromeres (T1–T3) encode global locomotor states (for example, rest-
ing and walking), whereas those projecting only to the T1 prothoracic 
neuromere encode foreleg-dependent behavioral states (for example, 
eye grooming). Notably, we also observed AN axons within the VNC. 
This suggests that ANs are not simply passive relays of behavioral 
state signals to the brain but may also help to orchestrate movements 
and/or compute state encoding. This latter possibility is illustrated 
by a class of proboscis extension ANs (‘PE-ANs’) that appear to encode 
the number of PEs generated over tens of seconds, possibly through 
recurrent interconnectivity within the VNC. Taken together, these 
data provide a first large-scale view of ascending signals to the brain, 
opening the door for a cellular-level understanding of how behavioral 
states are computed and how ascending motor signals allow the brain to 
contextualize sensory signals and select appropriate future behaviors.

Results
A screen of AN encoding and projection patterns
We performed a screen of 108 driver lines that each express fluorescent 
reporters in a small number of ANs (Fig. 1d). This allowed us to address 
to what extent ANs encode particular behavioral states and, to some 
degree given the limited temporal resolution of calcium imaging, limb 
movements. To achieve precise behavioral classification, we quanti-
fied limb movements by recording each fly using six synchronized 
cameras (a seventh camera was used to position the fly on the ball) 
(Fig. 1f). We processed these videos using DeepFly3D (ref. 29), a mark-
erless 3D pose estimation software that outputs joint positions and 
angles (Fig. 1g). We also measured spherical treadmill rotations using 
two optic flow sensors30 and converted these into three fly-centric 
velocities—forward (millimeters per second), sideways (millimeters 
per second) and yaw (degrees per second) (Fig. 1h)—that correspond 
to forward/backward walking, side-slip and turning, respectively. A 
separate DeepLabCut39 deep neural network was used to track PEs from 
one camera view (Extended Data Fig. 1a–d). We studied spontaneously 
generated behaviors but also used a puff of CO2 to elicit behaviors from 
sedentary animals.

Synchronized with movement quantification, we recorded the 
activity of ANs by performing two-photon imaging of the cervical 
connective within the thoracic VNC28. The VNC houses motor circuits 
that are functionally equivalent to those in the vertebrate spinal cord 
(Fig. 1i, left). Neural activity was measured using the proxy of changes in 
the fluorescence intensity of a genetically-encoded calcium indicator, 
OpGCaMP6f, expressed in a small number of ANs. Simultaneously, we 
recorded tdTomato fluorescence as an anatomical fiduciary. Imag-
ing coronal (x–z) sections of the cervical connective kept AN axons 
within the imaging field of view despite behaviorally induced motion 
artifacts that would disrupt conventional horizontal (x–y) section 
imaging28. Sparse spGal4 and Gal4 fluorescent reporter expression 
facilitated axonal ROI detection. To semi-automatically segment and 
track AN ROIs across thousands of imaging frames, we developed 
and used AxoID, a deep-network-based software (Fig. 1i, right, and 
Extended Data Fig. 2). AxoID also facilitated ROI detection despite 
large movement-related ROI translations and deformations as well as, 
for some driver lines, relatively low transgene expression levels and a 
suboptimal imaging signal-to-noise ratio (SNR).

To relate AN neural activity with ongoing limb movements, we 
trained classifiers using 3D joint angles and spherical treadmill rota-
tional velocities. This allowed us to accurately and automatically detect 
nine behaviors: forward and backward walking, spherical treadmill 
pushing, resting, eye and antennal grooming, foreleg and hindleg 
rubbing and abdominal grooming (Fig. 1j). This classification was 
highly accurate (Extended Data Fig. 1e). Additionally, we classified 
non-orthogonal, co-occurring behaviors, such as PEs, and recorded 
the timing of CO2 puff stimuli (Supplementary Video 1).

vertebrates15–18 or in the insect ventral nerve cord (VNC)19. In Drosophila, 
ANs process limb proprioceptive and tactile signals14,20,21, possibly 
to generate a readout of ongoing movements and behavioral states.

To date, only a few genetically identifiable AN cell types have been 
studied in behaving animals. These are primarily in the fly, D. mela-
nogaster, an organism that has a relatively small number of neurons 
that can be genetically targeted for repeated investigation. Microscopy 
recordings of AN terminals in the brain have shown that Lco2N1 and 
Les2N1D ANs are active during walking22 and that LAL-PS-ANs convey 
walking signals to the visual system23. Additionally, artificial activation 
of pairs of PERin ANs24 or moonwalker ANs25 regulates action selection 
and behavioral persistence, respectively.

These first insights motivate a more comprehensive, quantitative 
analysis of large AN populations to investigate three questions. First, 
what information do ANs convey to the brain (Fig. 1a)? They might 
encode posture or movements of the joints or limbs as well as longer 
time-scale behavioral states, such as whether an animal is walking 
or grooming. Second, where do ANs convey this information to in 
the brain (Fig. 1b)? They might project widely across brain regions or 
narrowly target circuit hubs mediating specific computations. Third, 
what can an AN’s patterning within the VNC tell us about how it derives 
its encoding (Fig. 1c, red)? Answering these questions would open the 
door to a cellular-level understanding of how neurons encode behav-
ioral states by integrating proprioceptive, tactile and other sensory 
feedback signals. It would also enable the study of how behavioral state 
signals are used by brain circuits to contextualize multimodal cues and 
to select appropriate future behaviors.

Here, we address these questions by screening a library of 
split-Gal4 Drosophila driver lines (R.M. and B.J.D., unpublished). These, 
along with the published MAN-spGal4 (ref. 25) and 12 sparsely express-
ing Gal4 driver lines26, allowed us to gain repeated genetic access to 
247 regions of interest (ROIs) that may each include one or more ANs 
(Fig. 1d and Supplementary Table 1). Using these driver lines and a 
MultiColor FlpOut (MCFO) approach27, we quantified the projections 
of ANs within the brain and VNC (Fig. 1e). Additionally, we screened the 
encoding of these ANs by performing functional recordings of neural 
activity within the VNC of tethered, behaving flies28. To overcome noise 
and movement-related deformations in imaging data, we developed 
‘AxoID’, a deep-learning-based software that semi-automatically iden-
tifies and tracks axonal ROIs (Methods). Finally, we precisely quanti-
fied joint angles and limb kinematics using a multi-camera array that 
recorded behaviors during two-photon imaging. We processed these 
videos using DeepFly3D, a deep-learning-based three-dimensional 
(3D) pose estimation software29. By combining these 3D joint posi-
tions with recorded spherical treadmill rotations (a proxy for locomo-
tor velocities30), we could classify behavioral time series to study the 
relationship between ongoing behavioral states and neural activity 
using linear models.

These analyses uncovered that, as a population, ANs do not pro-
ject broadly across the brain but principally target two regions: (1) the 
anterior ventrolateral protocerebrum (AVLP), a site that may mediate 
higher-order multimodal convergence—vision31, olfaction32, audi-
tion33–35 and taste36—and (2) the gnathal ganglia (GNG), a region that 
receives heavy innervation from descending premotor neurons and 
has been implicated in action selection24,37,38. We found that ANs encode 
behavioral states but most predominantly encode walking. These dis-
tinct behavioral states are systematically conveyed to different brain 
targets. The AVLP is informed of self-motion states, such as resting and 
walking, and the presence of gust-like stimuli, possibly to contextual-
ize sensory cues. By contrast, the GNG receives signals about specific 
behavioral states—turning, eye grooming and proboscis extension—
likely to guide action selection.

To understand the relationship between AN behavioral state 
encoding and brain projection patterns, we then performed a 
more in-depth investigation of seven AN classes. We observed a 
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Our final dataset comprised 247 ANs/ROIs targeted using  
70 sparsely labeled driver lines (more than 32 h of data). We note that 
an individual ROI may consist of intermingled fibers from several  

ANs of the same class. These data included (1) anatomical projec-
tion patterns and temporally synchronized (2) neural activity, (3)  
joint angles and (4) spherical treadmill rotations. Here, we focus 
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Fig. 1 | Large-scale functional and morphological screen of AN movement 
encoding and nervous system targeting. a–c, Schematics and tables of the 
main questions addressed. a, To what extent do ANs encode longer time-scale 
behavioral states and limb movements? This encoding may be either specific 
(for example, encoding specific kinematics of a behavior or one joint degree 
of freedom) or general (for example, encoding a behavioral state irrespective 
of specific limb kinematics or encoding multiple joint degrees of freedom). 
Here, we highlight the CTr and FTi joints. b, Where in the brain do ANs convey 
behavioral states? ANs might target the brain’s (1) primary sensory regions (for 
example, optic lobe or antennal lobe) for sensory gain control; (2) multimodal 
and integrative sensory regions (for example, AVLP or mushroom body) to 
contextualize dynamic, time-varying sensory cues; and (3) action selection 
centers (for example, GNG or central complex) to gate behavioral transitions. 
Individual ANs may project broadly to multiple brain regions or narrowly to one 
region. c, To what extent is an AN’s patterning within the VNC predictive of its 
brain targeting and encoding? d, We screened 108 sparsely expressing driver 
lines. The projection patterns of the lines with active ANs and high SNR (157 ANs) 
were examined in the brain and VNC. Scale bar, 40 μm. e, These were quantified 
by tracing single-cell MCFO confocal images. We highlight projections of one 
spGal4 to the brain’s AVLP and the VNC’s prothoracic (‘ProNm’), mesothoracic 

(‘MesoNm’) and metathoracic neuromeres (‘MetaNm’). Scale bar is as in d.  
f, Overhead schematic of the behavior measurement system used during two-
photon microscopy. A camera array captures six views of the animal. Two optic 
flow sensors measure ball rotations. A puff of CO2 (or air) is used to elicit behavior 
from sedentary animals. g, 2D poses are estimated for six camera views using 
DeepFly3D. These data are triangulated to quantify 3D poses and joint angles for 
six legs and the abdomen (color-coded). The FTi joint angle is indicated (white). 
h, Two optic flow sensors measure rotations of the spherical treadmill as a proxy 
for forward (red), sideways (blue) and yaw (purple) walking velocities. Positive 
directions of rotation (‘+’) are indicated. i, Left: a volumetric representation of the 
VNC, including a reconstruction of ANs targeted by the SS27485-spGal4 driver 
line (red). Indicated are the dorsal-ventral (‘Dor’) and anterior-posterior (‘Ant’) 
axes as well as the fly’s left (L) and right (R) sides. i, Right: sample two-photon 
cross-section image of the thoracic neck connective showing ANs that express 
OpGCaMP6f (cyan) and tdTomato (red). AxoID is used to semi-automatically 
identify two axonal ROIs (white) on the left (L) and right (R) sides of the connective. 
j, Spherical treadmill rotations and joint angles are used to classify behaviors. 
Binary classifications are then compared with simultaneously recorded neural 
activity for 250-s trials of spontaneous and puff-elicited behaviors. Shown is an 
activity trace from ROI 0 (green) in i. DoF, degree of freedom.
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Fig. 2 | ANs encode behavioral states. Proportion of variance in AN activity 
that is uniquely explained by regressors (cross-validated ΔR2) based on joint 
movements (a) (abbreviations refer to the left (L), right (R), front (F), middle (M) 
or hind (H) legs as well as joints at the thorax (Th), coxa (C), trochanter (Tr), femur 
(F), tibia (Ti) and tarsus (Ta)). Movements of individual legs (b), movements of 
pairs of legs (c) and behaviors (d). Regression analyses were performed for 157 
ANs recorded from 50 driver lines. Lines selected for more in-depth analysis are 
color-coded by the behavioral class best explaining their neural activity: SS27485 

(resting), SS36112 (puff responses), SS29579 (walking), SS51046 (turning), 
SS42740 (foreleg movements), SS25469 (eye grooming) and SS31232 (PEs). Non-
orthogonal regressors (PE and CO2 puffs) are separated from the others. P values 
report the one-tailed F-statistic of overall significance of the complete regression 
model with none of the regressors shuffled without an adjustment for multiple 
comparisons (*P < 0.05, **P < 0.01 and ***P < 0.001). Indicated are putative pairs 
of neurons (black ball-and-stick labels) and ROIs that are on the left (red) or right 
(cyan) side of the cervical connective.
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on the results for 157 of the most active ROIs taken from 50 driver 
lines (more than 23 h of data) (Supplementary Video 2). The remain-
der were excluded owing to redundancy with other driver lines, an 
absence of neural activity or a low SNR (as determined by smFP confo-
cal imaging or two-photon imaging of tdTomato and OpGCaMP6f). 
Representative data from each of these selected driver lines illustrate 
the richness of our dataset (Supplementary Videos 3–52; see data 
repository).

Behavioral encoding of ANs
Previous studies of AN encoding22–24 did not quantify behaviors at high 
enough resolution or study more than a few ANs. Therefore, it remains 
unclear to what extent as a population ANs encode specific behavioral 
states, such as walking, resting and grooming (Fig. 1a). With the data 
from our large-scale functional screen, we performed a linear regres-
sion analysis to quantify the degree to which epochs of behaviors could 
explain the time course of AN activity. We also examined the encoding 
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Fig. 3 | ANs principally project to the brain’s AVLP and GNG and the VNC’s 
leg neuromeres. Regional innervation of the brain (a) or the VNC (b). Data are 
for 157 ANs recorded from 50 driver lines and automatically quantified through 
pixel-based analyses of MCFO-labeled confocal images. Other, manually 
quantified driver lines are indicated (dotted). Lines for which projections could 
not be unambiguously identified are left blank. Lines selected for more in-depth 

evaluation are color-coded by the behavioral state that best explains their neural 
activity: SS27485 (resting), SS36112 (puff responses), SS29579 (walking), SS51046 
(turning), SS42740 (foreleg-dependent behaviors), SS25469 (eye grooming) and 
SS31232 (PEs). Here, ROI numbers are not indicated because there is no one-to-
one mapping between individual ROIs and MCFO-labeled single neurons.
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of leg movements and joint angles to the extent that the relatively slow 
temporal resolution of calcium imaging would permit.

Specifically, we quantified the unique explained variance (UEV, or 
ΔR2) for each behavioral or movement regressor via cross-validation by 
subtracting a reduced model R2 from a full regression model R2. In the 
reduced model, the regressor of interest was shuffled while keeping 
the other regressors intact (Methods). To compensate for the tempo-
ral mismatch between fast leg movements and slower calcium signal 
decay dynamics, every joint angle and behavioral state regressor was 
convolved with a calcium indicator decay kernel chosen to maximize 
the explained variance in neural activity, with the aim of reducing the 
occurrence of false negatives.

First, we examined to what extent individual joint angles could 
explain the activities of 157 ROIs. Notably, if two regressors are highly 
correlated, one regressor can compensate when shuffling the other, 
resulting in a potential false negative. Therefore, we confirmed that 
the vast majority of joint angles do not co-vary with others—with 
the exception of the middle and hindleg coxa-trochanter (CTr) and 
femur-tibia (FTi) pitch angles (Extended Data Fig. 3). We did not find 
any evidence of joint angles explaining AN activity (Fig. 2a). To assess 
the strength of this result, we performed a ‘positive’ control experiment 
by measuring joint angle encoding for limb proprioceptors (iav-Gal4 
and R73D10-Gal4 animals40) during resting periods that have slow 
changes in limb position and, thus, do not suffer as strongly from the 
slow calcium indicator decay dynamics (Extended Data Fig. 4). These 
experiments yielded only weak joint angle encoding that was not much 
larger than that observed for ANs (Extended Data Fig. 5). Thus, there is 
either (1) widespread but weak joint angle encoding among many ANs 
or (2) noise-related/artifactual correlations between limb movements 
and neural activity. Owing to technical limitations in our recording and 
analysis approach, we cannot distinguish between these two possibili-
ties, leaving open the degree to which ANs encode joint angles to more 
temporally precise approaches, such as electrophysiology.

Similarly, individual leg movements (tested by shuffling all of the 
joint angle regressors for a given leg) could not explain the variance 
of AN activity (Fig. 2b). Additionally, with the exception of ANs from 
SS25469, whose activities could be explained by movements of the front 
legs (Fig. 2c), AN activity largely could not be explained by the move-
ments of pairs of legs. Notably, the activity of ANs could be explained 
by behavioral states (Fig. 2d). Most ANs encoded self-motion—forward 
walking and resting—but some also encoded discrete behavioral states, 
such as eye grooming, PEs and responses to puff stimuli.

We note that, because behaviors were generated spontaneously, 
some rare behaviors, such as abdominal grooming and hindleg rub-
bing, were not generated by representative animals for specific driver 
lines (Extended Data Fig. 6). Our regression approach is also inherently 
conservative: it avoids false positives, but it is, therefore, prone to 
false negatives for infrequently occurring behaviors. Therefore, as an 
additional, alternative approach, we measured the mean normalized 
ΔF/F of each AN for each behavioral state. Using this complementary 
approach, we confirmed and extended our results (Extended Data  

Fig. 7a). For example, in the case of MANs25, we found a more prominent 
expected28 encoding of pushing and backward walking as well as weaker 
encoding of forward walking (a very frequently generated behavior that 
often co-occurs with pushing). We considered both results from our 
linear regression as well as our mean normalized ΔF/F analyses when 
selecting neurons for further in-depth analysis.

AN brain targeting as a function of encoding
Having identified the behavioral state encoding of a large population of 
157 ROIs, we next wondered to what extent these distinct state signals 
are routed to specific and distinct brain targets (Fig. 1b). On the one 
hand, individual ANs might project diffusely to multiple brain regions. 
Alternatively, they might target one or only a few regions. To address 
these possibilities, we quantified the brain projections of all ANs by 
dissecting, immunostaining and imaging the expression of spFP and 
MCFO reporters in these neurons (Fig. 1e).

Strikingly, we found that AN projections to the brain were largely 
restricted to two regions: the AVLP, a site known for multimodal, inte-
grative sensory processing31–36, and the GNG, a hub for action selec-
tion24,37,38 (Fig. 3a). ANs encoding resting and puff responses almost 
exclusively target the AVLP (Extended Data Fig. 7b,c), providing a 
means for interpreting whether sensory cues arise from self-motion or 
the movement of objects in the external environment. By contrast, the 
GNG is targeted by ANs encoding a wide variety of behavioral states, 
including walking, eye grooming and PEs (Extended Data Fig. 7b,c). 
These signals may help to ensure that future behaviors are compatible 
with ongoing ones.

Because AN dendrites and axons within the VNC might be used to 
compute behavioral state encodings, we next asked to what extent their 
projection patterns within the VNC are predictive of an AN’s encoding. 
For example, ANs encoding resting might require sampling each VNC 
leg neuromere (T1, T2 and T3) to confirm that every leg is inactive. By 
quantifying AN projections within the VNC (Fig. 3b), we found that, 
indeed, ANs encoding resting (for example, SS27485) each project to 
all VNC leg neuromeres (Extended Data Fig. 7b,d). By contrast, ANs 
encoding foreleg-dependent eye grooming (SS25469) project only 
to T1 VNC neuromeres that control the front legs (Extended Data  
Fig. 7b,d). To more deeply understand how the morphological fea-
tures of ANs relate to behavioral state encoding, we next performed a 
detailed study of a diverse subset of ANs.

Rest encoding and puff response encoding by 
morphologically similar ANs
AN classes that encode resting and puff-elicited responses have coarsely 
similar projection patterns: both almost exclusively target the brain’s 
AVLP while also sampling from all three VNC leg neuromeres (T1–T3) 
(Extended Data Fig. 7). We next investigated which more detailed mor-
phological features might be predictive of their very distinct encoding 
by closely examining the functional and morphological properties 
of specific pairs of ‘rest ANs’ (SS27485) and ‘puff-responsive ANs’ 
(SS36112). Neural activity traces of rest ANs and puff-responsive ANs 

Fig. 4 | Functional and anatomical properties of ANs that encode resting 
or responses to puffs. a,g, Top left: two-photon image of axons from an 
SS27485-Gal4 (a) or an SS36112-Gal4 (g) animal expressing OpGCaMP6f (cyan) 
and tdTomato (red). ROIs are numbered. Scale bars, 5 μm. Bottom: behavioral 
epochs are color-coded. Representative ΔF/F time series from two ROIs (green) 
overlaid with a prediction (black) obtained by convolving resting epochs (a) or 
puff stimuli (g) with Ca2+ indicator response functions. Explained variances are 
indicated (R2). b,h, Mean (solid line) and 95% confidence interval (gray shading) 
of ΔF/F traces for rest ANs (b) or puff-responsive ANs (h) during epochs of 
forward walking (left), resting (middle) or CO2 puffs (right). 0 s indicates the start 
of each epoch. Data more than 0.7 s after onset (yellow region) are compared with 
an Otsu thresholded baseline (one-way ANOVA and two-sided Tukey post hoc 
comparison, ***P < 0.001, **P < 0.01, *P < 0.05, NS, not significant). c,i, Standard 

deviation projection image of an SS27485-Gal4 (c) or an SS36112-Gal4 (i) nervous 
system expressing smFP and stained for GFP (green) and Nc82 (blue). Cell bodies 
are indicated (white asterisk). Scale bars, 40 μm. d,j, Projection as in c and i 
but for one MCFO-expressing, traced neuron (black asterisk). The brain’s AVLP 
(cyan) and the VNC’s leg neuromeres (yellow) are color-coded. Scale bars, 40 μm. 
e,f,k,l, Higher magnification projections of brains (top) and VNCs (bottom) from 
SS27485-Gal4 (e,f) or SS36112-Gal4 (k,l) animals expressing the stochastic label 
MCFO (e,k) or the synaptic marker, syt:GFP (green) and tdTomato (red) (f,l). 
Insets magnify dashed boxes. Indicated are cell bodies (asterisks), bouton-like 
structures (white arrowheads) and VNC leg neuromeres (T1, T2 and T3). Scale 
bars for brain images and insets are 5 μm (e) or 10 μm (k) and 2 μm for insets. 
Scale bars for VNC images and insets are 20 μm and 10 μm, respectively.
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could be reliably predicted by regressors for resting (Fig. 4a) and puff 
stimuli (Fig. 4g), respectively. This was statistically confirmed by com-
paring behavior-triggered averages of AN responses at the onset of 
resting (Fig. 4b) versus puff stimulation (Fig. 4h), respectively. Notably, 

although CO2 puffs frequently elicited brief periods of backward walk-
ing, close analysis revealed that puff-responsive ANs primarily respond 
to gust-like puffs and do not encode backward walking (Extended Data 
Fig. 8a–d). They also did not encode responses to CO2 specifically: the 
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same neurons responded equally well to puffs of air (Extended Data 
Fig. 8e–m).

As mentioned, rest ANs and puff-responsive ANs, despite their 
very distinct encoding, exhibit similar innervation patterns in the brain 
and VNC. However, MCFO-based single-neuron analysis revealed a few 
subtle but potentially important differences. First, rest AN and puff AN 
cell bodies are located in the T2 (Fig. 4c) and T3 (Fig. 4i) neuromeres, 
respectively. Second, although both AN classes project medially into 
all three leg neuromeres (T1–T3), rest ANs have a simpler morphology 
(Fig. 4d) than the more complex arborizations of puff-responsive ANs 
in the VNC (Fig. 4j). In the brain, both AN types project to nearly the 
same ventral region of the AVLP where they have varicose terminals 
(Fig. 4e,k). Using syt:GFP, a GFP-tagged synaptotagmin (presynaptic) 
marker, we confirmed that these varicosities house synapses (Fig. 4f, 
top, and Fig. 4l, top). Notably, in addition to smooth, likely dendritic 
arbors, both AN classes have axon terminals within the VNC (Fig. 4f, 
bottom, and Fig. 4l, bottom).

Taken together, these results demonstrate that even very subtle 
differences in VNC patterning can give rise to markedly different AN 
tuning properties. In the case of rest ANs and puff-responsive ANs, 
we speculate that this might be due to physically close but distinct 
presynaptic partners—possibly leg proprioceptive afferents for rest 
ANs and leg tactile afferents for puff-responsive ANs.

Walk encoding or turn encoding correlates with VNC 
projections
Among the ANs that we analyzed, most encode walking (Fig. 2d). We 
asked whether an AN’s patterning within the VNC may predict its 
encoding of locomotion generally (for example, walking irrespective 
of kinematics) or specifically (for example, turning in a particular direc-
tion). Indeed, we observed that, whereas the activity of one pair of ANs 
(SS29579, ‘walk ANs’) was remarkably well explained by the timing and 
onset of walking epochs (Fig. 5a–c), for other ANs, a simple walking 
regressor could account for much less of the variance in neural activity 
(Fig. 2d). We reasoned that these ANs might, instead, encode narrower 
locomotor dimensions, such as turning. For a bilateral pair of DNa01 
DNs, their difference in activity correlates with turning direction28,41. To 
see if this relationship might also hold for some pairs of walk-encoding 
ANs, we quantified the degree to which the difference in pairwise activ-
ity can be explained by spherical treadmill yaw or roll velocity—a proxy 
for turning (Fig. 5h). Indeed, we found several pairs of ANs for which 
turning explained a relatively large amount of variance. For one pair of 
‘turn ANs’ (SS51046), although a combination of forward and backward 
walking regressors poorly predicted neural activity (Fig. 5i), a regres-
sor based on spherical treadmill roll velocity strongly predicted the 
pairwise difference in neural activity (Fig. 5j). When an animal turned 

right, the right (ipsilateral) turn AN was more active, and the left turn 
AN was more active during left turns (Fig. 5k). During forward walking, 
both turn ANs were active (Fig. 5l).

We next asked how VNC patterning might predict this distinction 
between general (walk ANs) versus specific (turn ANs) locomotor 
encoding. Both AN classes have cell bodies in the VNC’s T2 neuromere 
(Fig. 5d,m). However, walk ANs bilaterally innervate the T2 neuromere 
(Fig. 5e), whereas turn ANs unilaterally innervate T1 and T2 (Fig. 5n, 
black). Their ipsilateral T2 projections are smooth and likely dendritic 
(Fig. 5o1,p1), whereas their contralateral T1 projections are varicose 
and exhibit syt:GFP puncta, suggesting that they harbor presyn-
aptic terminals (Fig. 5o2,p2). Both walk ANs (Fig. 5d,e) and turn ANs  
(Fig. 5m,n) project to the brain’s GNG. However, only turn ANs project 
to the WED (Fig. 5n). Notably, walk AN terminals in the brain (Fig. 5f) 
are not labeled by syt:GFP (Fig. 5g), suggesting that they may be neu-
romodulatory in nature.

These data support the notion that general versus specific AN 
behavioral state encoding may depend on the laterality of VNC pat-
terning. Additionally, whereas pairs of broadly tuned walk ANs that 
bilaterally innervate the VNC are synchronously active, pairs of nar-
rowly tuned turn ANs are asynchronously active (Extended Data Fig. 9).

Foreleg-dependent behaviors encoded by anterior VNC ANs
In addition to locomotion, flies use their forelegs to perform complex 
movements, including reaching, boxing, courtship tapping and several 
kinds of grooming. An ongoing awareness of these behavioral states 
is critical to select appropriate future behaviors that do not lead to 
unstable postures. For example, before deciding to groom its hindlegs, 
an animal must first confirm that its forelegs are stably on the ground 
and not also grooming.

We noted that some ANs project only to the VNC’s anterior-most, 
T1 leg neuromere (Extended Data Fig. 7d). This pattern implies a 
potential role in encoding behaviors that depend only on the forelegs. 
Indeed, close examination revealed two classes of ANs that encode 
foreleg-related behaviors. We found ANs (SS42740) that were active 
during multiple foreleg-dependent behaviors, including walking, push-
ing and grooming (‘foreleg ANs’; overlaps with R70H06) (Extended 
Data Fig. 7a and Fig. 6a,b). By contrast, another pair of ANs (SS25469) 
was narrowly tuned and sometimes asynchronously active only dur-
ing eye grooming (‘eye groom ANs’) (Extended Data Fig. 7a,b and  
Fig. 6g,h). Similarly to walking and turning, we hypothesized that this 
general (foreleg) versus specific (eye groom) behavioral encoding 
might be reflected by a difference in the promiscuity and laterality of 
AN innervations in the VNC.

To test this hypothesis, we compared the morphologies of foreleg 
and eye groom ANs. Both had cell bodies in the T1 neuromere, although 

Fig. 5 | Functional and anatomical properties of ANs that encode walking or 
turning. a,i, Top left: two-photon image of axons from an S29579-Gal4 (a) or an 
SS51046-Gal4 (i) animal expressing OpGCaMP6f (cyan) and tdTomato (red). ROIs 
are numbered. Scale bars, 5 μm. Bottom: behavioral epochs are color-coded. 
Representative ΔF/F time series from two ROIs (green) overlaid with a prediction 
(black) obtained by convolving forward and backward walking epochs with Ca2+ 
indicator response functions. Explained variance is indicated (R2). b,l, Mean 
(solid line) and 95% confidence interval (gray shading) of ΔF/F traces during 
epochs of forward walking. 0 s indicates the start of each epoch. Data more than 
0.7 s after onset (yellow region) are compared with an Otsu thresholded baseline 
(one-way ANOVA and two-sided Tukey post hoc comparison, ***P < 0.001, 
**P < 0.01, *P < 0.05, NS, not significant). c,k, Fluorescence (OpGCaMP6f) 
event-triggered average ball rotations for ROI 0 (left) or ROI 3 (right) of an 
SS29579-Gal4 animal (c) or ROI 0 (left) or ROI 1 (right) of an SS51046-Gal4 animal 
(k). Fluorescence events are time-locked to 0 s (green). Shown are mean and 
95% confidence intervals for forward (red), roll (blue) and yaw (purple) ball 
rotational velocities. d,m, Standard deviation projection image for an SS29579-
Gal4 (d) or an SS51046 (m) nervous system expressing smFP and stained for 

GFP (green) and Nc82 (blue). Cell bodies are indicated (white asterisks). Scale 
bar, 40 μm. e,n, Projection as in d and m but for one MCFO-expressing, traced 
neuron (black asterisks). The brain’s GNG (yellow) and WED (pink) and the VNC’s 
intermediate (green), wing (blue), haltere (red), tectulum and mesothoracic 
leg neuromere (yellow) are color-coded. Scale bar, 40 μm. f,g,o,p, Higher 
magnification projections of brains (top) and VNCs (bottom) of SS29579-Gal4 
(f,g) or SS51046-Gal4 (o,p) animals expressing the stochastic label MCFO (f,o) 
or the synaptic marker, syt:GFP (green) and tdTomato (red) (g,p). Insets magnify 
dashed boxes. Indicated are cell bodies (asterisks), bouton-like structures 
(white arrowheads) and VNC leg neuromeres (T1 and T2). o1 and p1 or o2 and p2 
correspond to locations 1 and 2 in n. Scale bars for brain images and insets are 
10 μm and 2 μm, respectively. Scale bars for VNC images and insets are 20 μm 
and 4 μm, respectively. h, Quantification of the degree to which the difference in 
pairwise activity of ROIs for multiple AN driver lines can be explained by spherical 
treadmill yaw or roll velocity—a proxy for turning. P values report the one-tailed 
F-statistic of overall significance of the complete regression model with none of 
the regressors shuffled (*P < 0.05, **P < 0.01 and ***P < 0.001).
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foreleg ANs were posterior (Fig. 6c), and eye groom ANs were anterior 
(Fig. 6i). Foreleg ANs and eye groom ANs also both projected to the 
dorsal T1 neuromere, with eye groom AN neurites restricted to the 
tectulum (Fig. 6d,j). Notably, foreleg AN puncta (Fig. 6e, bottom) 

and syt:GFP expression (Fig. 6f, bottom) were bilateral and diffuse, 
whereas eye groom AN puncta (Fig. 6k, bottom) and syt:GFP expression  
(Fig. 6l, bottom) were largely restricted to the contralateral T1 neu-
romere. Projections to the brain paralleled this difference in VNC 
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projection promiscuity: foreleg ANs terminated across multiple brain 
areas—GNG, AVLP, SAD, VES, IPS and SPS (Fig. 6e,f, top)— whereas eye 
groom ANs narrowly targeted the GNG (Fig. 6k,l, top).

These results further illustrate how an AN’s encoding relates to its 
VNC patterning. Here, diffuse, bilateral projections are associated with 
encoding multiple behavioral states that require foreleg movements, 
whereas focal, unilateral projections are related to a narrow encoding 
of eye grooming.

Temporal integration of PEs by an AN cluster
Flies often generate spontaneous PEs while resting (Fig. 7a, yellow 
ticks). We observed that PE-ANs (SS31232, overlap with SS30303)  
(Fig. 2d) become active during PE trains—a sequence of PEs that occurs 
within a short period of time (Fig. 7a). Close examination revealed 
that PE-AN activity slowly ramped up over the course of PE trains. This 
made them difficult to model using a simple PE regressor: their activ-
ity levels were lower than predicted early in PE trains and higher than 
predicted late in PE trains. On average, across many PE trains, PE-AN 
activity reached a plateau by the seventh PE (Fig. 7b).

Thus, PE-AN activity seemed to convey the temporal integration 
of discrete events42,43. Therefore, we next asked if PE-AN activity might 
be better predicted using a regressor that integrates the number of PEs 
within a given time window. The most accurate prediction of PE-AN 
dynamics could be obtained using an integration window of more 
than 10 s (Fig. 7c, red circles), making it possible to predict both the 
undershoot and overshoot of PE-AN activity at the start and end of PE 
trains, respectively (Fig. 7d).

Temporal integration can be implemented using a line attractor 
model44,45 based on recurrently connected circuits. To explore the 
degree to which PE-AN might support an integration of PE events via 
recurrent interconnectivity, we examined PE-AN morphologies more 
closely. PE-AN cell bodies were located in the anterior T1 neuromere 
(Fig. 7e). From there, they projected dense neurites into the midline 
of the T1 neuromere (Fig. 7f). Among these neurites in the VNC, we 
observed puncta and syt:GFP expression consistent with presynaptic 
terminals (Fig. 7g,h, bottom). Their dense and highly overlapping 
arbors would be consistent with interconnectivity between PE-ANs, 
enabling an integration that may filter out sparse PE events associated 
with feeding and allow PE-ANs to convey long PE trains observed during 
deep rest states46 to the brain’s GNG (Fig. 7g,h, top).

Discussion
Animals must be aware of their own behavioral states to accurately 
interpret sensory cues and select appropriate future behaviors. In this 
study, we examined how this self-awareness might be conveyed to the 
brain by studying the activity and targeting of ANs in the Drosophila 
motor system. We discovered that ANs functionally encode behavioral 
states (Fig. 8a), predominantly those related to self-motion, such as 

walking and resting. The prevalence of AN walk encoding may repre-
sent an important source of global locomotor signals observed in the 
brain9,47,48. These encodings could be further distinguished as either 
general (for example, walk ANs that are active irrespective of particular 
locomotor kinematics and foreleg ANs that are active irrespective of 
foreleg kinematics) or specific (for example, turn ANs and eye groom 
ANs). Similarly, neurons in the vertebrate dorsal spinocerebellar tract 
have been shown to be more responsive to whole limb versus individual 
joint movements49. However, we note an important limitation: the time 
scales of calcium signals with a decay time constant on the order of 
1 s (ref. 50) are not well matched to the time scales of leg movements, 
which, during very fast walking, can cycle every 25 ms (ref. 24). To partly 
compensate for the technical hurdle of relating relatively rapid joint 
movements to slow calcium indicator decay kinetics, we convolved 
joint angle time series with a kernel that would maximize the explana-
tory power of our regression analyses. Additionally, we confirmed that 
potential issues related to the non-orthogonality of joint angles and 
leg movements would not obscure our ability to explain the variance 
of AN neural activity (Extended Data Fig. 3). Our observation that eye 
groom AN activity could be explained by movements of the forelegs 
gave us further confidence that some leg movement encoding was 
detectable in our functional screen (Fig. 2c). However, to verify the 
relative absence of AN leg movement encoding, future work could use 
faster neural recording approaches or directly manipulate the legs of 
restrained animals while performing electrophysiological recordings 
of AN activity40.

We found that most ANs do not project diffusely across the brain 
but, rather, specifically target either the AVLP or the GNG (Fig. 8b). 
We hypothesize that this may reflect the contribution of AN behav-
ioral state signals to two fundamental brain computations. First, the  
AVLP is a site known for multimodal, integrative sensory  
convergence31–36. However, we note that only a few studies have exam-
ined the functional role of this brain region. We speculate that the 
projection of ANs encoding resting, walking and gust-like puffs to 
the AVLP (Fig. 8c) may serve to contextualize time-varying sensory 
signals to indicate if they arise from self-motion or from objects 
moving and odors fluctuating in the world. A similar role—convey-
ing self-motion—has been proposed for neurons in the vertebrate 
dorsal spinocerebellar tract18. Second, the GNG is thought to be an 
action selection center with a substantial innervation by DNs37,38 and  
other ANs24. It should be cautioned, however, that relatively little 
is known about this brain region—and the greater subesophageal 
zone (SEZ)—beyond its role in taste processing. Nevertheless, here 
we propose that the projection of ANs encoding diverse behavioral 
states (Fig. 8d,e) to the GNG may contribute to the computation of 
whether potential future behaviors are compatible with ongoing ones. 
This role would be consistent with a hierarchical control approach 
used in robotics2.

Fig. 6 | Functional and anatomical properties of ANs that encode multiple 
foreleg behaviors or only eye grooming. a,g, Top left: two-photon image 
of axons from an SS42740-Gal4 (a) or an SS25469-Gal4 (g) animal expressing 
OpGCaMP6f (cyan) and tdTomato (red). ROIs are numbered. Scale bar, 5 μm. 
Bottom: behavioral epochs are color-coded. Representative ΔF/F time series 
from two ROIs (green) overlaid with a prediction (black) obtained by convolving 
all foreleg-dependent behavioral epochs (forward and backward walking as 
well as eye, antennal and foreleg grooming) for an SS42740-Gal4 animal (a) 
or eye grooming epochs for an SS25469-Gal4 animal (g) with Ca2+ indicator 
response functions. Explained variance is indicated (R2). b,h, Mean (solid line) 
and 95% confidence interval (gray shading) of ΔF/F traces for foreleg ANs (b) 
during epochs of forward walking (left), resting (middle) or eye grooming and 
foreleg rubbing (right) or eye groom ANs (h) during forward walking (left), eye 
grooming (middle) or foreleg rubbing (right) epochs. 0 s indicates the start of 
each epoch. Data more than 0.7 s after onset (yellow region) are compared with 
an Otsu thresholded baseline (one-way ANOVA and two-sided Tukey post hoc 

comparison, ***P < 0.001, **P < 0.01, *P < 0.05, NS, not significant). c,i, Standard 
deviation projection image for an SS42740-Gal4 (c) or an SS27485-Gal4 (i) 
nervous system expressing smFP and stained for GFP (green) and Nc82 (blue). 
Cell bodies are indicated (white asterisks). Scale bars, 40 μm. d,j, Projections 
as in c and i but for one MCFO-expressing, traced neuron (black asterisks). The 
brain’s GNG (yellow), AVLP (cyan), SAD (green), VES (pink), IPS (blue) and SPS 
(orange) and the VNC’s neck (orange), intermediate tectulum (green), wing 
tectulum (blue) and prothoracic leg neuromere (yellow) are color-coded. Scale 
bars, 40 μm. e,f,k,l, Higher magnification projections of brains (top) and VNCs 
(bottom) from SS42740-Gal4 (e,f) or SS25469-Gal4 (k,l) animals expressing 
the stochastic label MCFO (e,k) or the synaptic marker, syt:GFP (green) and 
tdTomato (red) (f,l). Insets magnify dashed boxes. Indicated are cell bodies 
(asterisks) and bouton-like structures (white arrowheads). Scale bars for brain 
images and insets are 20 μm and 2 μm, respectively. Scale bars for VNC images 
and insets are 20 μm and 2 μm, respectively.
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Notably, the GNG is also heavily innervated by DNs. Because ANs 
and DNs both contribute to action selection24,25,38,51, we speculate that 
they may connect within the GNG, forming a feedback loop between 

the brain and motor system. Specifically, ANs that encode specific 
behavioral states might excite DNs that drive the same behaviors to 
generate persistence while also suppressing DNs that drive conflicting 
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behaviors. For example, turn ANs may excite DNa01 and DNa02, which 
control turning28,41,52, and foreleg ANs may excite aDN1 and aDN2, which 
control grooming53. This hypothesis may soon be tested using con-
nectomics datasets54–56.

The morphology of an AN’s neurites in the VNC is, to some degree, 
predictive of its encoding (Fig. 8c–e). We observed this in several ways. 
First, ANs innervating all three leg neuromeres (T1, T2 and T3) encode 
global self-motion—walking, resting and gust-like puffs. Thus, rest 
ANs may sample from motor neurons driving the limb muscle tone 
needed to maintain a natural resting posture. Alternatively, based 
on their morphological overlap with femoral chordotonal organs 
(limb proprioception) afferents21 (Fig. 4c), they may be tonically active 
and then inhibited by joint movement sensing. By contrast, ANs with 
more restricted projections to one neuromere (T1 or T2) encode dis-
crete behavioral states—turning, eye grooming, foreleg movements 
and PEs. This might reflect the cost of neural wiring, a constraint that 
may encourage a neuron to sample the minimal sensory and motor 

information required to compute a particular behavioral state. For 
example, to specifically encode eye grooming, these ANs may sample 
from T1 motor neurons driving cyclical CTr roll movements that are 
uniquely observed during eye grooming57. This is supported by our 
observation that the front leg pair and, to some degree, right front leg 
movements alone can account for activity in these neurons (Fig. 2a–c), 
and this behavior is highly correlated with CTr roll (Extended Data Fig. 
3). To confirm this, future efforts should include electrophysiological 
recordings of eye groom ANs in restrained animals during magneti-
cally controlled joint movements21,40. Second, general ANs (encoding 
walking and foreleg-dependent behaviors) exhibited bilateral projec-
tions in the VNC, whereas narrowly tuned ANs (encoding turning and 
eye grooming) exhibited unilateral and smooth, putatively dendritic 
projections. This was correlated with the degree of synchrony in the 
activity of pairs of ANs (Extended Data Fig. 9).

For all ANs that we examined in depth, we found evidence of axon 
terminals within the VNC. Thus, ANs may not simply relay behavioral 
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number of PEs over time. a, Top left: two-photon image of axons from an 
SS31232-Gal4 animal expressing OpGCaMP6f (cyan) and tdTomato (red). ROIs 
are numbered. Scale bar, 5 μm. Bottom: behavioral epochs are color-coded. 
Representative ΔF/F time series from two ROIs (green) overlaid with a prediction 
(black) obtained by convolving PE epochs with a Ca2+ indicator response 
function. Explained variance is indicated (R2). b, ΔF/F, normalized with respect 
to the neuron’s 90th percentile, as a function of PE number within a PE train for 
ROIs 0 (solid boxes, filled circles) or 1 (dashed boxes, open circles). Data include 
25 PE trains from eight animals and are presented as IQR (box), median (center), 
1.5× IQR (whisker) and outliers (circles). c, Explained variance (R2) between 
ΔF/F time series and a prediction obtained by convolving PE epochs with a Ca2+ 
indicator response function and a time window. Time windows that maximize the 
correlation for ROIs 0 (solid line) and 1 (dashed line) are indicated (red circles). 
d, Behavioral epochs are color-coded. Representative ΔF/F time series from 

two ROIs (green) are overlaid with a prediction (black) obtained by convolving 
PE epochs with a Ca2+ response function as well as the time windows indicated 
in c (red circles). Explained variance is indicated (R2). e, Standard deviation 
projection image of a SS31232-Gal4 nervous system expressing smFP and stained 
for GFP (green) and Nc82 (blue). Cell bodies are indicated (white asterisks). Scale 
bar, 40 μm. f, Projection as in e but for one MCFO-expressing, traced neuron 
(black asterisks). The brain’s GNG (yellow) and the VNC’s intermediate tectulum 
(green) and prothoracic leg neuromere (yellow) are color-coded. Scale bar, 
40 μm. g,h, Higher magnification projections of brains (top) and VNCs (bottom) 
for SS31232-Gal4 animals expressing the stochastic label MCFO (g) or the 
synaptic marker, syt:GFP (green) and tdTomato (red) (h). Insets magnify dashed 
boxes. Indicated are cell bodies (asterisks) and bouton-like structures (white 
arrowheads). Scale bars for brain images are 10 μm. Scale bars for VNC images 
and insets are 20 μm and 2 μm, respectively.
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state signals to the brain but may also perform other roles. For example, 
they might contribute to motor control as components of central pat-
tern generators (CPGs) that generate rhythmic movements58. Similarly, 
rest ANs might control the limb muscle tone needed to maintain a natu-
ral resting posture. ANs might also participate in computing behavioral 
states. For example, here we speculate that recurrent interconnectiv-
ity among PE-ANs might give rise to their temporal integration and 
encoding of PE number44,45. Finally, ANs might contribute to action 
selection within the VNC. For example, eye groom ANs might project 
to the contralateral T1 neuromere to suppress circuits driving other 
foreleg-dependent behaviors, such as walking and foreleg rubbing.

In this study, we investigated animals that were generating spon-
taneous and puff-induced behaviors, including walking and grooming. 
However, ANs likely also encode other behavioral states. This is hinted 
at by the fact that some ANs’ neural activities were not well explained by 
any of our behavioral regressors, and nearly one-third of the ANs that we 
examined were unresponsive, possibly due to the absence of appropri-
ate context. For example, we found that some silent ANs could become 
very active during leg movements only when the spherical treadmill was 
removed (SS51017 and SS38631) (Extended Data Fig. 10). In the future, it 

would be of great importance to obtain an even larger sampling of ANs in 
multiple behavioral contexts and to test the degree to which AN encoding 
is genetically hardwired or capable of adapting during motor learning or 
after injury59,60. Our finding that ANs encode behavioral states and convey 
these signals to integrative sensory and action selection centers in the 
brain may guide the study of ANs in the mammalian spinal cord17,18,49 and 
also accelerate the development of more effective bioinspired algorithms 
for robotic sensory contextualization and action selection2.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41593-023-01281-z.

References
1.	 Crapse, T. B. & Sommer, M. A. Corollary discharge across the 

animal kingdom. Nat. Rev. Neurosci. 9, 587–600 (2008).
2.	 Brooks, R. A. A robust layered control system for a mobile robot. 

IEEE Journal on Robotics and Automation 2, 14–23 (1986).
3.	 Niell, C. M. & Stryker, M. P. Modulation of visual responses by 

behavioral state in mouse visual cortex. Neuron 65, 472–479 (2010).
4.	 Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, 

A. K. Single-trial neural dynamics are dominated by richly varied 
movements. Nat. Neurosci. 22, 1677–1686 (2019).

5.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional, 
brainwide activity. Science 364, eaav7893 (2019).

6.	 Maimon, G., Straw, A. D. & Dickinson, M. H. Active flight increases 
the gain of visual motion processing in Drosophila. Nat. Neurosci. 
13, 393–399 (2010).

7.	 Chiappe, M. E., Seelig, J. D., Reiser, M. B. & Jayaraman, V. Walking 
modulates speed sensitivity in Drosophila motion vision. Curr. 
Biol. 20, 1470–1475 (2010).

8.	 Fujiwara, T., Cruz, T. L., Bohnslav, J. P. & Chiappe, M. E. A faithful 
internal representation of walking movements in the Drosophila 
visual system. Nat. Neurosci. 20, 72–81 (2016).

9.	 Aimon, S. et al. Fast near-whole-brain imaging in adult Drosophila 
during responses to stimuli and behavior. PLoS Biol. 17, e2006732 
(2019).

10.	 Kim, A. J., Fitzgerald, J. K. & Maimon, G. Cellular evidence for 
efference copy in Drosophila visuomotor processing. Nat. 
Neurosci. 18, 1247–1255 (2015).

11.	 Zacarias, R., Namiki, S., Card, G. M., Vasconcelos, M. L. & Moita, M. 
A. Speed dependent descending control of freezing behavior in 
Drosophila melanogaster. Nat. Commun. 9, 3697 (2018).

12.	 Coen, P. et al. Dynamic sensory cues shape song structure in 
Drosophila. Nature 507, 233–237 (2014).

13.	 Zolin, A. et al. Context-dependent representations of movement 
in Drosophila dopaminergic reinforcement pathways. Nat. 
Neurosci. 24, 1555–1566 (2021).

14.	 Tuthill, J. C. & Wilson, R. I. Parallel transformation of tactile signals 
in central circuits of Drosophila. Cell 164, 1046–1059 (2016).

15.	 Patestas, M. & Gartner, L. P. Ascending sensory pathways. in A 
Textbook of Neuroanatomy 1st edn, 137–170 (Wiley, 2006).

16.	 Poulet, J. F. & Hedwig, B. New insights into corollary discharges 
mediated by identified neural pathways. Trends Neurosci. 30, 
14–21 (2007).

17.	 Buchanan, J. T. & Einum, J. F. The spinobulbar system in lamprey. 
Brain Res. Rev. 57, 37–45 (2008).

18.	 Stecina, K., Fedirchuk, B. & Hultborn, H. Information to 
cerebellum on spinal motor networks mediated by the dorsal 
spinocerebellar tract. J. Physiol. 591, 5433–5443 (2013).

19.	 Burrows, M. Sensory effect on flying. in The Neurobiology of an 
Insect Brain 1st edn, 541–544 (Oxford University Press, 1996).

AVLP

T1 T1

T2

T3

T1

T2

T3

AVLP

GNGGNG

Resting
Gust-like responses

Walking

Walking
Turning

Eye grooming
Foreleg movements

PE trains

SAD

a

c ed

bFunctional encoding Brain projections
Specific

Eye
grooming

Contextualize
dynamic cues

Gate action
transitions

Multimodal, integrative
sensory region (AVLP)

Action selection
region (GNG)

Foreleg
movements

Turning Walking

General Target Potential role

Fig. 8 | Summary of AN functional encoding, brain targeting and VNC 
patterning. a, ANs encode behavioral states in a specific (for example, eye 
grooming) or general (for example, any foreleg movement) manner.  
b, Corresponding anatomical analysis shows that ANs primarily target the AVLP, 
a multimodal, integrative brain region, and the GNG, a region associated with 
action selection. c,d, By comparing functional encoding with brain targeting  
and VNC patterning, we found that signals critical for contextualizing object 
motion—walking, resting and gust-like stimuli—are sent to the AVLP (c), whereas 
signals indicating diverse ongoing behavioral states are sent to the GNG  
(d), potentially to influence future action selection. e, Broad (for example, 
walking) or narrow (for example, turning) behavioral encoding is associated 
with diffuse and bilateral or restricted and unilateral VNC innervations, 
respectively. c–e, AN projections are color-coded by behavioral encoding. 
Axons and dendrites are not distinguished from one another. Brain and VNC 
regions are labeled. Frequently innervated brain regions—the GNG and AVLP—are 
highlighted (light orange). Less frequently innervated areas are outlined. The 
midline of the central nervous system is indicated (dashed line).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01281-z


Nature Neuroscience | Volume 26 | April 2023 | 682–695 695

Resource https://doi.org/10.1038/s41593-023-01281-z

20.	 Chen, C. et al. Functional architecture of neural circuits for leg 
proprioception in Drosophila. Curr. Biol. 31, 5163–5175 (2021).

21.	 Agrawal, S. et al. Central processing of leg proprioception in 
Drosophila. eLife 9, e60299 (2020).

22.	 Tsubouchi, A. et al. Topological and modality-specific 
representation of somatosensory information in the fly brain. 
Science 358, 615–623 (2017).

23.	 Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct 
rapid and flexible recruitment of visual circuits for course control 
in Drosophila. Neuron 110, 2124–2138 (2022).

24.	 Mann, K., Gordon, M. & Scott, K. A pair of interneurons influences 
the choice between feeding and locomotion in Drosophila. 
Neuron 79, 754–765 (2013).

25.	 Bidaye, S. S., Machacek, C., Wu, Y. & Dickson, B. J. Neuronal control 
of Drosophila walking direction. Science 344, 97–101 (2014).

26.	 Jenett, A. et al. A GAL4-driver line resource for Drosophila 
neurobiology. Cell Rep. 2, 991–1001 (2012).

27.	 Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for 
multicolor stochastic labeling reveal diverse stereotyped cell 
arrangements in the fly visual system. Proc. Natl Acad. Sci. USA 
112, E2967–E2976 (2015).

28.	 Chen, C.-L. et al. Imaging neural activity in the ventral nerve cord 
of behaving adult Drosophila. Nat. Commun. 9, 4390 (2018).

29.	 Günel, S. et al. DeepFly3D, a deep learning-based approach for 
3D limb and appendage tracking in tethered, adult Drosophila. 
eLife 8, e48571 (2019).

30.	 Seelig, J. D. et al. Two-photon calcium imaging from head-fixed 
Drosophila during optomotor walking behavior. Nat. Methods 7, 
535–540 (2010).

31.	 Panser, K. et al. Automatic segmentation of Drosophila neural 
compartments using GAL4 expression data reveals novel visual 
pathways. Curr. Biol. 26, 1943–1954 (2016).

32.	 Mohamed, A. A. M., Hansson, B. S. & Sachse, S. Third-order 
neurons in the lateral horn enhance bilateral contrast of odor 
inputs through contralateral inhibition in Drosophila. Front. 
Physiol. 10, 851 (2019).

33.	 Matsuo, E. et al. Organization of projection neurons and local 
neurons of the primary auditory center in the fruit fly Drosophila 
melanogaster. J. Comp. Neurol. 524, 1099–1164 (2016).

34.	 Lai, J. S.-Y., Lo, S.-J., Dickson, B. J. & Chiang, A.-S. Auditory circuit 
in the Drosophila brain. Proc. Natl Acad. Sci. USA 109, 2607–2612 
(2012).

35.	 Kamikouchi, A., Shimada, T. & Ito, K. Comprehensive classification 
of the auditory sensory projections in the brain of the fruit fly 
Drosophila melanogaster. J. Comp. Neurol. 499, 317–356 (2006).

36.	 Miyamoto, T. & Amrein, H. Suppression of male courtship by 
a Drosophila pheromone receptor. Nat. Neurosci. 11, 874–876 
(2008).

37.	 Tastekin, I. et al. Role of the subesophageal zone in sensorimotor 
control of orientation in Drosophila larva. Curr. Biol. 25, 1448–1460 
(2015).

38.	 Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. 
M. The functional organization of descending sensory-motor 
pathways in Drosophila. eLife 7, e34272 (2018).

39.	 Mathis, A. et al. DeepLabCut: markerless pose estimation of 
user-defined body parts with deep learning. Nat. Neurosci. 21, 
1281–1289 (2018).

40.	 Mamiya, A., Gurung, P. & Tuthill, J. C. Neural coding of leg 
proprioception in Drosophila. Neuron 100, 636–650 (2018).

41.	 Rayshubskiy, A. et al. Neural circuit mechanisms for steering 
control in walking Drosophila. Preprint at https://www.biorxiv.org/
content/10.1101/2020.04.04.024703v2 (2020).

42.	 Edwards, C. J., Leary, C. J. & Rose, G. J. Counting on inhibition and 
rate-dependent excitation in the auditory system. J. Neurosci. 27, 
13384–13392 (2007).

43.	 Naud, R., Houtman, D., Rose, G. J. & Longtin, A. Counting on 
dis-inhibition: a circuit motif for interval counting and selectivity 
in the anuran auditory system. J. Neurophysiol. 114, 2804–2815 
(2015).

44.	 Barak, O., Sussillo, D., Romo, R., Tsodyks, M. & Abbott, L. From 
fixed points to chaos: three models of delayed discrimination. 
Prog. Neurobiol. 103, 214–222 (2013).

45.	 Miller, P. Dynamical systems, attractors, and neural circuits. 
F1000Res. 5, F1000 Faculty Rev-992 (2016).

46.	 van Alphen, B., Semenza, E. R., Yap, M., van Swinderen, B. & 
Allada, R. A deep sleep stage in Drosophila with a functional role 
in waste clearance. Sci. Adv. 7, eabc2999 (2021).

47.	 Schaffer, E. S. et al. Flygenvectors: the spatial and temporal 
structure of neural activity across the fly brain. Preprint at https://
www.biorxiv.org/content/10.1101/2021.09.25.461804v1 (2021).

48.	 Brezovec, L. E., Berger, A. B., Druckmann, S. & Clandinin, T. 
R. Mapping the neural dynamics of locomotion across the 
drosophila brain. Preprint at https://www.biorxiv.org/content/10.11
01/2022.03.20.485047v1 (2022).

49.	 Bosco, G. & Poppele, R. Proprioception from a spinocerebellar 
perspective. Physiol. Rev. 81, 539–568 (2001).

50.	 Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging 
neuronal activity. Nature 499, 295–300 (2013).

51.	 Cande, J. et al. Optogenetic dissection of descending behavioral 
control in Drosophila. eLife 7, e34275 (2018).

52.	 Bidaye, S. S. et al. Two brain pathways initiate distinct forward 
walking programs in Drosophila. Neuron 108, 469–485 (2020).

53.	 Hampel, S., Franconville, R., Simpson, J. H. & Seeds, A. M. A 
neural command circuit for grooming movement control. eLife 4, 
e08758 (2015).

54.	 Zheng, Z. et al. A complete electron microscopy volume of the 
brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

55.	 Phelps, J. S. et al. Reconstruction of motor control circuits in adult 
Drosophila using automated transmission electron microscopy. 
Cell 184, 759–774 (2021).

56.	 Dorkenwald, S. et al. Flywire: online community for whole-brain 
connectomics. Nat. Methods 19, 119–128 (2022).

57.	 Lobato-Rios, V. et al. Neuromechfly, a neuromechanical model of 
adult Drosophila melanogaster. Nat. Methods 19, 620–627 (2022).

58.	 Marder, E. & Bucher, D. Central pattern generators and the control 
of rhythmic movements. Curr. Biol. 11, R986–R996 (2001).

59.	 Isakov, A. et al. Recovery of locomotion after injury in Drosophila 
melanogaster depends on proprioception. J. Exp. Biol. 219, 
1760–1771 (2016).

60.	 Hermans, L. et al. Long-term imaging of the ventral nerve cord in 
behaving adult Drosophila. Nat. Commun. 13, 5006 (2022).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureneuroscience
https://www.biorxiv.org/content/10.1101/2020.04.04.024703v2
https://www.biorxiv.org/content/10.1101/2020.04.04.024703v2
https://www.biorxiv.org/content/10.1101/2021.09.25.461804v1
https://www.biorxiv.org/content/10.1101/2021.09.25.461804v1
https://www.biorxiv.org/content/10.1101/2022.03.20.485047v1
https://www.biorxiv.org/content/10.1101/2022.03.20.485047v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-023-01281-z

Methods
Fly stocks and husbandry
Split-Gal4 (spGal4) lines (SS*****) were generated by the Dickson labo-
ratory and the FlyLight project ( Janelia Research Campus). When 
generating split-Gal4 driver lines, we first annotated as many ANs as 
possible in the Gal4 MCFO image library. Then, we selected neurons 
based on their innervation patterns within the VNC (that is, disregard-
ing brain innervation patterns and genetic background information). 
We mainly targeted ANs with major innervation in the ventral part of 
VNC (that is, leg neuropils: VAC and intermediate neuropils for ProNm/
MesoNm/MetaNm) as well as the lower and intermediate regions of 
the tectulum. We did not include ANs with major innervations of the 
wing/haltere tectulum and abdominal ganglia. We also did not include 
putative neuromodulator ANs with large cell bodies in the midline of 
VNC and characteristic innervation patterns (for example, spreading 
throughout the VNC or having no branching within the VNC).

GMR lines,  MCFO-5 (R57C10-Flp2::PE ST in su(Hw)
a t t P 8 ;  ;  H A-V 5 - F L AG) ,  M C FO -7  ( R 57 C 10 - F l p 2 : : P E ST  i n 
attP18;;HA-V5-FLAG-OLLAS)27 and UAS-syt:GFP (Pw[+mC]=UAS-syt.
eGFP1, w[*]; ;) were obtained from the Bloomington Stock Center. MAN- 
spGal4f(; VT50660-AD; VT14014-DBD) and UAS-OpGCaM6f; 
UAS-tdTomato (; P20XUAS-IVS-Syn21-OpGCamp6F-p10 su(Hw)attp5; 
Pw[+mC]=UAS-tdTom.S3) were gifts from the Dickinson laboratory 
(Caltech). UAS-smFP (; ; 10xUAS-IVS-myr::smGdP-FLAG (attP2)) was a 
gift from the McCabe laboratory (EPFL).

Experimental animals were kept on dextrose cornmeal food at 
25 °C and 70% humidity on a 12-hour light/dark cycle using standard 
laboratory tools. All strains used are listed in Supplementary Table 1. 
Female flies were subjected to experimentation 3–6 days post eclo-
sion (dpe). Crosses used for experiments were flipped every 2–3 days.

Ethical compliance
All experiments were performed in compliance with relevant national 
(Switzerland) and institutional (EPFL) ethical regulations.

In vivo two-photon calcium imaging experiments
Two-photon imaging was performed as described in ref. 28 with minor 
changes in the recording configuration. We used ThorImage 3.1 
software to record coronal sections of AN axons in the cervical con-
nective to avoid having neurons move outside the field of view due 
to behavior-related tissue deformations. Imaging was performed 
using a galvo-galvo scanning system. Image dimensions ranged from 
256 × 192 pixels (4.3 fps) to 320 × 320 pixels (3.7 fps), depending on 
the location of axonal ROIs and the degree of displacement caused by 
animal behavior. During two-photon imaging, a seven-camera system 
was used to record fly behaviors as described in ref. 29. Rotations of the 
spherical treadmill and the timing of puff stimuli were also recorded. 
Air or CO2 puffs (0.08 L min−1) were controlled either using a custom 
Python script or manually with an Arduino controller. Puffs were deliv-
ered through a syringe needle positioned in front of the animal to stimu-
late behavior in sedentary animals or to interrupt ongoing behaviors. 
To synchronize signals acquired at different sampling rates—optic flow 
sensors, two-photon images, puff stimuli and videography—signals 
were digitized using a BNC 2110 terminal block (National Instrument) 
and saved using ThorSync 3.1 software (Thorlabs). Sampling pulses 
were then used as references to align data based on the onset of each 
pulse. Then, signals were interpolated using custom Python scripts.

Immunofluorescence tissue staining and confocal imaging
Fly brains and VNCs from 3–6-dpe female flies were dissected and fixed 
as described in ref. 28 with small modifications in staining, including 
antibodies and incubation conditions (see details below). Both primary 
antibodies (rabbit anti-GFP at 1:500, Thermo Fisher Scientific, RRID: 
AB_2536526; mouse anti-Bruchpilot/nc82 at 1:20, Developmental Stud-
ies Hybridoma Bank, RRID: AB_2314866) and secondary antibodies 

(goat anti-rabbit secondary antibody conjugated with Alexa Fluor 488 
at 1:500, Thermo Fisher Scientific, RRID: AB_143165; goat anti-mouse 
secondary antibody conjugated with Alexa Fluor 633 at 1:500, Thermo 
Fisher Scientific, RRID: AB_2535719) for smFP and nc82 staining were 
performed at room temperature for 24 h.

To perform high-magnification imaging of MCFO samples, nerv-
ous tissues were incubated with primary antibodies: rabbit anti-HA-tag 
at 1:300 dilution (Cell Signaling Technology, RRID: AB_1549585), rat 
anti-FLAG-tag at 1:150 dilution (DYKDDDDK, Novus, RRID: AB_1625981) 
and mouse anti-Bruchpilot/nc82 at 1:20 dilution. These were diluted in 
5% normal goat serum in PBS with 1% Triton-X (PBSTS) for 24 h at room 
temperature. The samples were then rinsed 2–3 times in PBS with 1% 
Triton-X (PBST) for 15 min before incubation with secondary antibod-
ies: donkey anti-rabbit secondary antibody conjugated with Alexa Fluor 
594 at 1:500 dilution ( Jackson ImmunoResearch, RRID: AB_2340621), 
donkey anti-rat secondary antibody conjugated with Alexa Fluor 647 
at 1:200 dilution ( Jackson ImmunoResearch, RRID: AB_2340694) and 
donkey anti-mouse secondary antibody conjugated with Alexa Fluor 
488 at 1:500 dilution ( Jackson ImmunoResearch, RRID: AB_2341099). 
These were diluted in PBSTS for 24 h at room temperature. Again, sam-
ples were rinsed 2–3 times in PBS with PBST for 15 min before incubation 
with the last diluted antibody: rabbit anti-V5-tag (GKPIPNPLLGLDST) 
conjugated with DyLight 550 at 1:300 dilution (Cayman Chemical, 
11261) for another 24 h at room temperature.

To analyze single-neuron morphological patterns, we crossed 
spGal4 lines with MCFO-7 (ref. 27). Dissections and MCFO staining were 
performed by Janelia FlyLight according to the FlyLight ‘IHC-MCFO’ 
protocol: https://www.janelia.org/project-team/flylight/protocols. 
Samples were imaged on an LSM 710 confocal microscope (Zeiss) with 
a Plan-Apochromat ×20/0.8 M27 objective.

To prepare samples expressing tdTomato and syt:GFP, we chose 
to stain only tdTomato to minimize false-positive signals for the syn-
aptotagmin marker. Samples were incubated with a diluted primary 
antibody: rabbit polyclonal anti-DsRed at 1:1,000 dilution (Takara 
Biomedical Technology, RRID: AB_10013483) in PBSTS for 24 h at room 
temperature. After rinsing, samples were then incubated with a second-
ary antibody: donkey anti-rabbit secondary antibody conjugated with 
Cy3 at 1:500 dilution ( Jackson ImmunoResearch, RRID: AB_2307443). 
Finally, all samples were rinsed two to three times for 10 min each in 
PBST after staining and then mounted onto glass slides with bridge cov-
erslips in SlowFade mounting media (Thermo Fisher Scientific, S36936).

Confocal imaging was performed as described in ref. 28. In addi-
tion, high-resolution images for visualizing fine structures were 
captured using a ×40 oil-immersion objective lens with an NA of 1.3 
(Plan-Apochromat ×40/1.3 DIC M27, Zeiss) on an LSM 700 confocal 
microscope (Zeiss). The zoom factor was adjusted based on the ROI size 
of each sample between 84.23 × 84.23 μm2 and 266.74 × 266.74 μm2. 
For high-resolution imaging, z-steps were fixed at 0.33 μm. Confo-
cal images were acquired using Zen 2011 14.0 software. Images 
were denoised; their contrasts were tuned; and standard deviation 
z-projections were generated using Fiji version 2.9.0 (ref. 61).

Two-photon image analysis
Raw two-photon imaging data were converted to grayscale TIFF image 
stacks for both green and red channels using custom Python scripts. 
RGB image stacks were then generated by combining both image stacks 
in Fiji (ref. 61). We used AxoID to perform ROI segmentation and to 
quantify fluorescence intensities. In brief, AxoID was used to register 
images using cross-correlation and optic-flow-based warping28. Then, 
raw and registered image stacks underwent ROI segmentation, allow-
ing %ΔF/F values to be computed across time from absolute ROI pixel 
values. Simultaneously, segmented RGB image stacks overlaid with 
ROI contours were generated. Each frame of these segmented image 
stacks was visually examined to confirm AxoID segmentation or to 
perform manual corrections using the AxoID graphical user interface 
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(GUI). In these cases, manually corrected %ΔF/F and segmented image 
stacks were updated. Our calculated value of 247 ANs is based on the 
number of ROIs observed in two-photon imaging data. However, we 
caution that each ROI may actually include closely intermingled fibers 
from several neurons.

Behavioral data analysis
To reduce computational and data storage requirements, we recorded 
behaviors at 30 fps. This is nearly the Nyquist frequency for rapid walk-
ing (up to 16 step cycles per second62).

3D joint positions were estimated using DeepFly3D (ref. 29). Owing 
to the amount of data collected, manual curation was not practical. 
Therefore, we classified points as outliers when the absolute value of 
any of their coordinates (x, y, z) was greater than 5 mm (much larger 
than the fly’s body size). Furthermore, we made the assumption that 
joint locations would be incorrectly estimated for only one of the three 
cameras used for triangulation. The consistency of the location across 
cameras could be evaluated using the reprojection error. To identify 
a camera with a bad prediction, we calculated the reprojection error 
using only two of the three cameras. The outlier was then replaced 
with the triangulation result of the pair of cameras with the smallest 
reprojection error. The output was further processed and converted 
to angles as described in ref. 57.

We classified behaviors based on a combination of 3D joint angle 
dynamics and rotations of the spherical treadmill. First, to capture the 
temporal dynamics of joint angles, we calculated wavelet coefficients 
for each angle using 15 frequencies between 1 Hz and 15 Hz (refs. 63,64). We 
then trained a histogram gradient boosting classifier65 using joint angles, 
wavelet coefficients and ball rotations as features. Because flies perform 
behaviors in an unbalanced way (some behaviors are more frequent than 
others), we balanced our training data using SMOTE66. In brief, for less 
frequent behaviors, SMOTE upsamples the number of data points to 
match that of the most frequent behavior. To do this, it adds new data 
points through linear interpolation. Note that we only processed the 
training data in this way to get better classification accuracy for less 
common behaviors. The test data were not upsampled. Thus, we show a 
different number of frames in Extended Data Fig. 1e. The model was vali-
dated using five-fold, three-times-repeated, stratified cross-validation.

Fly speeds and heading directions were estimated using optical 
flow sensors28. To further improve the accuracy of the onset of walk-
ing, we applied empirically determined thresholds (pitch: 0.0038; 
roll: 0.0038; yaw: 0.014) to the rotational velocities of the spherical 
treadmill. The rotational velocities were smoothed and denoised using 
a moving average filter (length 81). All frames that were not previously 
classified as grooming or pushing, and for which the spherical tread-
mill was classified as moving, were labeled as ‘walking’. These were 
furthered subdivided into forward or backward walking depending on 
the sign of the pitch velocity. Conversely, frames for which the spherical 
treadmill was not moving were labeled as ‘resting’. To reduce the effect 
of optical flow measurement jitter, walking and resting labels were 
processed using a hysteresis filter that changes state only if at least 
15 consecutive frames are in a new state. Classification in this manner 
was generally effective but most challenging for kinematically similar 
behaviors, such as eye and antennal grooming or hindleg rubbing and 
abdominal grooming (Extended Data Fig. 1e).

PE events were classified based on the length of the proboscis 
(Extended Data Fig. 1a–d). First, we trained a deep network39 to identify 
the tip of the proboscis and a static landmark (the ventral part of the 
eye) from side-view camera images. Then, the distance between the tip 
of proboscis and this static landmark was calculated to obtain the PE 
length for each frame. A semi-automated PE event classifier was made 
by first denoising the traces of PE distances using a median filter with 
a 0.3-s running average. Traces were then normalized to be between 0 
(baseline values) and 1 (maximum values). Next, PE speed was calcu-
lated using a data point interval of 0.1 s to detect large changes in PE 

length. This way, only peaks larger than a manually set threshold of 
0.03 upon Δnormalized length per 0.1 s were considered. Because the 
peak speed usually occurred during the rising phase of a PE, a kink in 
PE speed was identified by multiplying the peak speed with an empiri-
cally determined factor ranging from 0.4 to 0.6 and finding that speed 
within 0.5 s before the peak speed. The end of a PE was the timepoint at 
which the same speed was observed within 2 s after the peak PE speed. 
This filtered out occasions where the proboscis remained extended for 
long periods of time. All quantified PE lengths and durations were then 
used to build a filter to remove false positives. PEs were then binarized 
to define PE epochs.

To quantify animal movements when the spherical treadmill was 
removed, we manually thresholded the variance of pixel values from a 
side-view camera within a region of the image that included the fly. Pixel 
value changes were calculated using a running window of 0.2 seconds. 
Next, the standard deviation of pixel value changes was generated using 
a running window of 0.25 seconds. This trace was then smoothed, and 
values lower than the empirically determined threshold were called 
‘resting’ epochs. The remainder were considered ‘movement’ periods.

Regression analysis of PE integration time
To investigate the integrative nature of the PE-AN responses, we con-
volved PE traces with uniform time windows of varying sizes. This con-
volution was performed such that the fluorescence at each timepoint 
would be the sum of fluorescence during the previous ‘window_size’ 
frames (that is, not a centered sliding window but one that uses only 
previous timepoints), effectively integrating over the number of previ-
ous PEs. This integrated signal was then masked such that all timepoints 
where the fly was not engaged in PE were set to zero. Then, this trace 
was convolved with a calcium indicator decay kernel, notably yielding 
non-zero values in the time intervals between PEs. We then determined 
the explained variance as described elsewhere and finally chose a win-
dow size maximizing the explained variance.

Linear modeling of neural fluorescence traces
Each regression matrix contains elements corresponding to the results 
of a ridge regression model for predicting the time-varying fluores-
cence (% ΔF

F
) of ANs using specific regressors (for example, joint angles 

or behaviors). To account for slow calcium indicator decay dynamics, 
each regressor was convolved with a calcium response function. The 
half-life of the calcium response function was chosen from a range of 
0.2 s to 0.95 s (ref. 50) in 0.05-s steps to maximize the variance in fluo-
rescence traces that convolved regressors could explain. The rise time 
was fixed at 0.1415 seconds50. The ridge penalty parameter was chosen 
using nested ten-fold stratified cross-validation67. The intercept and 
weights of all models examining behavioral regressors were restricted 
to be positive, limiting our analysis to excitatory neural activity (this 
was not the case for models examining joint angle encoding, which 
could be either positive or negative). This constraint was required to 
study the UEV of behavioral regressors. For example, otherwise the 
variance of a walk-encoding AN could be nearly equally well explained 
by a positive walking regressor as by a negative resting regressor. 
Although our approach to %ΔF/F baseline normalization confounds 
the search for negative (putative inhibitory) deflections, our thorough 
visual inspection of neural activity traces did not reveal bi-phasic 
deflections from baseline. These would be expected if ANs were excited 
or inhibited depending on the ongoing behavioral state. Values shown 
in the matrices are the mean of ten-fold stratified cross-validation. We 
calculated UEV and all-explained variance (AEV) by temporally shuffling 
the regressor in question or all other regressors, respectively4. We 
tested the overall significance of our models using an F-statistic to 
reject the null hypothesis that the model does not perform better than 
an intercept-only model. The prediction of individual traces was per-
formed using a single regressor plus intercept. Therefore, they were 
not regularized.
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Behavior-based neural activity analysis
For a given behavior, ΔF/F traces were compiled, cropped and aligned 
with respect to their onset times. Mean and 95% confidence intervals for 
each timepoint were then calculated from these data. Because the dura-
tion of each behavioral epoch was different, we computed mean and 
confidence intervals only for epochs that had at least five data points.

To test if each behavior-triggered average ΔF/F was significantly 
different from the baseline, first, we aligned and upsampled fluores-
cence data that were normalized between 0 (baseline mean) and 1 
(maximum) for each trial. For each behavioral epoch, the first 0.7 s of 
data were removed. This avoided contaminating signals with neural 
activity from preceding behaviors (due to the slow decay dynamics 
of OpGCaMP6f). Next, to be conservative in judging whether data 
reflected noisy baseline or real signals, we studied their distributions. 
Specifically, we tested the normality of 20 resampled groups of 150 
bootstrapped data points—a size that reportedly maximizes the power 
of the Shapiro–Wilk test68. If a majority of results did not reject the null 
hypothesis, the entire recording was considered baseline noise, and 
the ΔF/F for a given behavioral class was not considered significantly 
different from baseline. On the other hand, if the data points were not 
normally distributed, the baseline was determined using an Otsu filter. 
For recordings that passed this test of normality, if the majority of six 
ANOVA tests on the bootstrapped data rejected the null hypothesis, 
and the data points of a given behavior were significantly different 
(***P < 0.001, **P < 0.01, *P < 0.05) from baseline (as indicated by a 
post hoc Tukey test), these data were considered signal and not noise.

To analyze PE-AN responses to each PE during PE trains, putative 
trains of PEs were manually identified to exclude discrete PE events. PE 
trains included at least three consecutive PEs in which each PE lasted 
at least 1 second, and there was less than 3 s between each PE. Then, 
the mean fluorescence of each PE was computed for 25 PE trains (n = 11 
animals). The median, interquartile range (IQR) and 1.5× IQR were then 
computed for PEs depending on their ordered position within their PE 
trains. We focused our analysis on the first 11 PEs because they had a 
sufficiently large amount of data.

Neural fluorescence-triggered averages of spherical treadmill 
rotational velocities
A semi-automated neural fluorescence event classifier was constructed 
by first denoising ΔF/F traces by averaging them using a 0.6-s running 
window. Traces were then normalized to be between 0 (their baseline 
values) and 1 (their maximum values). To detect large deviations, the 
derivative of the normalized ΔF/F time series was calculated at an inter-
val of 0.1 seconds. Only peaks greater than an empirically determined 
threshold of 0.03 upon Δnormalized ΔF/F per 0.1 s were considered 
events. Because peak fluorescence derivatives occurred during the 
rising phase of neural fluorescence events, the onset of a fluorescence 
event was identified as the time where the ΔF/F derivative was 0.4–0.6× 
the peak within the preceding 0.5-s time window. The end of the event 
was defined as the time that the ΔF/F signal returned to the amplitude at 
event onset before the next event. False positives were removed by filter-
ing out events with amplitudes and durations that were lower than the 
empirically determined threshold. Neural activity event analysis for turn 
ANs was performed by testing if the mean normalized fluorescence event 
for one ROI was larger than the other ROI by an empirically determined 
factor of 0.2×. Corresponding ball rotations for events that pass these 
criteria were then collected. Fluorescence events onsets were then set to 
0 s and aligned with spherical treadmill rotations. Using these rotational 
velocity data, we calculated the mean and 95% confidence intervals for 
each timepoint with at least five data points. A 1-s period before each 
fluorescence event was also analyzed as a baseline for comparison.

Brain and VNC confocal image registration
All confocal images, except for MCFO image stacks, were registered 
based on nc82 neuropil staining. We built a template and registered 

images using the CMTK munger extension69. Code for this registration 
process can be found at https://github.com/NeLy-EPFL/MakeAverage-
Brain/tree/workstation. Brain and VNC of MCFO images were regis-
tered to JRC 2018 templates70 using the Computational Morphometry 
Toolkit: https://www.nitrc.org/projects/cmtk. The template brain and 
VNC can be downloaded here: https://www.janelia.org/open-science/
jrc-2018-brain-templates.

Analysis of individual AN innervation patterns
Single AN morphologies were traced by masking MCFO confocal 
images using either active tracing or manual background removal in 
Fiji61. Axons in the brain were manually traced using the Fiji plugin ‘SNT’. 
Most neurites in the VNC were isolated by (1) thresholding to remove 
background noise and outliers and (2) manually masking debris in 
images. In the case of ANs from SS29579, a band-pass color filter was 
applied to isolate an ROI that spanned across two color channels. The 
boundary of the color filter was manually tuned to acquire the stack 
for a single-neuron mask. After segmentation, the masks of individual 
neurons were applied across frames to calculate the intersectional 
pixel-wise sum with another mask containing (1) neuropil regions of 
the brain and VNC, (2) VNC segments or (3) left and right halves of the 
VNC. Brain and VNC neuropil regions and their corresponding abbrevia-
tions were according to established nomenclature71. Neuropil region 
masks can be downloaded here: https://v2.virtualflybrain.org. These 
were also registered to the JRC 2018 template. Masks for T1, T2 and T3 
VNC segments were based on previously delimited boundaries38. The 
laterality of a neuron’s VNC innervation was calculated as the ratio of 
the absolute difference between its left and right VNC innervations 
divided by its total innervation. The bilaterality index is thus 1-laterality. 
Masks for the left and right VNC were generated by dividing the VNC 
mask across its midline.

Statistics and reproducibility
This study was designed as a functional and anatomical screen of many 
Drosophila driver lines. Each line was functionally examined in 2–5 
animals each. Anatomical studies were very reliable across samples. 
AN encodings were qualitatively reliable for the same driver line across 
animals aside from differences in SNR as well as minor variability in 
the number of ROIs for a subset of driver lines. No statistical methods 
were used to predetermine sample sizes. Our sample sizes are justified 
by AN functional response reliability and the long time required to 
functionally screen 70 driver lines in behaving animals. Experimental 
flies were excluded from functional analysis if two-photon microscopy 
data had a low SNR or occlusions or if animals appeared unhealthy 
after dissection. Because we performed a functional screen without 
prior hypotheses, the experiments were not randomized, and data 
collection and analyses were not performed blinded to the conditions 
of the experiments. To avoid false-positives due to statistical compari-
sons across a large numbers of tests, the data were bootstrapped (10 
groups with sample size 30) and the majority of results for multiple 
Mann–Whitney U-tests determined whether or not to reject the null 
hypothesis. For the analysis of normalized mean ΔF/F responses, for a 
given AN across all epochs of a specific behavior, the data distribution 
was assumed to be normal, but this was not formally tested. Otherwise, 
statistical analyses were non-parametric.

AxoID: a deep-learning-based software for tracking axons in 
imaging data
AxoID aims to extract the GCaMP fluorescence values for axons pre-
sent on coronal section two-photon microscopy imaging data. In this 
manuscript, it is used to record activity from ANs passing through the 
D. melanogaster cervical connective. Fluorescence extraction works 
by performing the following three main steps (Extended Data Fig. 2). 
First, during a detection stage, ROIs corresponding to axons are seg-
mented from images. Second, during a tracking stage, these ROIs are 
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tracked across frames. Third, fluorescence is computed for each axon  
over time.

To track axons, we used a two-step approach: detection and then 
tracking. This allowed us to improve each problem separately with-
out the added complexity of developing a detector that must also do 
tracking. Additionally, this allowed us to detect axons without having 
to know how many there are in advance. Finally, substantial movement 
artifacts between consecutive frames pose additional challenges for 
robustness in temporal approaches, although, in our case, we can apply 
the detection on a frame-by-frame basis. However, we note that we do 
not leverage temporal information.

Detection. Axon detection consists of finding potential axons by seg-
menting the background and foreground of each image. An ROI or 
putative axon is defined as a group of connected pixels segmented 
as foreground. Pixels are considered connected if they are next to  
one another.

By posing detection as a segmentation problem, we have the 
advantage of using standard computer vision methods, such as thresh-
olding or artificial neural networks, that have been developed for medi-
cal image segmentation. Nevertheless, this simplicity has a drawback: if 
axons appear very close to one another and their pixels are connected, 
they may be segmented as one ROI rather than two. We try to address 
this issue using an ROI separation approach described later.

Image segmentation is performed using deep learning on a 
frame-by-frame basis, whereby a network generates a binary segmen-
tation of a single image. As a post-processing step, all ROIs smaller than 
a minimum size are discarded. Here, we empirically chose 11 pixels 
as the minimum size as a tradeoff between removing small spurious 
regions while still detecting small axons.

We chose to use a U-Net model72 with slight modifications because 
of its, or its derivatives’, performance on recent biomedical image 
segmentation problems73–75. We add zero-padding to the convolu-
tions to ensure that the output segmentation has the same size as the 
input image, thus fully segmenting it in a single pass, and modify the 
last convolution to output a single channel rather than two. Batch 
normalization76 is used after each convolution and its non-linearity 
function. Finally, we reduce the width of the network by a factor of 4: 
each feature map has four times fewer channels than the original U-Net, 
not counting the input or output. The input pixel values are normal-
ized to the range [−1, 1], and the images are sufficiently zero-padded 
to ensure that the size can be correctly reduced by half at each  
max-pooling layer.

To train the deep learning network, we use the Adam optimizer77 
on the binary cross-entropy loss with weighting. Each background pixel 

is weighted based on its distance to the closest ROI, given by 1 + exp(− d
3

2
) 

with d as the Euclidean distance, plus a term that increases if the pixel 

is a border between two axons, given by exp(− d1+d2

6

2
), with d1 and d2 as

 the distances to the two closest ROIs, as in ref. 72. These weights aim to 
encourage the network to correctly segment the border of the ROI and 
to keep a clear separation between two neighboring regions. At training 
time, the background and foreground weights are scaled by b+f

2b
 and b+f

2f
, 

respectively, to take into account the imbalance in the number of pixels, 
where b and f are the quantity of background and foreground (that is, 
ROI) pixels in the entire training dataset. To evaluate the resulting deep 
network, we use the Sørensen–Dice coefficient78,79 at the pixel level, 
which is equivalent to the F1 score. The training is stopped when the 
validation performance does not increase anymore.

The network was trained on a mix of experimental and synthetic 
data. We also apply random gamma corrections to the training input 
images, with γ sampled in [0.7, 1.3] to keep reasonable values and to 
encourage robustness against intensity variations between experiments. 
The target segmentation of the axons on the experimental data was 
generated with conventional computer vision methods. First, the images 

were denoised with the non-local means algorithm80 using the Python 
implementation of OpenCV81. We used a temporal window size of 5 and 
performed the denoising separately for the red and green channels, with 
a filter strength h = 11. The grayscale result was then taken as the per-pixel 
maximum over the channels. After this, the images were smoothed with 
a Gaussian kernel of standard deviation 2 pixels and thresholded using 
the Otsu method82. A final erosion was applied, and small regions below 
11 pixels were removed. All parameter values were set empirically to 
generate good qualitative results. In the end, the results were manually 
filtered to keep only data with satisfactory segmentation.

Because the experimental data have a fairly simply visual structure, 
we constructed a pipeline in Python to generate synthetic images visu-
ally similar to real ones. This was achieved by first sampling an image 
size for a given synthetic experiment and then by sampling 2D Gauss-
ians over it to simulate the position and shape of axon cross-sections. 
After this, synthetic tdTomato levels were uniformly sampled, and 
GCaMP dynamics were created for each axon by convolving a GCaMP 
response kernel with Poisson noise to simulate spikes. Then, the image 
with the Gaussian axons was deformed multiple times to make differ-
ent frames with artificial movement artifacts. Eventually, we sampled 
from the 2D Gaussians to make the axons appear pixelated and added 
synthetic noise to the images.

In the end, we chose a deep-learning-based approach because our 
computer vision pipeline alone was not be robust enough. Our pipe-
line is used to generate a target segmentation dataset from which we 
manually select a subset of acceptable results. These results are then 
used to train the deep learning model.

Fine-tuning. At the beginning of the detection stage, an optional 
fine-tuning of the network can be applied to try to improve the segmen-
tation of axons. The goal is to have a temporary network adapted to the 
current data for better performance. To do this, we train the network 
on a subset of experimental frames using automatically generated 
target segmentations.

The subset of images is selected by finding a cluster of frames with 
high cross-correlation-based similarity. For this, we consider only the 
tdTomato channel to avoid the effects of GCaMP dynamics. Each image 
is first normalized by its own mean pixel intensity μ and standard devia-
tion σ: p(i, j) ← p(i,j)−μ

σ
, where p(i, j) is the pixel intensity p at the pixel 

location i, j. The cross-correlation is then computed between each pair 
of normalized images pm and pn as ∑i,jpm(i, j) ⋅ pn(i, j). Afterwards, we 
take the opposite of the cross-correlation as a distance measure and 
use it to cluster the frames with the OPTICS algorithm83. We set the 
minimal number of samples for a cluster to 20 to maintain at least 20 
frames for fine-tuning and a maximum neighborhood distance of half 
the largest distance between frames. Finally, we select the cluster of 
images with the highest average cross-correlation (that is, the smallest 
average distance between its elements).

Then, to generate a target segmentation image for these frames, 
we take their temporal average and optionally smooth it, if there are 
fewer than 50 images, to help remove the noise. The smoothing is done 
by filtering with a Gaussian kernel of standard deviation 1 pixel and 
then median filtering over each channel separately. The result is then 
thresholded through a local adaptive method, computed by taking the 
weighted mean of the local neighborhood of the pixel, subtracted by an 
offset. We apply Gaussian weighting over windows of 25 × 25 pixels, with 
an offset of −0.05, determined empirically. Finally, we remove regions 
smaller than 11 pixels. The result serves as a target segmentation image 
for all of the fine-tuning images.

The model is then trained on 60% of these frames with some data 
augmentation, whereas the other 40% are used for validation. The 
fine-tuning stops automatically if the performance on the validation 
frames drops. This avoids bad generalization for the rest of the images. 
The binary cross-entropy loss is used, with weights computed as dis-
cussed previously. For the data augmentation, we use random transla-
tion (±20%), rotation (±10°), scaling (±10%) and shearing (±5°).
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Tracking. Once the ROIs are segmented, the next step of the pipeline 
consists of tracking the axons through time. This means defining which 
axons exist and then finding the ROI they correspond to in each frame.

Tracking template. To accomplish this, the tracker records the 
number of axons, their locations with respect to one another and their 
areas. It stores this information into what we call the ‘tracker template’. 
Then, for each frame, the tracker matches its template axons to the ROIs 
to determine which regions correspond to which axons.

The tracker template is built iteratively. It is first initialized and then 
updated by matching with all experimental data. The initialization depends 
on the optional fine-tuning in the detection step. If there is fine-tuning, then 
the smoothed average of the similar frames and its generated segmenta-
tion are used. Otherwise, one frame of the experiment is automatically 
selected. For this, AxoID considers only the frames with a number of ROIs 
equal to the most frequent number of ROIs and then selects the image with 
the highest cross-correlation with the temporal average of these frames. 
It is then smoothed and taken with the segmentation produced by the 
detection network as initialization. The cross-correlation and smoothing 
are computed identically as in the fine-tuning. Each ROI in the initialization 
segmentation defines an axon in the tracker template, with its area and 
position recorded as initial properties.

Afterwards, we update them by matching each experimental frame 
to the tracker template. It consists of assigning the ROI to the tracker 
axons and then using these regions’ areas and positions to update the 
tracker. The images are matched sequentially, and the axons properties 
are taken as running averages of their matched regions. For example, 
considering the nth match, the area of an axon is updated as:

area ← area × n + areaROI
n + 1

Because of this, the last frames are matched to a tracker template that 
is different from the one used for the first frames. Therefore, we fix 
the axon properties after the updates and match each frame again to 
obtain the final identities of the ROIs.

Matching. To assign axon identities to the ROIs of a frame, we 
perform a matching between them as discussed above. To solve it,  
we define a cost function for matching a template axon to a region that 
represents how dissimilar they are. Then, using the Hungarian assign-
ment algorithm84, we find the optimal matching with the minimum 
total cost (Extended Data Fig. 2b).

Because some ROIs in the frame may be wrong detections, or some 
axons may not be correctly detected, the matching has to allow for the 
regions and axons to end up unmatched for some frames. Practically, 
we implement this by adding ‘dummy’ axons to the matching problem 
with a flat cost. To guarantee at least one real match, the flat cost is set 
to the maximum between a fixed value and the minimum of the costs 
between regions and template axons with a margin of 10%: dummy = 
max(v, 1.1 ⋅ min(costs)) with v = 0.3 the fixed value. Then, we can use 
the Hungarian method to solve the assignment, and all ROIs linked to 
these dummy axons can be considered unmatched.

We define the cost of assigning a frame’s ROI i to a tracker template 
axon k by their absolute difference in area plus the mean cost of an 
optimal inner matching of the other ROI to the other axons, assuming 
i and k are already matched:

cost(i, k) = warea|areai − areak| +
1

NROI − 1 ∑i′≠i
cost′(i′, k∗i′ )

where warea = 0.1 is a weight for balancing the importance of the area; NROI 
is the number of ROIs in the frame; and cost′(i′, k∗i′ ) is the inner cost of 
assigning region i′ ≠ i to axon k∗i′ ≠ k selected in an ‘inner’ assignment 
problem—see below. In other words, the cost is relative to how well the 
rest of the regions and axons match if we assume that i and k are already 
matched.

The optimal inner matching is computed through another Hungar-
ian assignment, for which we define another cost function. For this ‘inner’ 
assignment problem, the cost of matching an ROI i′ ≠ i and a template 
axon k′ ≠ k is defined by how far they are and their radial difference with 
respect to the matched i and k, plus their difference in area:

cost′(i′, k′) = (wdist

ηdist
||(xi′ − xi) − (xk′ − xk)|| +

wθ

ηθ
|θi′ − θk′ |)

H
H+xyk′

+warea|areai′ − areak′ |

with ηθ = arctan (αθ
ηdist

||xk′ − xk||
)

where wdist = 1.0, wθ = 0.1 and warea = 0.1 are weighting parameters; 
ηdist = min(H,W) and ηθ are normalization factors with H and W as the 
height and width of the frame; and αθ = 0.1 is a secondary normalization 
factor. The ⋅y operation returns the height component of a vector, and 

the H
H+xyk′

 term is useful to reduce the importance of the first terms if 

the axon k′ is far from axon k in the height direction. This is needed as 
the scanning of the animal’s cervical connective is done from top to 
bottom; thus, we need to allow for some movement artifacts between 
the top and bottom of the image. Note that the dummy axons for 
unmatched regions are also added to this inner problem.

This inner assignment is solved for each possible pair of axon–ROI 
to get all final costs. The overall matching is then performed with them. 
Because we are embedding assignments, the computational cost of the 
tracker increases exponentially with the number of ROIs and axons. It 
stays tractable in our case as we generally deal with few axons at a time. 
All parameter values used in the matching were found empirically by 
trial and error.

Identities post-processing. ROI separation: In the case of 
fine-tuning at the detection stage, AxoID will also automatically try to 
divide ROIs that are potentially two or more separate axons. We imple-
ment this to address the limitation introduced by detecting axons as a 
segmentation: close or touching axons may get segmented together.

To do this, it first searches for potential ROIs to be separated 
by reusing the temporal average of the similar frames used for the 
fine-tuning. This image is initially segmented as described before. 
Then, local intensity maxima are detected on a grayscale version of this 
image. To avoid small maxima due to noise, we keep only those with an 
intensity ≥0.05, assuming normalized grayscale values in [0, 1]. After 
this, we use the watershed algorithm, with the scikit-image85 imple-
mentation, to segment the ROI based on the gray level and detected 
maxima. In the previous stages, we discarded ROIs under 11 pixels 
to avoid small spurious detections. Similarly, here we fuse together 
adjacent regions that are under 11 pixels to output results only after 
the watershedding above or equal to that size. Finally, a border of 1 
pixel width is inserted between regions created from the separation  
of an ROI.

These borders are the divisions separating the ROI, referred to 
as ‘cuts’. We parameterize each of these as a line, defined as its normal 
vector n and distance d to the origin of the image (top left). To report 
them on each frame, we first normalize this line to the current ROI and 
then reverse that process with respect to the corresponding regions 
on the other frames. To normalize the line to an ROI, we fit an ellipse on 
the ROI contour in a least-square sense. Then, the line parameters are 
transformed into this ellipse’s local coordinates following Algorithm 1. 
It is essentially like transforming the ellipse into a unit circle, centered 
and axis-aligned, and applying a similar transformation to the cutting 
line (Extended Data Fig. 2c, middle). The choice of fitting an ellipse is 
motivated by the visual aspect of the axons in the experimental data as 
they are fairly similar to elongated ellipses. Considering this, a separa-
tion between two close ellipses could be simplified to a linear border, 
motivating the linear representation of the ROI separation.
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Because this is done as a post-processing step after tracking, we 
can apply that division on all frames. To do this, we again fit an ellipse 
to their ROI contours in the least-squares sense. Then, we take the 
normalized cutting line and fit it back to each of them according to 
Algorithm 2. This is similar to transforming the normalized unit cir-
cle to the region ellipse and applying the same transform to the line 
(Extended Data Fig. 2c, right).

Finally, a new axon is defined for each cut. In each frame, the pixels 
of the divided region on the furthest side of the linear separation (with 
respect to the fitting ellipse center) are taken as the new ROI of that 
axon for that given frame.

In case there are multiple cuts of the same ROI (for example, 
because three axons were close), the linear separations are ordered 
by distance to the center of the fitting ellipse and are then applied in 
succession. This is simple and efficient but assumes there is little to no 
crossing between linear cuts.

Fluorescence extraction. With the detection and tracking results, 
we know where each axon is in the experimental data. Therefore, to 
compute tdTomato and GCaMP fluorophore time series, we take the 
average of non-zero pixel intensities of the corresponding regions in 
each frame. We report the GCaMP fluorescence at time t as Ft and the 
ratio of GCaMP to tdTomato fluorescence at time t as Rt to gain robust-
ness against image intensity variations.

Algorithm 1: Normalize a line with an ellipse.
Input: line, ellipse
Output: normalized line line’
/* Initialization */
n ← line. normal;
d ← line. distance;
c ← ellipse. center;
w ← ellipse. width/2;
h ← ellipse. height/2;
θ ← ellipse. rotation;
R−θ: = rotation matrix of angle − θ;
/* Normalization */
d′ ← d − c ⋅ n;
n′ ← R−θ n;
n′.x ← n′.x/c.y;
n′.y ← n′.y/c.x;
d′ ← d′/(w ∗ h);
line′.distance ← d′/||n′||;
line′.normal ← n′/||n′||;

Algorithm 2: Fit a line to an ellipse
Input: line, ellipse
Output: fitted line line’
/* Initialization */
n ← line. normal;
d ← line. distance;
c ← ellipse. center;
w ← ellipse. width/2;
h ← ellipse. height/2;
θ ← ellipse. rotation;
Rθ: = rotation matrix of angle θ;
/* Fitting */
n′ ← n;
n′.x ← n′.x ∗ c.y;
n′.y ← n′.y ∗ c.x;
d′ ← d ∗ (w ∗ h);
d′ ← d′/||n′||;
n′ ← n′/||n′||;
line′.normal ← Rθ n

′;
line′.distance ← d′ + c ⋅ n′;
The final GCaMP fluorescence is reported as in ref. 28:

ΔF/F = Ft − F
F

where F is a baseline fluorescence. Similarly, we report the ratio of 
GCaMP over tdTomato as in refs. 28,86:

ΔR/R = Rt − R
R

where R is the baseline. The baseline fluorescences F and R are computed 
as the minimal temporal average over windows of 10 s of the fluorophore 
time series Ft and Rt, respectively. Note that axons can be missing in some 
frames—for instance, if they were not detected or leave the image during 
movement artifacts. In this case, the fluorescence of that axon will have 
missing values at the time index t in which it was absent.

Overall workflow. To improve the performance of AxoID, the fluores-
cence extraction pipeline is applied three times: once over the raw data, 
once over the data registered using cross-correlation and once over 
the data registered using optic flow warping. Note that the fine-tuning 
in the detection stage is not used with the raw experimental data as 
it is based on the cross-correlation between the frames and would, 
therefore, lead to worse or redundant results with the data registered 
using cross-correlation. Eventually, the three fluorescence results 
can be visualized, chosen from and corrected by a user through a GUI 
(Extended Data Fig. 2d).

Data registration. Registration of the experimental frames consists 
in transforming each image to make them similar to a reference image. 
The goal is to reduce the artifacts introduced by animal movements and 
to align axons across frames. This should help to improve the results 
of the detection and tracking.

Cross-correlation. Cross-correlation registration consists of trans-
lating an image so that its correlation to a reference is maximized. Note 
that the translated image wraps around (for example, pixels disappear-
ing to the left reappear on the right). This aims to align frames against 
translations but is unable to counter rotations or local deformations. 
We used the single-step Discrete Fourier Transform (DFT) algorithm87 
to find the optimal translation of the frame. It first transforms the 
images into the Fourier domain, computes an initial estimate of the 
optimal translation and then refines this result using a DFT. We based 
our Python implementation on previous work88.

For each experiment, the second frame is taken as the reference 
frame to avoid recording artifacts that sometimes appear on the first 
recorded image.

Optic flow registration. Optic-flow-based registration was previ-
ously published28. In brief, this approach computes an optic flow from 
the frame to a reference image and then deforms it by moving the pixels 
along that flow. The reference image is taken as the first frame of the 
experiment. This method has the advantage of being able to compute 
local deformations but at a high computational cost.

AxoID GUI. Finally, AxoID contains a GUI where a user can visualize 
the results, select the best one and manually correct it.

First, the user is presented with three outputs of the fluorescence 
extraction pipeline from the raw and registered data with the option of 
visualizing different information to select the one to keep and correct. 
Here, the detection and tracking outputs are shown as well as other 
information, such as the fluorescence traces in ΔF/F or ΔR/R. One of the 
results is then selected and used throughout the rest of the pipeline.

After this, the user can edit the tracker template, which will then 
automatically update the ROI identities across frames. The template 
and the identities for each frame are shown, with additional informa-
tion, such as the image used to initialized the template. The user has 
access to different tools: axons can be fused, for example, if they actu-
ally correspond to a single real axon that was incorrectly detected as 
two, and, conversely, one axon can be manually separated in two if two 
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close ones are detected together. Moreover, useless axons or wrong 
detections can be discarded.

Once the user is satisfied with the overall tracker, they can correct 
individual frames. At this stage, it is possible to edit the detection results 
by discarding, modifying or adding ROIs onto the selected image. Then, 
the user may change the tracking results by manually correcting the 
identities of these ROIs. In the end, the final fluorescence traces are 
computed on the selected outputs, including user corrections.

Reporting Summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are available at https://dataverse.harvard.edu/dataverse/AN. 
Owing to data storage limits, this does not include raw behavior cam-
era images or raw two-photon imaging files. This repository includes 
synchronized neural fluorescence, behavior and ball rotational veloci-
ties; raw and traced MCFO confocal image data; neural data used for 
regression analyses, responses of PE-ANs and AN responses on and off 
of the spherical treadmill; behavioral data and the deep learning model 
for measuring proboscis extensions and annotations for training the 
behavior classifier; linear regression results; and a machine-readable 
version of Supplementary Table 1. For brain and VNC image registra-
tion, templates can be downloaded here: https://www.janelia.org/
open-science/jrc-2018-brain-templates. Neuropil region masks can 
be downloaded here: https://v2.virtualflybrain.org. Source data are 
provided with this paper.

Code availability
Analysis code is available at https://github.com/NeLy-EPFL/Ascend-
ing_neuron_screen_analysis_pipeline. AxoID code is available at https://
github.com/NeLy-EPFL/AxoID.
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Extended Data Fig. 1 | Semi-automated tracking of proboscis extensions, and 
the accuracy of the behavioral classifier. We detected proboscis extensions 
using side-view camera images. (a) First, we trained a deep neural network model 
with manual annotations of landmarks on the ventral eye (blue cross) and distal 
proboscis tip (red cross). (b) Then we applied the trained model to estimate 
these locations throughout the entire dataset. (c) Proboscis extension length 
was calculated as the denoised and normalized distance between landmarks. 
(d) Using these data, we per- formed semi-automated detection of PE epochs by 
first identifying peaks from normalized proboscis extension lengths. Then we 

detected the start (cyan triangle) and end (magenta triangle) of these events. 
We removed false-positive detections by thresholding the amplitude (cyan 
line) and duration (magenta line) of events. Finally, we generated a binary trace 
of PE epochs (shaded regions). (e) A confusion matrix quantifies the accuracy 
of behavioral state classification using 10-fold, stratified cross-validation of a 
histogram gradient boosting classifier. Walking and resting are not included in 
this evaluation because they are predicted using spherical treadmill rotation 
data. The percentage of events in each category (‘predicted’ behavior versus 
ground-truth, manually-labelled ‘true’ behavior) is color-coded.
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Extended Data Fig. 2 | AxoID, a deep learning-based algorithm that detects 
and tracks axon cross-sections in two-photon microscopy images. (a) 
Pipeline overview: a single image frame (left) is segmented (middle) during 
the detection stage with potential axons shown (white). Tracking identities 
(right) are then assigned to these ROIs. (b) To track ROIs across time, ROIs in a 
tracker template (bottom-middle) are matched (red lines) to ROIs in the current 
segmented frame (top-middle). An undetected axon in the tracker template 
(cyan) is left unmatched. (c) ROI separation is performed for fused axons. An 
ellipse is first fit to the ROI’s contour and a line is fit to the separation (dashed 

red line). For normalization, the ellipse is transformed into an axis-aligned 
circle and the linear separation is transformed accordingly. For another frame, a 
transformation of the circle into a newly fit ellipse is computed and applied to the 
line. The ellipse’s main axes are shown for clarity. (d) The AxoID workflow. Raw 
experimental data is first registered via cross-correlation and optic flow warping. 
Then, raw and registered data are separately processed by the fluorescence 
extraction pipeline (dashed rectangles). Finally, a GUI is used to select and 
correct the results.
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Extended Data Fig. 3 | Correlations among and between joint angles and behavioral states. Pearson correlation coefficients (color-coded) for joint angles, 
behavioral states, proboscis extensions, and puffs.
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Extended Data Fig. 4 | Proprioceptor driver lines and computational 
pipeline for extracting joint angle encoding in limb proprioceptors. 
(a,d) Standard deviation projection of confocal images showing expression 
in the leg proprioceptor sensory neuron driver lines (a) iav-Gal4 and (d) 
R73D10-Gal4. Indicated are two-photon coronal section imaging regions-of-
interest (white dashed boxes). Scale bars are 40 μm. (b) Two-photon image 
of proprioceptor afferent terminals in an iav>OpGCaMP6f;tdTomato animal. 
Coronal imaging section is indicated (white dashed line). The claw, a region 
that is implicated in FTi joint-encoding, is also indicated (white arrowhead). 
(c) Two-photon coronal section image of iav-Gal4 showing ROIs. ROI 2 is the 

claw proprioceptive region in panel b. Images were acquired at 4.3 fps as for the 
AN functional screen. Scale bar is 20 μm. (e) ROIs for two-photon recordings 
from an R73D10>OpGCaMP6f;tdTomato animal. Here, a horizontal section 
was imaged at 4.25 fps. Scale bar is 20 μm. (f ) Schematic showing how resting 
epochs were extracted and concatenated for linear regression analysis with leg 
joint angles. (g) Proportion of proprioceptor activity variance that is uniquely 
explained by joint angle regressors (cross-validated ΔR2) for all of the data (left) 
or exclusively resting epochs (right). P-values report the one-tailed F-statistic of 
overall significance of the complete regression model with none of the regressors 
shuffled without adjustment for multiple comparisons (***p<0.001).
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Extended Data Fig. 5 | Joint angle encoding in Ascending Neurons and limb 
proprioceptors exclusively during resting epochs. Proportion of variance in 
(a) AN and (b) proprioceptor activity that is uniquely explained by joint angle 
regressors (cross-validated ΔR2 based on joint movements. P-values report 

the one-tailed F-statistic of overall significance of the complete regression 
model with none of the regressors shuffled without adjustment for multiple 
comparisons (**p<0.01 and ***p<0.001).
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Extended Data Fig. 6 | The degree to which representative animals for each 
genotype displayed each classified behavior. (a) Linear and (b) log color-coded 
quantification of the fraction of total recorded time that a representative animal 

for each spGal4 and Gal4 spent performing each classified behavior. Hashed lines 
indicate the absence of a behavior.
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Extended Data Fig. 7 | Normalized mean activity (ΔF/F) of ascending neurons 
during behaviors, and a summary of their behavioral encoding, brain 
targeting, and VNC patterning. (a) Normalized mean ΔF/F, normalized between 
0 and 1, for a given AN across all epochs of a specific behavior. Analyses were 
performed for 157 ANs recorded from 50 driver lines. Note that fluorescence 
for non-orthogonal behaviors/events may overlap (for example, for backward 
walking and puff, or resting and proboscis extensions). Conditions with less than 
ten epochs longer than 0.7 s are masked (white). One-way ANOVA and two-sided 
posthoc Tukey tests to correct for multiple comparisons were performed to test 
if values are significantly different from baseline. Non-significant samples are 
also masked (white). (b) Variance in AN activity that can be uniquely explained 
by a regressor (cross-validated ΔR2) for behaviors as shown in Fig. 2d. Non-
orthogonal regressors (PE and CO2 puffs) are separated from the others. P-values 
report the one-tailed F-statistic of overall significance of the complete regression 

model with no regressors shuffled without adjustment for multiple comparisons 
(*p<0.05, **p<0.01, and ***p<0.001). (c,d) The most substantial AN (c) targeting 
of brain regions, or (d) patterning of VNC regions, as quantified by pixel-based 
analysis of MCFO labelling. Driver lines that were manually quantified are 
indicated (dotted cells). Projections that could not be unambiguously identified 
are left blank. Notable encoding and innervation patterns are indicated by 
bars above each matrix. Lines (and their corresponding ANs) selected for more 
in-depth analysis are color-coded by the behavioral class that best explains 
their neural activity: SS27485 (resting), SS36112 (puff responses), SS29579 
(walking), SS51046 (turning), SS42740 (foreleg-dependent behaviors), SS25469 
(eye grooming), and SS31232 (proboscis extensions). (e) Standard deviation of 
normalized activity (ΔF/F), normalized between 0 and 1, for a given AN across all 
epochs of a specific behavior.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Resource https://doi.org/10.1038/s41593-023-01281-z

Extended Data Fig. 8 | Puff-responsive-ANs do not encode backward walking 
and respond similarly to puffs of air, or CO2. (a-d) Puff-responsive-ANs 
(SS36112) activity (green) and corresponding spherical treadmill rotational 
velocities (red, blue, and purple) during (a) long, 2 s CO2-puff stimulation (black) 
and associated backward walking (orange), (b) short, 0.5 s CO2-puff stimulation, 
(c) periods with backward walking, and (d) the same backward walking events 
as in c but only during periods without coincident puff stimulation. Shown are 
the mean (solid and dashed lines) and 95% confidence interval (shaded areas) of 
multiple ΔF/F and ball rotation time-series. (e-m) Activity of puff-responsive-ANs 
(SS36112) from three flies (e-g, h-j, and k-m, respectively) in response to puffs 

of air (red), or CO2 (black). (e-f, h-i, k-l) Shown are mean (solid and dashed lines) 
and 95% confidence interval (shaded areas) ΔF/F for ROIs (e,h,k) 0 and (f,i,l) 1. 
(g,j,m) Mean fluorescence (circles) of traces for ROIs 0 (left) or 1 (right) from 0.7 
s after puff onset until the end of stimulation. Overlaid are box plots representing 
the median, interquartile range (IQR), and 1.5 IQR. Outliers beyond 1.5 IQR are 
indicated (opaque circles). N = (g) 54 for CO2 and 43 for air ( j) 48 for CO2 and 45 
for air, and (m) 58 for CO2 and 37 for air-puff epochs. A two-sided Mann-Whitney 
test (*** p<0.001, ** p<0.01, * p<0.05) was used to compare responses to puffs of 
CO2 (red), or air (black).
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Extended Data Fig. 9 | The bilaterality of an ascending neuron pair’s VNC 
patterning correlates with the synchrony of their activity. (a) A bilaterality 
index, quantifying the differential innervation of the left and right VNC (without 
distinguishing between axons and dendrites) is compared with the Pearson 
correlation coefficient computed for the activity of left and right ANs for a driver 

line pair (R2 = 0.31 and p<0.001 using a two-sided Wald Test with a t-distribution 
to test whether to reject the null hypothesis that the coefficient of a linear 
equation equals 0). (b) Bilaterality index and Pearson correlation coefficient 
values for each AN pair.
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Extended Data Fig. 10 | Ascending neurons that become active only when the 
spherical treadmill is removed. Representative AN recordings from ROIs 0 and 1 
for one (a,b) SS51017-spGal4, or one (c,d) SS38631-spGal4 animal measured when 
it is (a,c) suspended without a spherical treadmill, or in contact with the spherical 
treadmill. Moving, resting, and puff stimulation epochs are indicated. Shown are 
(left) representative neural activity traces and (right) summary data including 

the median, interquartile range (IQR), and 1.5 IQR of AN ΔF/F values for N = (a) 55 
and 56, (b) 80 and 102, (c) 77 and 76, (d) 38 and 97 epochs when the animals are 
resting (black) and moving (blue), respectively. Outliers (values beyond 1.5 IQR) 
are indicated (opaque circles). Statistical comparisons were performed using a 
two-sided Mann-Whitney test (*** p<0.001, ** p<0.01, * p<0.05).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Two-photon microscope images were acquired using ThorImage 3.1 software. Data synchronization was performed using ThorSync 3.1 

software. Behavior images were acquired using custom Python scripts. Confocal images were acquired using Zen 2011 14.0 software.

Data analysis Data analyses were performed using custom code written in Python 3. The code is available in the following repository:  

https://github.com/NeLy-EPFL/Ascending_neuron_screen_analysis_pipeline 

Fiji v.2.9.0 software was used to generate standard deviation z-projections of image stacks, combine monochromatic images to generate RGB 

images, mask MCFO confocal images, and trace neurons. 

AxoID software was developed and used to track ROIs in two-photon imaging data. The code is available in the following repository:  

https://github.com/NeLy-EPFL/AxoID 

Code for brain and VNC confocal image registration can be found at: https://github.com/NeLy-EPFL/MakeAverageBrain/tree/workstation  

MCFO brain and VNC confocal image registration was performed using the Computational Morphometry Toolkit: https://www.nitrc.org/

projects/cmtk

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data are available at: https://dataverse.harvard.edu/dataverse/AN . Due to data storage limits, this does not include raw behavior camera images or raw two-

photon imaging files. This repository includes: synchronized neural fluorescence, behavior, and ball rotation velocities; raw and traced MCFO confocal image data; 

neural data used for regression analyses, responses of PE-ANs, and neural responses on and off of the spherical treadmill; behavioral data as well as the deep-

learning model for measuring proboscis extensions and annotations for training the behavior classifier; linear regression results; a machine-readable version of 

Table S1.  

For brain and VNC image registration, templates can be downloaded here: https://www.janelia.org/open-science/jrc-2018-brain-templates.  

Neuropil region masks can be downloaded here: https://v2.virtualflybrain.org.

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The study was designed as a functional and anatomical screen of many Drosophila driver lines. Each line was functionally examined in 2-5 

animals each. Anatomical studies were very reliable across samples. AN encodings were qualitatively reliable for the same driver line across 

animals aside from differences in signal-to-noise ratio as well as minor variability in the number of ROIs for a subset of driver lines. No 

statistical methods were used to pre-determine sample sizes. Our sample sizes are justified by AN functional response reliability and the 

constraint of the time required to functionally screen 70 driver lines in behaving animals.  

The data presented in this manuscript were acquired from 245 flies: 

108 flies for confocal imaging of smFP expression. 

70 flies for two-photon AN imaging during behavior. 

42 flies for tracing single AN morphologies using MCFO. 

7 flies for imaging MCFO single neuron morphologies at high magnification. 

7 flies for confocal imaging of syt:GFP. 

3 flies for comparing puff-AN responses to air versus carbon dioxide. 

8 flies for examining the ramping increase in PE-AN activity during PE trains.

Data exclusions Data from two-photon recordings of behaving flies were excluded for animals and trials in which we observed abnormal limb movements, or 

low vitality. Two-photon imaging data were also excluded if they suffered from optical occlusions due to tissue debris, or extreme motion 

artifacts resulting from animal behavior. 

Replication For the two-photon functional imaging screen, 2-5 replicates (animals) were recorded for each genotype. All attempts at replication were 

successful. Recordings from one representative fly of each genotype were used in linear modeling. This decision was made due to the 

difficulty, for some genotypes, of confidently identifying the same neurons across animals.  

For the SS31232 (PE-ANs) line, we analyzed 25 PE-trains from 8 replicates (animals).  

For the SS36112 (puff-ANs) line, we analyzed responses to air versus carbon dioxide for 3 replicates (animals). 

To measure syt:GFP expression in each genotype, 3-6 replicates (animals) were analyzed. One representative animal is shown for each of 7 
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lines studied in-depth. 

To measure single neuron labeling with MCFO, 2-7 replicates (animals) were analyzed per genotype. One representative animal is shown for 

each of 42 lines. The same number of replicates were used for high-magnification studies of single neuron morphologies. 

To examine the expression of smFP, 2-3 replicates (animals) were examined for each genotype. One representative example is shown for each 

of the 108 lines.

Randomization Because we performed a functional screen without prior hypotheses, the experiments were not randomized.

Blinding Because we performed a functional screen without prior hypotheses, the data collection and analyses were not performed blind to the 

conditions of the experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used - Mouse Anti-nc82,  Bruchpilot (DSHB, RRID: AB_2314866) 

- Rabbit anti-GFP (Thermofisher, RRID: AB_2536526) 

- rabbit anti-HA-tag (Cell Signaling Technology, RRID: AB_1549585) 

- rat anti-FLAG-tag (DYKDDDDK; Novus, RRID:AB_1625981) 

- rabbit anti-V5-tag (GKPIPNPLLGLDST) conjugated with DyLight 550 (Cayman Chemical, 11261) 

- rabbit polyclonal anti-DsRed (Takara Biomedical Technology, RRID: AB_10013483) 

- goat anti-rabbit secondary antibody conjugated with Alexa 488 (Thermofisher, RRID: AB_143165) 

- goat anti-mouse secondary antibody conjugated with Alexa 633 (Thermofisher, RRID: AB_2535719) 

- donkey anti-rabbit secondary antibody conjugated with AlexaFluor 594(Jackson ImmunoResearch Labs, RRID:AB_2340621) 

- donkey anti-rat secondary antibody conjugated with AlexaFluor 647 (Jackson ImmunoResearch Labs, RRID:AB_2340694) 

- donkey anti-mouse secondary antibody conjugated with AlexaFluor 488 (Jackson ImmunoResearch Labs, RRID:AB_2341099) 

- donkey anti-rabbit secondary antibody conjugated with Cy3 (Jackson ImmunoResearch Labs, RRID:AB_2307443)

Validation Primary antibodies were validated by the suppliers as follows: Rabbit anti-GFP (Thermofisher, RRID: AB_2536526) was validated 

through relative expression, rabbit anti-HA-tag (Cell Signaling Technology, RRID: AB_1549585) was validated through 

immunohistochemical expression analysis, and rabbit polyclonal anti-DsRed (Takara Biomedical Technology, RRID: AB_10013483) 

was validated by western blot. No manufacturer notes are available for the validation of other primary antibodies. No additional 

validation was performed.  

- DSHB - https://dshb.biology.uiowa.edu/nc82 

- Thermofisher - https://www.thermofisher.com/antibody/product/ 

- Cell Signaling Technology - https://www.cellsignal.com/products/primary-antibodies/ha-tag-c29f4-rabbit-mab/3724 

- Cayman Chemical - https://www.caymanchem.com/product/11261/rabbit-anti-v5-tag-igg%3Adylight%C2%AE-550 

- Takara Biomedical Technology - https://www.takarabio.com/products/antibodies-and-elisa/fluorescent-protein-antibodies/red-

fluorescent-protein-antibodies 

- Jackson ImmunoResearch Labs - https://www.jacksonimmuno.com/

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 

Research

Laboratory animals Female Drosophila melanogaster flies 3-6 days post-eclosion (dpe) from the following driver lines were used in this study:  

Split-Gal4 lines (SS*****), 

GMR Gal4 lines,  

MAN-spGal4 (; VT50660-AD; VT14014-DBD), 

MCFO-5 (R57C10-Flp2::PEST in su(Hw)attP8; ; HA-V5-FLAG), MCFO-7 (R57C10-Flp2::PEST in attP18;;HA-V5-FLAG-OLLAS), 

UAS-syt:GFP (P{w[+mC]=UAS-syt.eGFP}1, w[*]; ; ), 

UAS-OpGCaM6f; UAS-tdTomato (; P{20XUAS-IVS-Syn21-OpGCamp6F-p10} su(Hw)attp5; P{w[+mC]=UAS-tdTom.S}3), 

UAS-smFP (; ; 10xUAS-IVS-myr::smGdP-FLAG (attP2))
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Wild animals No wild animals were used.

Reporting on sex All studies were performed on female flies due to their larger body size. This property facilitates neural data analysis and behavioral 

quantification.

Field-collected samples No field-collected samples were used.

Ethics oversight All experiments were performed in compliance with relevant national (Switzerland) and institutional (EPFL) ethical regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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